
1/12

February 10, 2021

Detecting Manual Syscalls from User Mode
winternl.com/detecting-manual-syscalls-from-user-mode

By now direct system calls are ubiquitous in offensive tooling. Manual system calls remain

effective for evading userland based EDRs. From within userland, there has been little

answer to this powerful technique. Such syscalls can be effectively mitigated from kernel

mode, but for many reasons, most EDRs will continue to operate exclusively from usermode.

This post will present a novel method for detecting manual syscalls from usermode.

Previous Work

In 2015, Alex Ionescu presented a talk at RECON entitled, Hooking Nirvana: Stealthy

Instrumentation Hooks, where, among other techniques, he described an instrumentation

callback engine which is used internally by Microsoft. You can watch his talk here and read

his presentation slides here.

The techniques discussed here have already been weaponized for offensive code injection, but

as far as I can tell, have not been applied defensively.

My research is also based off of previous work done by @qaz_qaz and his PoC here. This

article also served as a primary point of reference.

And finally, a user by the name of esoterik on the game-hacking forum unknowncheats

provided an example of a thread safe implementation of the instrumentation hook. Full

thread.

Hooking Nirvana Revisted

There exists an internal instrumentation engine, known as Nirvana, used by Microsoft which

has been present since Windows Vista.

Nirvana is a lightweight, dynamic translation framework that can be used to monitor and
control the (user mode) execution of a running process without needing to recompile or rebuild
any code in that process. This is sometimes also referred to as program shepherding,
sandboxing, emulation, or virtualization. Dynamic translation is a powerful complement to
existing static analysis and instrumentation techniques.

– Microsoft

To understand how this technique will ultimately work, it is necessary to first understand

kernel to user mode callbacks. Ntdll maintains a set of exported functions which are used by

the kernel to invoke specific functionality in usermode. There are a number of these callbacks

https://winternl.com/detecting-manual-syscalls-from-user-mode/
https://twitter.com/aionescu
https://www.youtube.com/watch?v=pHyWyH804xE
https://github.com/ionescu007/HookingNirvana/blob/master/Esoteric%20Hooks.pdf
https://splintercod3.blogspot.com/p/weaponizing-mapping-injection-with.html
https://twitter.com/_qaz_qaz
https://secrary.com/Random/InstrumentationCallback/
https://www.codeproject.com/Articles/543542/Windows-x64-System-Service-Hooks-and-Advanced-Debu
https://www.unknowncheats.me/forum/1967011-post29.html
https://www.unknowncheats.me/forum/anti-cheat-bypass/253247-instrumentation-callbacks-syscall-callbacks.html
https://www.usenix.org/legacy/events/vee06/full_papers/p154-bhansali.pdf


2/12

which are well documented. These functions are called when the kernel transitions back to

user mode. The location (i.e. exported function) will vary based upon intended functionality.

LdrInitializeThunk – Thread and initial process thread creation starting point.

KiUserExceptionDispatcher – Kernel exception dispatcher will IRET here on 1 of 2

conditions.

1. the process has no debug port.

2. the process has a debug port, but the debugger chose not to handle the exception.

KiRaiseUserExceptionDispatcher – Control flow will land here in certain instances

during a system service when instead of returning a bad status code, it can simply

invoke the user exception chain. For instance: CloseHandle() with an invalid handle

value.

KiUserCallbackDispatcher – Control flow will land here for Win32K window and

thread message based operations. It then calls into function table contained in the

process PEB

KiUserApcDispatcher – This is where user queued apc’s are dispatched.

The above list was taken from this article. There are many such callbacks, and if you’d like to

explore more you can visit Nynaeve’s blog.

Each time the kernel encounters a scenario in which it returns to user mode code, it will

check if the KPROCESS!InstrumentationCallback member is not NULL. If it is not NULL

and it points to valid memory, the kernel will swap out the RIP on the trap frame and replace

it with the value stored in the InstrumentationCallback field.

0: kd> dt _kprocess

nt!_KPROCESS

// ...

+0x3d8 InstrumentationCallback : Ptr64 Void

view raw kprocess.cpp hosted with by GitHub

But remember, this is the KPROCESS structure, which resides in kernel memory. Official

documentation on the InstrumentationCallback field is sparse to non, but serendipitously,

Microsoft may have inadvertently leaked a clue we can utilize in their SDK. Referencing a

specific version of the Windows 7 SDK, there exists a

PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION structure.

typedef struct _PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION

{

ULONG Version;

https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
http://www.nynaeve.net/?p=200
https://gist.github.com/jackullrich/0ef359c7c918ac6a3354fd34da782c23/raw/265055ccb26c757098030dad8fea5cec68490c85/kprocess.cpp
https://gist.github.com/jackullrich/0ef359c7c918ac6a3354fd34da782c23#file-kprocess-cpp
https://github.com/


3/12

ULONG Reserved;

PVOID Callback;

} PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION,
*PPROCESS_INSTRUMENTATION_CALLBACK_INFORMATION;

view raw typedef.cpp hosted with by GitHub

The KPROCESS!InstrumentationCallback field can be set from usermode by calling

NtSetInformationProcess with an undocumented PROCESSINFOCLASS value and a pointer

to a PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION structure.

