
Ransomware Encryption Internals: A Behavioral
Characterization

Antonio Cocomazzi
Threat Intelligence Researcher, SentinelOne

whoami

➔ Threat Intelligence Researcher @

SentinelOne

➔ Mainly deal with malware analysis

and reverse engineering

➔ Free time = coding offensive tools

+ deepin into Windows internals

➔ Previously presented at BlueHat,

Black Hat, HITB, RomHack.

@splinter_code

@antonioCoco

Why this research

➔ Data encryption is the core functionality of every Ransomware and it

enables their successful operations to extort money from the victims

➔ Static indicators are acceptable but behavioral indicators are gold

➔ Extracting Behavioral Indicators means deep knowledge -> lots of study ->

very time intensive

➔ Providing a behavioral characterization should ease this --^

➔ Identifying behavioral commonalities can provide detection opportunities

generic enough to identify all the most advanced Ransomware families,

instead of relying of specific detection for specific families

Agenda

➔ Defining the data encryption scope

➔ Evolution, Trends and Unique features

➔ The behavioral characterization

➔ Behavioral detection based on overlapping

implementations
◆ Cross Drive File Enumeration detection

◆ File Footer Writing detection

◆ Encryption Key Randomization detection

◆ Restart Manager API heavy usage detection

➔ Conclusion

Defining the data encryption scope

Defining the data encryption scope

➔ Data Encryption characterization requires a dedicated threat

model wide enough to cover Ransomware behaviors in a generic way

➔ Four Macro features:
◆ Files And Directories Enumeration

◆ File Encryption

◆ Encryption Parallelization

◆ Encryption Optimization

➔ Selected Ransomware:
◆ Babuk

◆ BlackMatter

◆ Conti

◆ Revil

Some months later…

Evolution, Trends and Unique
features

The shifts in the encryption schemes

➔ Main shift is the adoption of Elliptic-Curve Diffie-Hellman (ECDH) key

exchange algorithms instead of RSA as asymmetric encryption -> main

difference the private key is never left on the victim host neither in

encrypted form

➔ The evolution of the encryption implementation aims to avoid the usage of

the CryptoAPI functionalities offered by the Windows operating system

➔ Ransomware developers prefer to use open-source libraries or custom

implementation for their symmetric and asymmetric encryption operations

(e.g. curve25519-donna, HC-128, custom ChaCha20...)

➔ All analyzed families append the information required to restore the

symmetric private keys as a file footer!

Generate Embed

The shift from RSA to ECDH in Asymmetric Encryption: RSA

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

Symmetric Key

Ransomware.exe

Encrypted
Symmetric Key

Operator

RSA private Key

RSA public Key

Generate
Random Key

RSA
Encrypt

Data Input Data Output

Input Key

Input Key

Data Input

Data Output

The shift from RSA to ECDH in Asymmetric Encryption: RSA

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

Symmetric Key

Ransomware.exe

Encrypted
Symmetric Key

Operator

RSA private Key

RSA public Key

Generate
Random Key

RSA
Encrypt

Data Input Data Output

Input Key

Input Key

Data Input

Data Output

Destroy
Key

EmbedGenerate

Input Key Data Input

The shift from RSA to ECDH in Asymmetric Encryption: RSA

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

Encrypted
Symmetric Key

Operator

RSA private Key

RSA public Key

Data Input Data Output

Only this
key can
decrypt

Generate

Symmetric Key

Input Key

RSA
Decrypt

Data Output

EC Public Key
Ephemeral

Embed

The shift from RSA to ECDH in Asymmetric Encryption: ECDH

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

Operator

Data Input Data Output

ECDH
Key Setup

EC Private
Key Master

EC Public
Key Master Ransomware.exe

Symmetric Key

Input Key

ECDH
Ephemeral
Key Setup

ECDH
Key

Agreement
EC Public

Key Ephemeral

Private
Input Key

Public Input
Key

Shared Key

EC Private
Key Ephemeral

EC Private
Key Ephemeral

Embed

The shift from RSA to ECDH in Asymmetric Encryption: ECDH

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

EC Public Key
Ephemeral

Operator

Data Input Data Output

ECDH
Key Setup

EC Private
Key Master

EC Public
Key Master Ransomware.exe

Symmetric Key

Input Key

ECDH
Ephemeral
Key Setup

ECDH
Key

Agreement
EC Public

Key Ephemeral

Shared Key

Destroy Key

Destroy Key

Public Input key

The shift from RSA to ECDH in Asymmetric Encryption: ECDH

secret text
content

secret.txt

Symmetric
Encryption

111001100110
100101010110
101001

secret.txt.encrypted

EC Public Key
Ephemeral

Operator

Data Input Data Output

ECDH
Key Setup

EC Private
Key Master

EC Public
Key Master

Symmetric Key

Input Key

ECDH
Key

Agreement
Private Input Key

Shared Key

Main Difference:
The symmetric key
never touches the
disk neither in
encrypted form

