
 AhnLab Cyber Threat Intelligence Report 

 

 

Analysis Report on 

Lazarus Group's Rootkit Attack 

Using BYOVD 

 

 

 

AhnLab Security Emergency Response Center (ASEC) 

September 22, 2022 

 

                             

TLP: GREEN 



Analysis Report on Lazarus Group's Rootkit Malware 

2 

Classification 

Publications or provided content can only be used within the scope allowed for each 

classification as shown below. 

Classification Distribution Targets Precautions 

 Reports only provided 

for 

certain clients and 

tenants 

Documents that can only be accessed by 

the recipient or the recipient department 

Cannot be copied or distributed except by 

the recipient 

 

Reports only provided 

for 

limited clients and 

tenants 

Can be copied and distributed within the 

recipient organization (company) of reports 

Must seek permission from AhnLab to use 

the report outside the organization, such as 

for educational purposes  

 

Reports that can be used 

by anyone within the 

service 

Can be freely used within the industry and 

utilized as educational materials for internal 

training, occupational training, and security 

manager training 

Strictly limited from being used as 

presentation materials for the public 

 
Reports that can be 

freely used 

Cite source 

Available for commercial and non-

commercial uses 

Can produce derivative works by changing 

the content 

 

 

 

 

 

 

TLP: AMBER 

TLP: RED 

TLP: GREEN 

TLP: WHITE 



Analysis Report on Lazarus Group's Rootkit Malware 

3 

 

The version information of this report is as follows: 

 

Version Date Details 

1.0 9/22/2022 Analysis Report on Lazarus Group's Rootkit Attack Using BYOVD 

 

 

 

 

 

 

 

 

 

  

Remarks 

 

If the report includes statistics and indices, some data may be rounded,  

meaning that the sum of each item may not match the total.  

 

This report is a work of authorship protected by the Copy Right Act  

Unauthorized copying or reproduction for profit is strictly prohibited under any 

circumstances.  

 

Seek permission from AhnLab in advance  

if you wish to use a part or all of the report. 

 

If you reprint or reproduce the material without the permission of the organization  

mentioned above, you may be held accountable for criminal or civil liabilities. 



Analysis Report on Lazarus Group's Rootkit Malware 

4 

Contents 

1. Overview ............................................................................................................................................................................... 6 

2. ene.sys Analysis ................................................................................................................................................................. 8 

2.1. Physical Memory Mapping .................................................................................................................................. 8 

2.2 Caller and Data Validity Verification ............................................................................................................... 10 

2.2.1. SB_SMBUS_SDK.dll Module Loading Verification ............................................................................ 10 

2.2.2. AES Encrypted IOCTL Communication and Call Time Verification .......................................... 11 

2.3. ene.sys Driver (WinIO Library) Vulnerability ............................................................................................... 13 

3. Rootkit Malware Analysis ............................................................................................................................................ 14 

3.1 Rootkit Loader (~BIT353.tmp) ........................................................................................................................... 15 

3.2 Rootkit (Advance Preparation Stage) ............................................................................................................. 16 

3.2.1. Rootkit Export Function............................................................................................................................... 18 

3.2.2. Infection Target Verification Routine .................................................................................................... 19 

3.2.3. Checking OS Version .................................................................................................................................... 19 

3.2.4. Loading Vulnerable Driver Modules ...................................................................................................... 19 

3.2.5. Obtaining the Kernel DTB (Directory Table Base) Address ......................................................... 22 

3.2.6. Address Conversion (Virtual Address > Physical Address) ......................................................... 24 

3.2.7. Modification of the Thread Object's PreviousMode Field ........................................................... 26 

3.3. Rootkit (Security Product Disabling Stage) ................................................................................................ 28 

3.3.1. Disabling Mini File Filter (fltmgr.sys) ..................................................................................................... 28 

3.3.2. Disabling Process/Thread/Module Detection .................................................................................... 30 

3.3.3. Disabling Registry Callback ....................................................................................................................... 32 

3.3.4. Disabling Object Callback .......................................................................................................................... 33 

3.3.5. Disabling WFP Network Filter ................................................................................................................... 34 

3.3.6. Disabling Event Tracing ............................................................................................................................... 35 

AhnLab Response Overview ........................................................................................................................................... 37 

Conclusion .............................................................................................................................................................................. 38 



Analysis Report on Lazarus Group's Rootkit Malware 

5 

IoC (Indicators of Compromise) .................................................................................................................................... 39 

File path and name ........................................................................................................................................................ 39 

File hashes (MD5) ........................................................................................................................................................... 39 

References............................................................................................................................................................................... 40 

 

 

 

 

 

 

 

 CAUTION 

This report contains a number of opinions given by the analysts based on the  

information that has been confirmed so far. Each analyst may have a different 

opinion and the content of this report.  

may change without notice if new evidence is confirmed. 