It is worth noting that process instrumentation behavior and capabilities change between

most Windows versions, and certain functionality only exists in later Windows versions. For

this post, all research and development is done on a 64-bit Windows 10 machine.

Nirvana — Now What?

To recap, there exists internal functionality on Windows machines to instrument (read:

hook) all kernel to usermode callbacks. In order to detect evasive syscall behavior, there must

be a defensive thesis on what makes a syscall malicious. Ideally, a defensive actor would like

to allow all syscalls which originate from a legitimate source and block execution when

syscalls originate from a malicious source. Manual syscalls may function exactly as legitimate

ones but often originate well outside of where they “should be”. And the as saying goes, what

goes up must come down. Well, for this context, what transitions to the kernel, must

transition back to usermode. And this is exactly the defensive thesis used.

All syscalls which do not transition from the kernel back to usermode at a known valid

location, are in fact crafted for evasive purposes.

The plan now becomes clear. Find out if the syscall returns back to usermode at a known

location. This address could be an exported function in ntdll.dll or win32u.dll (I’m sure there

are more callbacks). It may not be a memory page in the .text section an unknown module.

Plan of Defense

Because Nirvana’s instrumentation engine hooks transitions from the kernel, we are tasked

with determining where the transition originated from. An auxiliary task, which increases

instrumentation robustness, is determining whether the transition was in fact a syscall or

another type of transition, such as an APC which would return to

ntdll!KiUserApcDispatcher. Still, these addresses should always return to a known module.

After a syscall is issued, R10 will contain the address of the first instruction to be executed

back in userland. This is almost always a return instruction. Validating the integrity of this

address can detect the presence of manual syscall invocations.

https://gist.github.com/jackullrich/6c26b11cb66c0ff92837f45136885ca9/raw/56667899a68b1034585e3386a876f65aebef62b6/typedef.cpp
https://gist.github.com/jackullrich/6c26b11cb66c0ff92837f45136885ca9#file-typedef-cpp
https://github.com/


4/12

Instrumenting from User Mode

Setting the KPROCESS!InstrumentationCallback field is easy. It can be done in about 20

lines of code and only a single function call.

#define PROCESS_INFO_CLASS_INSTRUMENTATION 40

typedef struct _PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION

{

ULONG Version;

ULONG Reserved;

PVOID Callback;

} PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION, *
PPROCESS_INSTRUMENTATION_CALLBACK_INFORMATION;

PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION nirvana;

nirvana.Callback = (PVOID)(ULONG_PTR)InstrumentationCallbackThunk;

nirvana.Reserved = 0; /* Always 0 */

nirvana.Version = 0; /* x64 -> 0 | x86 -> 1 */

NtSetInformationProcess(

GetCurrentProcess(),

(PROCESS_INFORMATION_CLASS)PROCESS_INFO_CLASS_INSTRUMENTATION,

&nirvana,

sizeof(nirvana));

view raw Instrumentation.cpp hosted with by GitHub

Now that we have the InstrumentationCallback field updated, we must implement the hook.

The hook has to be cognizant of all non-volatile registers, proper stack alignment,

unintended recursion, and thread safety. The hook is implemented in two separate files, in

part because the 64-bit MSVC compiler does not support inline assembly. The first part of

the instrumentation hook is coded in assembly. This procedure will be pointed to by the

KPROCESS!InstrumentationCallback field. It is responsible for preserving registers (which

https://gist.github.com/jackullrich/9e8ca1d21b2eaebab7584b8441de811f/raw/57ce9d5ed6c466f5e3f9dae65d360db5c3ae6777/Instrumentation.cpp
https://gist.github.com/jackullrich/9e8ca1d21b2eaebab7584b8441de811f#file-instrumentation-cpp
https://github.com/


5/12

cannot easily be accomplished without inline assembly) and subsequently calling the next

part of the hooking routine. The second function is written in C/C++ and will contain the

logic needed to verify the integrity of the syscall.

Prior to Windows 10, the instrumentation functionality used by this project was only

available for 64-bit Windows versions. To support x86 and WoW64, four new fields were

added to the TEB structure.