Automated discovery of internal resources to target

➔ Every Ransomware implementation bundle automated ways to find

and seek for relevant resources to encrypt

➔ The common trend identified is to enumerate all local

directories and finding the remote shared resources

➔ Unique implementations that perform a more in-depth seek:
◆ BlackMatter uses LDAP queries to retrieve all the computer names in the domain

and build a list of the remote machines to encrypt files from

◆ Conti retrieves the network addresses of the machines connected to the network

through the ARP table stored locally

Automated discovery of internal resources to target

➔ Blackmatter automated LDAP discovery:

ADsOpenObject(“LDAP://rootDSE”, ... , IID_IADs, &IADs_object) ->

IADs_object::Get(..., &defaultNamingContext) ->

ADsOpenObject(wcscat(“LDAP://CN=Computers,”, defaultNamingContext.bstrVal, ...,

&IID_IADsContainer, &pADsContainer) ->

ADsBuildEnumerator(pADsContainer, &ppEnumVariant) ->

ADsEnumerateNext(ppEnumVariant, … , defaultNamingContext, ...) ->

IADs_object::Get(..., “dNSHostName”, &dnsHostNameVariant)

Growing focus in performance improvements

➔ One interesting evolution identified is the adoption of tasks

parallelization in the Ransomware payloads -> The main

motivation around that is to shorten the time of reaction of the

security team behind the compromised organization

➔ All ransomware implementations analyzed prefer a native

multithreading approach over a multiprocessing approach

➔ The main trends observed for the encryption parallelization is

the usage of I/O completion ports

Growing focus in performance improvements

➔ Some unique performance improvements implementations...

➔ Babuk uses a unique approach with Semaphores and custom

management of the thread pools and shared data structure.
◆ Less overhead than using completion ports

➔ BlackMatter uses undocumented Windows functions to increase its

process class and IO priority
◆ This instructs the kernel to schedule primarily the execution of the threads

running in the Ransomware process thus granting a performance improvement

Automated discovery of internal resources to target

➔ Blackmatter undocumented functions to increase process priority:

Additional efforts to maximize the encryption damages

➔ Ransomware developers ensure that the disruptive operations

carried out by their Encryptor have a higher impact on the

targeted systems

➔ The common trend is to kill a set of processes and services

starting from a list of “unwanted” names

➔ Moreover, for unknown processes that hold lock conditions on

files, the Restart Manager API are used to identify all the

processes that prevent the successful encryption of files

already in use

Additional efforts to maximize the encryption damages

➔ Another common feature is the usage of functions to erase

volume backups (i.e. shadow copies)

➔ The methods observed:
◆ Vssadmin.exe (delete shadows, resize shadowstorage)

Utility to delete or resize the shadow copies

◆ Using COM (IWbemLocator, IWbemContext, IWbemServices)

Out-of-process COM objects to interact with the VSS providers through

WMI services

Automated discovery of internal resources to target

➔ Babuk implementation for killing file lock holders:

The behavioral characterization

◆ Mount hidden volumes

◆ Local Drive Enumeration

◆ Remote Drive Enumeration

◆ File Enumeration

The behavioral characterization

➔ Files And Directories Enumeration ➔ File Encryption

➔ Encryption Parallelization➔ Encryption Optimization

◆ Asymmetric Encryption

◆ Symmetric Encryption

◆ Key Randomization

◆ Encrypted Block Writing

◆ File Footer Writing

◆ Kill unwanted Services

◆ Kill unwanted Processes

◆ Shadow Copies Deletion

◆ Kill file lock holders

◆ Increase process priority

◆ Multi threading

◆ Synchronization

Feature Feature

FeatureFeature

Sub-features

Sub-features

The behavioral characterization

➔ The various Ransomware families analyzed implements the sub-

features in various ways

➔ By collecting all the details about the implementations it’s

possible to map the implementations of each sub-features to the

corresponding family

➔ The mapping has been based on the NT/Win32 API usage of the

implementations

➔ The goal of this mapping is to provide a way to recognize

overlapping implementations across families and ease the

development of effective detection to identify Ransomware

behaviors commonalities

The behavioral characterization

➔ Results for “Files And Directories Enumeration”:

Public link of the results → https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

The behavioral characterization

➔ Results for “Files Encryption”:

Public link of the results → https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

The behavioral characterization

➔ Results for “Encryption Optimization”:

The behavioral characterization

➔ Results for “Encryption Parallelization”:

Public link of the results → https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1PprkVGsNYFQ39yfqobiBpIg0qhfXz3__XQscqR7Gv9I/edit?usp=sharing

Behavioral detection based on
overlapping implementations

Behavioral detection based on overlapping implementations

➔ Overlapping sub-features implementations:

Cross Drive File Enumeration detection
➔ Every Ransomware analyzed performs the sub-feature “File Enumeration” with

the same implementation:
◆ FindFirstFileEx(“[DRIVE]:\[PATH]*”, ...)