Analysis Report on Lazarus Group's Rootkit Malware 

6 

1. Overview 

Since 2009, Lazarus Group, known to be a group of hackers in North Korea, has been 

attacking not only Korea but various countries of America, Asia, and Europe. According to 

AhnLab's ASD (AhnLab Smart Defense) infrastructure, in early 2022, the Lazarus Group 

performed APT (Advanced Persistent Threat) attacks on Korea's defense, finance, media, and 

pharmaceutical industries. 

 

AhnLab closely tracked these APT attacks and discovered that these attacks incapacitate 

security products in the attack process. An analysis of the attack process revealed that the 

Lazarus Group exploits an old version of the INITECH process to perform the initial 

compromise before downloading and executing the rootkit malware from the attacker's server. 

 

The rootkit malware identified in the recent product-disabling attack abused vulnerable driver 

kernel modules to directly read and write to the kernel memory area and accordingly, all 

monitoring systems inside the system including AV (Anti-Virus) were disabled. 

 

This technique is called the "BYOVD (Bring Your Own Vulnerable Driver)" method and is 

known to be performed mainly on vulnerable driver modules of hardware supply companies. 

With the latest Windows OS, unsigned drivers can longer be loaded, however, attackers can 

use such legally-signed vulnerable drivers to control kernel area easily. 

 

The vulnerable driver module used by the Lazarus Group, in this case, was a hardware-related 

module manufactured by "ENE Technology". This module used the original form of an open 

source library called "WinIO," developed by Yariv Kaplan in 1999. The problems with this 

module include not only the fact that it uses an old open source code but also the fact that 

the verification condition for calling modules is weak, which enables reading and writing to 

an arbitrary kernel memory area via a simple bypassing process. 

 



Analysis Report on Lazarus Group's Rootkit Malware 

7 

Thus, the attacker was able to read and write to an arbitrary kernel memory area through 

this module and by modifying data in all areas related to the kernel including files, processes, 

threads, registries, and event filters, disabled all monitoring programs within the system 

including AV. 

 

  



Analysis Report on Lazarus Group's Rootkit Malware 

8 

2. ene.sys Analysis 

2.1. Physical Memory Mapping 

The ene.sys driver module developed by "ENE Technology" was created with the WinIO 

library1, an open-source code, and it is a module that allows direct access to the physical 

kernel memory and the I/O port from the user area. The driver's method of accessing the 

physical memory is the shared memory mapping method via the "ZwMapViewOfSection" API 

as seen in Figure 1. 

 

Thus, the user process that communicates with ene.sys becomes able to map the physical 

memory of kernel areas through IOCTL communication. This in turn means that an arbitrary 

physical kernel memory area can be controlled from the user area. 

 

 

1 [1] https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html 



Analysis Report on Lazarus Group's Rootkit Malware 

9 

 
Figure 1. Physical memory mapping code of ene.sys (WinIO library) 

 

The feature to map directly onto the physical memory area may be needed by certain drivers 

depending on their features. However, as it can become a huge risk if abused, drivers using 

this feature must undergo extensive caller verification processes. 

  



Analysis Report on Lazarus Group's Rootkit Malware 

10 

2.2 Caller and Data Validity Verification 

The caller verifications process of ene.sys is designed in a way that attackers can easily bypass 

it. The process through which a driver verifies the caller and the validity of the data is shown 

in the following Figure 2. 

 

 
Figure 2. Caller and data validity verification process of ene.sys 

 

2.2.1. SB_SMBUS_SDK.dll Module Loading Verification 

ene.sys calls "PsSetLoadImageNotifyRoutine" API when the driver is loaded and registers a 

callback routine related to module processing to the kernel. When the module callback is 

registered, the kernel provides a feature that allows the execution of a callback routine when 

the module is loaded in the process. 

 

The callback routine registered by ene.sys checks if the loaded module in the process is 

SB_SMBUS_SDK.dll, and if it is confirmed to be SB_SMBUS_SDK.dll, the routine recognizes the 

process in question as one that can be trusted and saves its PID information onto the global 

variable of the ene.sys driver. 

 

As a result, the process which has loaded SB_SMBUS_SDK.dll can undertake IOCTL 



Analysis Report on Lazarus Group's Rootkit Malware 

11 

communication with the ene.sys driver. 