_TEB_64

+0x02D0 ULONG_PTR InstrumentationCallbackSp

+0x02D8 ULONG_PTR InstrumentationCallbackPreviousPc

+0x02E0 ULONG_PTR InstrumentationCallbackPreviousSp

+0x02EC BOOLEAN InstrumentationCallbackDisabled

view raw teb.cpp hosted with by GitHub

In x64 Windows, I believe, but am not certain, these fields are unused when implementing

instrumentation callbacks. However, because they present a thread safe location to store

information regarding the callback, the hook can use these addresses for reading and writing

information. The following code is originally from esoterik, found under the previous

research section.

InstrumentationCallbackThunk proc

mov gs:[2e0h], rsp ; _TEB_64 InstrumentationCallbackPreviousSp

mov gs:[2d8h], r10 ; _TEB_64 InstrumentationCallbackPreviousPc

mov r10, rcx ; Save original RCX

sub rsp, 4d0h ; Alloc stack space for CONTEXT structure

and rsp, -10h ; RSP must be 16 byte aligned before calls

mov rcx, rsp

call __imp_RtlCaptureContext ; Save the current register state. RtlCaptureContext does
not require shadow space

sub rsp, 20h ; Shadow space

call InstrumentationCallback

InstrumentationCallbackThunk endp

view raw thunk64.asm hosted with by GitHub

https://gist.github.com/jackullrich/9b898e4654564f440f47ffdaf2c806a3/raw/bacd4ea27e5f1fe4075e32c7f53f84b9eaa5bd27/teb.cpp
https://gist.github.com/jackullrich/9b898e4654564f440f47ffdaf2c806a3#file-teb-cpp
https://github.com/
https://gist.github.com/jackullrich/6fd5abd71ba8a555e7f1f9e3d8ff4a2f/raw/64801c603a8d4fe6d6fce7a52c4831edbca642f2/thunk64.asm
https://gist.github.com/jackullrich/6fd5abd71ba8a555e7f1f9e3d8ff4a2f#file-thunk64-asm
https://github.com/


6/12

Because Rtl* functions are implemented entirely in usermode, there is no need to worry

about recursion here.

The second, and main part of the instrumentation routine is responsible for analyzing the

execution context at the point of kernel to usermode return. The routine is only a PoC and

performs a very cursory bounds check to determine whether RIP is pointing to a memory

location within ntdll.dll or win32u.dll. If not, the program will warn of a potential manual

syscall and break execution.

Here’s my version of the instrumentation hook which implements the minimal required code

for a PoC. Optionally it performs a reverse lookup if the executable is built with debug

information.

#define RIP_SANITY_CHECK(Rip,BaseAddress,ModuleSize) (Rip > BaseAddress) &&
(Rip < (BaseAddress + ModuleSize))

VOID InstrumentationCallback(PCONTEXT ctx)

{

BOOLEAN bInstrumentationCallbackDisabled;

ULONG_PTR NtdllBase;

ULONG_PTR W32UBase;

DWORD NtdllSize;

DWORD W32USize;

#if _DEBUG

BOOLEAN SymbolLookupResult;

DWORD64 Displacement;

PSYMBOL_INFO SymbolInfo;

PCHAR SymbolBuffer[sizeof(SYMBOL_INFO) + 1024];

#endif

ULONG_PTR pTEB = (ULONG_PTR)NtCurrentTeb();

//



7/12

// https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/teb/index.htm

//

ctx->Rip = *((ULONG_PTR*)(pTEB + 0x02D8)); // TEB-
>InstrumentationCallbackPreviousPc

ctx->Rsp = *((ULONG_PTR*)(pTEB + 0x02E0)); // TEB-
>InstrumentationCallbackPreviousSp

ctx->Rcx = ctx->R10;

//

// Prevent recursion. TEB->InstrumentationCallbackDisabled

//

bInstrumentationCallbackDisabled = *((BOOLEAN*)pTEB + 0x1b8);

if (!bInstrumentationCallbackDisabled) {

//

// Disabling for no recursion

//

*((BOOLEAN*)pTEB + 0x1b8) = TRUE;

#if _DEBUG

SymbolInfo = (PSYMBOL_INFO)SymbolBuffer;

RtlSecureZeroMemory(SymbolInfo, sizeof(SYMBOL_INFO) + 1024);

SymbolInfo->SizeOfStruct = sizeof(SYMBOL_INFO);

SymbolInfo->MaxNameLen = 1024;

SymbolLookupResult = SymFromAddr(

GetCurrentProcess(),

ctx->Rip,

&Displacement,



8/12

SymbolInfo

);

#endif

#if _DEBUG

if (SymbolLookupResult) {

#endif

NtdllBase = (ULONG_PTR)InterlockedCompareExchangePointer(

(PVOID*)&g_NtdllBase,

NULL,

NULL

);