◆ FindNextFile()

➔ The usage of the Win32 Api function FindFirstFileEx() combined with the

wildcard ‘*’ char appended at the end of each path found on the system

does generate a specific IRP at the kernel level:

Cross Drive File Enumeration detection

➔ A potential problem with this approach is that it could be prone

to a high false positive rate

➔ Here is where it comes into play the concept of the “Cross

Drive” file enumeration.
◆ Every Ransomware performs a series of operations to identify all the hidden, local and

remote drives on the system prior to the file enumeration operation

➔ The IRP_MJ_DIRECTORY_CONTROL IRP is dispatched to multiple

logical drives. This makes the operation quite unique and

abnormal for usual benign applications

➔ The detection spot occurs at the kernel level :)

Cross Drive File Enumeration detection

File Footer Writing detection
➔ Every Ransomware analyzed performs the sub-feature “File Footer Writing”

with the same implementation:
◆ SetFilePointerEx(hFile, …, FILE_END)

◆ WriteFile(hFile, fileFooterStruct, sizeof(fileFooterStruct), …)

➔ The combination of these Win32 Api functions generate a specific IRP with

specific characteristics at the kernel level:

File Footer Writing detection

➔ In a pre operation callback IRM_MJ_WRITE, if the parameter

IrpSp->Parameters.Write.ByteOffset is equal to the actual

size of the file in which the write is happening
◆ It means that’s an append operation

◆ Then the value IrpSp->Parameters.Write.Length should be stored for

further validation

◆ This value represents the actual size of the struct used by the

ransomware to append the footer information needed for the decryption

➔ Unfortunately, the file footer struct size differs between

Ransomware implementations
◆ We can aggregate the number of append operations that have the same

recurring length

◆ This characterizes the behavior of a Ransomware trying to write its own

file footer to each file it encrypts

File Footer Writing detection

➔ Babuk example of “File Footer Writing” implementation:

File Footer Writing detection

➔ By monitoring the file writes performed in this way, it is possible

to count how many file markers are appended to files

➔ E.g. We can keep track of these file writes with a dictionary data

structure where on the key is stored the Length of the write

operation and as a value the counter of how many times that write

with that size has been appended to a file

➔ When a Ransomware is executed it should be observed that the

counter contained in the value of a specific key of the dict is

exceeding a threshold

➔ The detection spot occurs at kernel level :)

Restart Manager API heavy usage detection
➔ Restart Manager API usage common implementation:

◆ RmStartSession()

◆ RmRegisterResource(..., &filePath, …)

◆ RmGetList()

➔ Whenever a call to CreateFile() fails to return a valid file

handle, the Ransomware assumes the failure is due to some file

locking mechanism held by some process
◆ This generates a heavy usage of the Restart Manager APIs

➔ Lowest NT API to monitor by reversing RmGetList() from

RstrtMgr.dll:
◆ RmGetList()

◆ CRestartManager::GetAffectedApplications()

◆ CRestartManager::UpdateInternalData()

◆ RmFileFactory::UniqueAffectedPids()

◆ RMRegisteredFile::AffectedPids()

◆ NtQueryInformationFile()

Restart Manager API heavy usage detection

➔ The invocation of NtQueryInformationFile() from

RmGetList() uses an undocumented FILE_INFORMATION_CLASS

value of FileProcessIdsUsingFileInformation

➔ Peak usage of this call performed with the

FileProcessIdsUsingFileInformation value (0x2F) could be

used to characterize the usage of the Restart Manager API

specifically by a Ransomware

➔ The detection spot occurs at userland level :(

Encryption Key Randomization detection

➔ Private keys are generated through PRNG (pseudo random number

generator) either for symmetric or asymmetric encryption
◆ This randomization operation is performed for each file encrypted thus

generating a high volume usage of the PRNG functionalities

◆ These implementations rely on the Win32 API calls CryptGenRandom() and

CryptGenKey() from advapi32.dll

◆ The observed value “dwLen” for the CryptGenRandom() call do overlap between the

different implementations

◆ Usually this value is equal to 16 or 32 that match the size of the private keys

for the encryption algorithms implemented (so 128 or 256 bits)

➔ Not very generic and robust like others detection methods...
◆ But it can be used as an opportunistic way to detect implementation based on

these APIs usage

➔ The detection spot occurs at userland level :(

Conclusion

➔ Giving insights of what are the core operations

characterizing the data encryption stage makes analysis of

these complex threats easier

➔ Identifying commonalities in implementations allows to

create behavioral indicators based on the side-effects

generated by those operations valid for most Ransomware

families

➔ The main reason for preferring behavioral indicators over

static indicators is because they are much more reliable

and harder to evade

➔ TL;DR Behavioral detection is the right approach for

scalable Ransomware countermeasures

Special Thanks

➔ SentinelOne’s team (Claudia, Daniel, Andreas)

➔ Idan Weizman

➔ Chuong Dong (@cPeterr)

Thank You!
splintercod3@gmail.com

@splinter_code