 

2.2.2. AES Encrypted IOCTL Communication and Call Time Verification 

In order for a user area process to request physical memory mapping to ene.sys, it must 

transmit a specific IOCTL value (0x80102040). The buffer transmitted to the driver alongside 

IOCTL can be seen in Table 1's struct information below. 

 

WinIO Driver Memory Mapping Struct 

typedef struct 

_WINIO_PHYSICAL_MEMORY_INFO_EX { 

 ULONG_PTR CommitSize; 

 ULONG_PTR BusAddress; 

 HANDLE SectionHandle; 

 PVOID BaseAddress; 

 PVOID ReferencedObject; 

 UCHAR EncryptedKey[16]; 

} WINIO_PHYSICAL_MEMORY_INFO_EX, * 

PWINIO_PHYSICAL_MEMORY_INFO_EX; 

Table 1. WinIO driver memory mapping struct 

 

Out of the struct members, the physical memory address requiring memory mapping is saved 

to the BusAddress variable, and the current time value encrypted with AES-ECB is saved to 

the EncryptedKey variable. 

 

In order to verify the valid IOCTL value requested by the user area, ene.sys calculates the 

difference between the time of IOCTL calling and the time this IOCTL was received by the 

driver and processed. If the difference in time is less than 2ms, the driver recognizes it as 

being valid and processes the requested IOCTL. 

 



Analysis Report on Lazarus Group's Rootkit Malware 

12 

 
Figure 3. Call time verification routine 

  



Analysis Report on Lazarus Group's Rootkit Malware 

13 

2.3. ene.sys Driver (WinIO Library) Vulnerability 

Putting together the aforementioned, the ene.sys driver is a driver that can map the physical 

memory area from the user area and is also a vulnerable driver with inadequate verifications 

for callers and data. 

 

Upon analyzing the distribution routes of the driver with AhnLab's ASD infrastructure, it was 

confirmed that it is mainly distributed as an RGB RAM module control module of MSI, a 

laptop manufacturer. If ene.sys is installed in the user PC environment, it has the risk of being 

abused by the attacker. Thus, if it doesn't affect performance, it must be removed. 

 

  



Analysis Report on Lazarus Group's Rootkit Malware 

14 

3. Rootkit Malware Analysis 

The execution flow (①~⑤) of the rootkit malware used by the Lazarus Group to disable 

security products is described in Figure 4 below. 

 

 
Figure 4. Rootkit execution flow (①~⑤) 

 

The rootkit operates as a DLL on the rootkit loader process memory and upon execution, 

generates a vulnerable driver module (ene.sys) on the system drive path. It then loads the 

generated driver and modifies a specific address value in the kernel memory area.  

 

The address area modified by the vulnerable kernel driver is the PreviousMode address of 

the rootkit thread object running as a DLL, and this value is changed to 0. When the 

PreviousMode value of the user thread object is changed to 0, the driver is able to access 

the kernel area from the user area through the "NtWriteVirtualMemory" API. 

 

Afterward, the attacker manipulated the kernel memory from the user area and disabled the 

security system within the system. 

  



Analysis Report on Lazarus Group's Rootkit Malware 

15 

3.1 Rootkit Loader (~BIT353.tmp) 

According to AhnLab's ASD infrastructure, the Lazarus Group distributed the rootkit in 2 

formats: DLL (~BIT353.tmp) and fileless formats. This report analyzes the DLL rootkit in Figure 

5. 

 

 
Figure 5. DLL distribution method 

 

 
Figure 6. Fileless distribution method 

 

~BIT353.tmp saves the rootkit DLL internally with XOR encryption, which is decrypted on 

memory upon execution. Thus, the rootkit itself is designed to operate on the memory. Figure 

7 below shows the code with which the rootkit loader assigns new memories and executes 

the rootkit export function (Create(), Close()) by XOR decrypting the rootkit in the target 

space. 

 



Analysis Report on Lazarus Group's Rootkit Malware 

16 

 
Figure 7. Rootkit execution code of the rootkit loader 

 

3.2 Rootkit (Advance Preparation Stage) 

The rootkit is compressed into a Vmprotect executable to disrupt analysis and contains the 

following two export functions. 

 

⚫ Compile time: 05/24/2022 12:15:32 (UTC) 

⚫ Close(): Executes rootkit 

⚫ Create(): Verifies rootkit load process memory environment 

⚫ DLL name: FudModule.dll 

 



Analysis Report on Lazarus Group's Rootkit Malware 

17 

 
Figure 8. Rootkit compile time and export function information 

  



Analysis Report on Lazarus Group's Rootkit Malware 

18 

3.2.1. Rootkit Export Function 

a. Close() 

The Close function verifies the image and memory areas where the rootkit was loaded 

through the "NtQueryVirtualMemory" API. 