W32UBase = (ULONG_PTR)InterlockedCompareExchangePointer(

(PVOID*)&g_W32UBase,

NULL,

NULL

);

NtdllSize = InterlockedCompareExchange(

(DWORD*)&g_NtdllSize,

NULL,

NULL

);

W32USize = InterlockedCompareExchange(

(DWORD*)&g_W32USize,

NULL,

NULL



9/12

);

if (RIP_SANITY_CHECK(ctx->Rip, NtdllBase, NtdllSize)) {

if (NtdllBase) {

#if _DEBUG

//

// See if we can look up by name

//

PVOID pFunction = GetProcAddress((HMODULE)NtdllBase, SymbolInfo->Name);

if (!pFunction) {

printf("[-] Reverse lookup failed for function: %s.\n", SymbolInfo->Name);

}

else {

printf("[+] Reverse lookup successful for function %s.\n", SymbolInfo->Name);

}

#endif

}

else {

printf("[-] ntdll.dll not found.\n");

}

}

else if (RIP_SANITY_CHECK(ctx->Rip, W32UBase, W32USize)) {

if (W32UBase) {

#if _DEBUG

//



10/12

// See if we can look up by name

//

PVOID pFunction = GetProcAddress((HMODULE)W32UBase, SymbolInfo->Name);

if (!pFunction) {

printf("[-] Reverse lookup failed for function: %s.\n", SymbolInfo->Name);

}

else {

printf("[+] Reverse lookup successful for function %s.\n", SymbolInfo->Name);

}

#endif

}

else {

printf("[-] win32u.dll not found.\n");

}

}

else {

printf("[SYSCALL-DETECT] Kernel returns to unverified module, preventing further
execution!\n");

#if _DEBUG

printf("[SYSCALL-DETECT] Function: %s\n", SymbolInfo->Name);

#endif

DebugBreak();

}

#if _DEBUG

}

else {



11/12

//

// SymFromAddr failed

//

printf("SymFromAddr failed.\n");

// DebugBreak();

}

#endif

//

// Enabling so we can catch next callback.

//

* ((BOOLEAN*)pTEB + 0x1b8) = FALSE;

}

RtlRestoreContext(ctx, NULL);

}

Ideally, there should be much more verification done to ensure the integrity of the syscall.

Ultimately this will be left as an exercise to the reader. Here are some of my own ideas (I’d

love to hear yours):

If running an instrumentation routine on an executable with a pdb symbol file store,

one can use the set of symbol handler functions located within dbghelp.dll to perform

reverse lookups. The symbol handler functions can resolve RIP to a function name

using the function SymFromAddr. If the function does not resolve, the syscall was most

likely issued in an evasive way.

An immediate bypass to this technique which comes to mind is to simply overwrite a

legitimate, but seldom used exported function in ntdll.dll. One could simply overwrite

the syscall number with your desired index and call the function as normal. A

resolution to this bypass might be to implement an anti-tamper routine on ntdl.dll’s

address space. Perhaps hash and cross-reference each of it’s Nt* routines.

https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-symfromaddr


12/12

Reverse disassembly seems feasible in providing further analysis of the origin of the

syscall. Syscalls will (always?) be followed by a ret instruction, which is the location

pointed to by RIP upon transition back to usermode. One can assume the previous

instruction will be a syscall (x64 Windows 10). Following the syscall stub structure

present in x64 Windows 10, the instruction preceding the syscall would move the

syscall service index into eax. I wonder if it’s possible to retrieve the syscall index from

the information available when the kernel returns to usermode? It would be a very

powerful defensive technique to reverse disassemble RIP until the Nt* procedure base

is identified (mov r10, rcx). Then cross-referencing the syscall index found via reverse

disassembly to the corresponding syscall index and address pair found by performing a

sort on the set of {Zw* U Nt*} function addresses (as described by odzhan). If the base

addresses and syscall indeces do not match, then the syscall was likely manual.

Final Remarks

Of course, this is just another tool in the proverbial toolkit, and does not represent a

significant change in the dynamic of the userland threat landscape. I do however, think this a

powerful technique that has been overlooked by the blue team. Most userland unhookers do

not account for this instrumentation callback. Conversely, I see lots of potential for misuse

and offensive tooling — as I hope you do too.

Full PoC available on my GitHub.

Notepad functionality is allowed through the instrumentation callback. Functions are being

resolved correctly via SymFromAddr. There is a noticeable performance impact due to

console logging. Additionally, notepad will crash when the dll is injected before full process

initialization. The hook needs a lot more work!

 

 

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://github.com/jackullrich/syscall-detect