 

⚫ Type of pages in the region (DLL base path) & 0x20000 == 0 (MEM_PRIVATE 

verification) 

⚫ Type of pages in the region (DLL base path) & 0x1000000 == 0 (MEM_IMAGE 

verification) 

⚫ Check if the mapped file name exists in the DLL BASE address 

⚫ Check if the running OS is Win 10 RS3 or more recent 

⚫ Check if the ImageSignatureLevel includes at least one of the following: 

◼ SE_SIGNING_LEVEL_MICROSOFT 

◼ SE_SIGNING_LEVEL_WINDOWS 

◼ SE_SIGNING_LEVEL_WINDOWS_TCB 

 

 
Figure 9. Close() function 

b. Create() 

Create is the core function of the rootkit responsible for ene.sys driver creation, service 

execution, and disabling of security products. 



Analysis Report on Lazarus Group's Rootkit Malware 

19 

3.2.2. Infection Target Verification Routine 

The rootkit calculates the result value of the "GetComputerNameW" API call with SHA256 

and only when it matches the value below, performs the malicious behaviors. This signifies 

that the infection target is clear, and it can be deduced that this is an APT attack. 

 

⚫ 05/24/2022 compile date file : A1 53 1C 4B FE 51 78 E3 E1 2F 10 35 9D 54 BF 29 

42 3C BD 3D 24 F7 71 3D BC 9B D9 0D FA 60 DF C6  

⚫ 07/13/2022 compile date file: B4 2D CA BA A0 8D 91 6D F3 B9 66 11 62 24 3F B9 

CB 94 DD 08 BD E9 A6 72 30 8D B2 88 AF 73 DA 04 

 

3.2.3. Checking OS Version 

The rootkit refers to the OSBuildNumber field of the PEB struct to obtain the OS information 

of the current system. The purpose of the rootkit is to disable security products by modifying 

the global kernel data (callbacks and global variables). In order to successfully disable the 

system, the kernel area offset data, which is different for each OS, must be precisely modified. 

Therefore, the offset information is saved to the memory space for the purpose of modifying 

global kernel data based on the obtained OS information. 

 

For example, in the case of the PreviousMode field of ETHREAD object which the rootkit of 

Lazarus Group modifies, the offset is different for each OS version. 

 

⚫ Win7 (7601) PreviousMode field: ETHREAD struct's 0x1F6 location 

⚫ Win10 (1809) PreviousMode field: ETHREAD struct's 0x232 location 

 

3.2.4. Loading Vulnerable Driver Modules 

In order to obtain read and write permissions for the kernel memory area, the rootkit utilizes 



Analysis Report on Lazarus Group's Rootkit Malware 

20 

vulnerable kernel driver modules. The kernel driver module used in the attack is called ene.sys, 

manufactured by "ENE Technology". As the details on this driver have already been discussed 

thoroughly in the "2. ene.sys Analysis” chapter, an analysis of its features will be omitted. 

 

After verifying the infection target and checking the OS version, the rootkit generates the 

ene.sys driver on the system path. Also, in order to execute the driver, it modified the binary 

path of the preregistered service. 

 

Figure 10 below shows the binary path of the Windows service registry after it has been 

modified by the rootkit. 

 

⚫ Before: \SystemRoot\System32\drivers\umpass.sys 

⚫ After: \SystemRoot\System32\drivers\umpassmgr.sys 

 

 
Figure 10. Modification of the existing Windows service registry key (umpass.sys -> umpassmgr.sys) 

 

The rootkit modifies the binary path, then calls the "NtLoadDriver" API to run the appropriate 

service. 

 

For reference, Lazarus Group not only has used the ene.sys driver but also has been found 

to have exploited the DELL vulnerability (CVE-2021-21551) depending on the variation of 

rootkit used. 

 

 
Figure 11. A case of exploiting DELL vulnerability (CVE-2021-21551) 



Analysis Report on Lazarus Group's Rootkit Malware 

21 

 

Similarly, if the CVE-2021-21551 vulnerability is exploited, the driver can obtain read and write 

permissions for the kernel memory area. This means that although only two cases of driver 

module exploitation have been identified until now, there is a potential for various drivers to 

be abused to disable systems. 

  



Analysis Report on Lazarus Group's Rootkit Malware 

22 

3.2.5. Obtaining the Kernel DTB (Directory Table Base) Address 

Through the processes above, the rootkit uses the ene.sys module to obtain read and write 

permissions with physical memory mapping on arbitrary kernel memory areas. However, as 

memory mapping is only possible for physical memory addresses, the rootkit must know the 

physical memory address of the PreviousMode field of the ETHREAD object which it 

ultimately aims to modify. 

 

 
Figure 12. ETHREAD object's PreviousMode field address information (rootkit's modification target 

value) 

 

 

The rootkit transmitted SystemExtendedHandleInformation as a function argument to the 

"NtQuerySystemInformation" API and obtained the virtual address (Figure 12) of the 

PreviousMode of the currently running ETHREAD object. Then, in order to convert this address 

into a physical address, the rootkit implemented a code2 that finds the DirBase value of the 

System process to directly obtain the Kernel DTB address as shown in Figure 13. 

 

 

2 https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-

driver 

https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver


Analysis Report on Lazarus Group's Rootkit Malware 

23 

 
Figure 13. Code to obtain the Kernel DTB 

  



Analysis Report on Lazarus Group's Rootkit Malware 

24 

3.2.6. Address Conversion (Virtual Address > Physical Address) 

The reason the rootkit obtained the Kernel DTB (CR3 register) address of the system process 

is to implement a code that can directly convert the virtual address to a physical address. 

 

Figure 14 shows the process through which the Kernel DTB (CR3 register) value is used to 

convert the virtual address to a physical address. 

 

3 

Figure 14. Virtual address - physical address conversion process 

 

The rootkit implemented the process in Figure 14 into a code, and as a result, it was able to 

calculate the physical address of the PreviousMode field's virtual address obtained from this 

process. 

 

 

3 Windows Internals: System Architecture, Processes, Threads, Memory Management, and More, Part 1 



Analysis Report on Lazarus Group's Rootkit Malware 

25 

 
Figure 15. Virtual address - physical address conversion code 

  



Analysis Report on Lazarus Group's Rootkit Malware 

26 

3.2.7. Modification of the Thread Object's PreviousMode Field 

The PreviousMode field is a field that verifies in the kernel whether the thread object has 

been called from the user area. 

Thus, if this member variable is set to "0", one can access the kernel area even from the user 

area. 

 

 
Figure 16. Explanation of PreviousMode - msdn 

 

In order to modify the PreviousMode field, the rootkit used the virtual address-physical 

address conversion code and physical kernel memory mapping to change the PreviousMode 

field value from "1" to "0". 

 

 
Figure 17. PreviousMode modification using physical memory mapping 

 

The thread where the PreviousMode is set to "0" enters a sort of "GOD MODE" where through 

the "ZwWriteVirtualMemory" API, it can access both user and kernel areas. 



Analysis Report on Lazarus Group's Rootkit Malware 

27 

 

The rootkit uses the "ZwWriteVirtualMemory" API to modify the global kernel data to 

ultimately disable the system. 

 

 
Figure 18. Example of using the "ZwWriteVirtualMemory" API to write to kernel area from user area 

(GOD MODE) 

  



Analysis Report on Lazarus Group's Rootkit Malware 

28 

3.3. Rootkit (Security Product Disabling Stage) 

Disabling of security products by the rootkit is based on a whitelist system. Thus, all 

monitoring systems, excluding the crucial normal system driver files, are removed. The 

removal process involves using the "ZwWriteVirtualMemory" API to control the global kernel 

data. 

3.3.1. Disabling Mini File Filter (fltmgr.sys) 

Disabling of the mini file filter involves the checking of whether the callback address registered 

to the mini file filter (FltMgr) is included in the whitelist drivers shown in the table below. If 

the registered driver is not on this driver list and the Altitude of the driver is included in 

"Anti-virus, Activity-Monitor, or Content Screener altitude", it becomes a target of disablement. 

 

List of normal drivers verified for file filter 

disabling 

scvtrig.sys 

fileinfo.sys 

afv.sys 

cng.sys 

filecrypt.sys 

storqosflt.sys 

bindflt.sys 

wcifs.sys 

Table 2. Normal system drivers (whitelist) 

  



Analysis Report on Lazarus Group's Rootkit Malware 

29 

Disabling is done by modifying the object data of the filter manager (FltMgr). The modified 

objects are "_FLT_FILTER", "_FLT_VOLUME", and "_FLT_INSTANCE". 

 

Disabling _FLT_FILTER object 

Modify InstanceList field 

(Remove instance of the target filter) 

Table 3. Method of disabling the _FLT_FILTER object 

 

_FLT_VOLUME object 

Modify InstanceList field 

(Remove instance of the target filter) 

Table 4. Method of disabling the _FLT_VOLUME object 

 

_FLT_INSTANCE object 

List connection link of PrimaryLink – Volume 

(_FLT_VOLUME) 

List connection link of FilterLink – Volume 

(_FLT_VOLUME) 

The instance itself is untouched. 

Table 5. Method of disabling the _FLT_INSTANCE object 

  



Analysis Report on Lazarus Group's Rootkit Malware 

30 

3.3.2. Disabling Process/Thread/Module Detection 

The kernel offers a feature to monitor whenever a process, thread, or module is newly created 

or loaded. Normally, this monitoring feature offered by the kernel is used to detect malware 

by the security products. 

 

For example, the kernel driver calls the "PsSetCreateProcessNotifyRoutine" kernel API and 

registers a "callback routine" for process monitoring. Afterward, the kernel enables the 

execution of the callback routine registered by the kernel driver when a process is created. 

 

By comparing the binary pattern of the ntoskrnl.exe process, the rootkit obtains the address 

information of the global variable shown below, where the callback routine is registered in. It 

then manipulates the data of the address to remove all process/thread/module callbacks. Like 

in the case of file filters, disabling of the process/thread/module detection is performed based 

on whitelist. Table 6 below shows the whitelist that the rootkit verifies. 

 

⚫ nt!PspNotifyEnableMask 

⚫ nt!PspLoadImageNotifyRoutine (Disables module load detection) 

⚫ nt!PspCreateThreadNotifyRoutine (Disables thread creation/end detection) 

⚫ nt!PspCreateProcessNotifyRoutine (Disables process creation/end detection) 

 

List of drivers verified for process, image, and thread 

disabling 

ntoskrnl.exe 

ahcache.sys 

mmcss.sys 

cng.sys 

ksecdd.sys 

tcpip.sys 



Analysis Report on Lazarus Group's Rootkit Malware 

31 

iorate.sys 

ci.dll 

dxkrnl.sys 

peauth.sys 

Table 6. Normal system drivers (whitelist) 

 

The following is an example of a thread callback routine being disabled. Before the global 

data of nt!PspCreateThreadNotifyRoutine was changed, Windows Defender had been saved 

in the global data, but after it was disabled, all callback routines excluding a white driver 

(mmcss.sys) were removed. 

 

<Before disabling thread callback> 

fffff801`47cec3e0 ffffd60c4804baaf -> WdFilter!MpCreateThreadNotifyRoutine 

fffff801`47cec3e8 ffffd60c4804ba7f -> WdFilter!MpCreateThreadNotifyRoutineEx 

fffff801`47cec3f0 ffffd60c48de643f -> mmcss!CiThreadNotification 

 

<After disabling thread callback> 

fffff801`47cec3e0 ffffd60c48de643f -> mmcss!CiThreadNotification 

fffff801`47cec3e8 0000000000000000 -> Remove !! 

fffff801`47cec3f0 0000000000000000 -> Remove !! 

 

  



Analysis Report on Lazarus Group's Rootkit Malware 

32 

3.3.3. Disabling Registry Callback 

The rootkit checks the starting byte of "CmUnRegisterCallback" by comparing the binary 

pattern of the ntoskrnl.exe process. Similar to the disabling of processes/threads/modules, it 

modifies the global kernel data named nt!CallbackListHead to disable the registry callback 

registered on the system. 

 

After the registry callback is disabled, monitoring of registry-related behaviors becomes 

impossible. 

 

Figures 19 and 20 below show the nt!CallbackListHead data before and after it has been 

modified. 

 

 
Figure 19. Before disabling registry callback 

 

 
Figure 20. After disabling registry callback 

 

As a result, the rootkit disabled the registry scan of security products and Windows Defender 

by modifying nt!CallbackListHead. 



Analysis Report on Lazarus Group's Rootkit Malware 

33 

3.3.4. Disabling Object Callback 

The rootkit modified the object callback list to disable the security products' access control 

over process and thread objects. 

 

First, it acquired the starting byte address of ObGetObjectType by comparing ntoskrnl.exe 

byte patterns and subsequently obtained the global data address information named 

"nt!ObTypeIndexTable". Then, among each factor saved in the table, the rootkit manipulated 

the callback list for process and thread objects. 

 

Figures 21 and 22 below show callback list of the process object before and after it has been 

modified. 

 

 
Figure 21. Before disabling object callback 

 

 
Figure 22. After disabling object callback 

 

By removing the callback connection list, the rootkit was able to disable the security products' 

access control over process objects 



Analysis Report on Lazarus Group's Rootkit Malware 

34 

3.3.5. Disabling WFP Network Filter 

Windows Filtering Platform (WFP) is a platform offered by the kernel which enables network 

packet control within the application. Thus, security products can use WFP in features such 

as firewall and intrusion detection. 

 

The rootkit searches the WFP driver's callout and disables the network monitoring system 

installed on the system through object flag manipulation. As in the case of mini file filters 

and process/image/module callback manipulation, only the flag value of the callout drivers 

excluding the normal Windows driver callout is modified on a whitelist-basis. 

 

List of drivers verified for network disabling 

ndu.exe 

tcpip.sys 

mpsdrv.sys 

Table 7. Normal system drivers (whitelist) 

 

The callout search process is similar to past methods. First, the rootkit finds the starting byte 

address of the “WfpProcessFlowDelete” function in NETIO.sys. After finding the 

"NETIO!gwfpGlobal" address, it circulates the callout entries and checks the names of 

registered drivers. 

 

If the callout driver is not a whitelisted driver of Table 7, the rootkit computes "1" with OR 

into a specific byte, as shown below, to attempt to disable it. 

 

 
Figure 23. Network filter disabling code 



Analysis Report on Lazarus Group's Rootkit Malware 

35 

3.3.6. Disabling Event Tracing 

Windows offers the feature to record and trace various events that occur in the kernel and 

user areas. These events are used in security products such as EDR and help trace behaviors 

of malware. 

 

The rootkit disabled relevant handles and variables to disable event tracing. The disabling 

method is similar to the past methods. Through the internal ntoskrnl.exe binary pattern 

comparison, the rootkit found the starting address of "EtwRegister" function and obtained 

the registered handle information as shown below. Then, it filled all addresses where handle 

values were saved to with "NULL", disabling handle information. 

 

<Saved address of ETW event handles> 

FFFFF80147C19990 ; nt!EtwpEventTracingProvRegHandle 

FFFFF80147C19780 ; nt!EtwKernelProvRegHandle 

FFFFF80147C19940 ; nt!EtwpPsProvRegHandle 

FFFFF80147C19938 ; nt!EtwpNetProvRegHandle 

FFFFF80147C19930 ; nt!EtwpDiskProvRegHandle 

FFFFF80147C19928 ; nt!EtwpFileProvRegHandle 

… 

FFFFF80147C19968 ; nt!EtwSecurityMitigationsRegHandle 

 

Aside from these, it found the address of nt!EtwpHostSiloState, a global kernel data, and 

modified the 4 byte value at a 0x1080 offset distance from the address to 0x0 to disable the 

event tracing related variables. 

 

<Before disabling nt!EtwpHostSiloState> 

ffffd60c`469d4080 0001230500000006  

ffffd60c`469d4088 0000000000004080  

 

<After disabling nt!EtwpHostSiloState> 

ffffd60c`469d4080 0001230500000000 > Modified !! 



Analysis Report on Lazarus Group's Rootkit Malware 

36 

ffffd60c`469d4088 0000000000004080  

 

The offset that the rootkit modifies at the "nt!EtwpHostSiloState" address is different for each 

Windows OS version as described in "3.2.3. Checking OS Version". 

 

⚫ Offset when infection target is Windows Server 2022: 0x1088 

⚫ Offset when infection target is Windows 11: 0x1098 

⚫ Offset for all other OS: 0x1080 

 

 
Figure 24. Offset information saved to the memory space of each OS 

  



Analysis Report on Lazarus Group's Rootkit Malware 

37 

AhnLab Response Overview 

The alias and the engine version information of AhnLab products are shown below. 

 

[File Detection] 

Trojan/Win.Lazardoor.C5157217 (2022.06.04.01) 

Rootkit/Win.Agent.C5192169 (2022.07.04.02) 

Rootkit/Win.Agent.C5177679 (2022.06.23.00) 

 

[Behavior Detection] 

InitialAccess/MDP.Event.M4422 (2022.08.08.02) 

InitialAccess/MDP.Event.M4419 (2022.09.21.01) 

 

Although the activities of this threat group have been announced recently, some of their 

malware was being diagnosed in AhnLab products. The ASEC team tracked the activities of 

the identified group and responded to the malware, but there may be variants that have not 

been detected yet. 

 

 

 

 

 

 

 

 

 

 

  



Analysis Report on Lazarus Group's Rootkit Malware 

38 

Conclusion 

The Lazarus Group used vulnerable drivers in the APT attack process to disable all internal 

monitoring systems. There are currently two vulnerable drivers that have been identified, but 

it is expected that cases of abuse will increase as there are many more normally-signed 

vulnerable drivers. 

 

Ever since the DSE (Driver Signature Enforcement) policy was applied from Windows Vista, 

attacks using rootkit seemed to decrease, however, BYOVD (Bring Your Own Vulnerable Driver) 

attack cases have been continuously identified since 2014. The BYOVD attacks until now were 

known as acts of abuse for privilege escalation, but as can be seen in this case, Lazarus Group 

is the first to design an elaborate rootkit to disable all systems from the old Windows 7 to 

the most recent OS, Windows Server 2022. 

 

In order to respond to BYOVD attacks, Microsoft has been blocking unauthorized drivers 

from being loaded based on the block rules4 in Window 10’s hypervisor code integrity (HVCI) 

mode and S mode. As such, the best method of prevention for this type of attack at the 

moment seems to be strictly blocking drivers from being loaded. 

 

Thus, corporate security managers must restrict drivers from being loaded in normal user 

environments and update security software to the latest version to prevent APT attacks that 

use BYOVD. 

 

 

 

 

 

 

4 https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-

control/microsoft-recommended-driver-block-rules 

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules


Analysis Report on Lazarus Group's Rootkit Malware 

39 

IoC (Indicators of Compromise) 

 

File path and name 

 

The file paths and names used by the malware are as follows. Some may be identical to the 

names of normal files. 

 

[Rootkit loader] 

⚫ %SystemRoot%\Comms.bin 

⚫ %SystemRoot%\miblib.bin 

 

[Rootkit] 

⚫ %SystemRoot%\miblib.dat 

⚫ %SystemRoot%\temp\~bit353.tmp 

⚫ %SystemRoot%\bf.dat 

 

[Rootkit related module] – SB_SMBUS_SDK.dll 

⚫ %USERPROFILE%\appdata\local\temp\1b6955_sb_smbus_sdk.dll 

⚫ %SystemRoot%\temp\206778_sb_smbus_sdk.dll 

⚫ %SystemRoot%\temp\4018a066_sb_smbus_sdk.dll 

⚫ %SystemRoot%\temp\6d0b88f_sb_smbus_sdk.dll 

⚫ %SystemRoot%\temp\4ab916_sb_smbus_sdk.dll 

⚫ %SystemRoot%\temp\18532412_sb_smbus_sdk.dll 

⚫ %SystemDrive%\users\%ASD%\appdata\local\temp\9e1126_sb_smbus_sdk.dll 

 

File hashes (MD5) 

 

The MD5 of the related files are as follows. (However, it is omitted if there is a sensitive 

sample.) 

 



Analysis Report on Lazarus Group's Rootkit Malware 

40 

[Rootkit loader] 

⚫ 013b4c4e9387d8fe1eab738c42c451da 

 

[Rootkit] 

⚫ 98e58a39ede26af7980ed4de2873caab 

⚫ a6e309f97ffada2d4d0d4aecfb255a91 

 

[Rootkit related module] – SB_SMBUS_SDK.dll 

⚫ c40643751b426dec01bd390e192b4542 

References 

[1] https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html 

[2]https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver 

[3] Windows Internals: System Architecture, Processes, Threads, Memory Management, and More, Part 1 

[4]https://www.amazon.com/Windows-Internals-Part-architecture-management-ebook-dp-

B0711FDMRR/dp/B0711FDMRR/ref=mt_other?_encoding=UTF8&me=&qid= 

https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver
https://www.amazon.com/Windows-Internals-Part-architecture-management-ebook-dp-B0711FDMRR/dp/B0711FDMRR/ref=mt_other?_encoding=UTF8&me=&qid=
https://www.amazon.com/Windows-Internals-Part-architecture-management-ebook-dp-B0711FDMRR/dp/B0711FDMRR/ref=mt_other?_encoding=UTF8&me=&qid=


 

 

 AhnLab Cyber Threat Intelligence Report 

  

 

 

This report is a work of authorship protected by the Copyright Act. Unauthorized copying or reproduction for profit is 

strictly prohibited. 

When citing or editing the entirety or a part of the report, you must disclose that this is a report published by AhnLab 

* If you have any inquiries about the information about the report or its distribution, please contact AhnLab (031-722-

8000). 

This report can be viewed at https://atip.ahnlab.com. 

 

© AhnLab, Inc. All rights reserved. 

 

AhnLab, Inc. 

220 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do (P) 13493 

Tel: 031-722-8000   |  Purchase Inquiry: 1588-3096   |   Fax: 031-722-8901  

www.ahnlab.com 


