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1. Overview

Since 2009, Lazarus Group, known to be a group of hackers in North Korea, has been
attacking not only Korea but various countries of America, Asia, and Europe. According to
AhnLab's ASD (AhnLab Smart Defense) infrastructure, in early 2022, the Lazarus Group
performed APT (Advanced Persistent Threat) attacks on Korea's defense, finance, media, and

pharmaceutical industries.

AhnLab closely tracked these APT attacks and discovered that these attacks incapacitate
security products in the attack process. An analysis of the attack process revealed that the
Lazarus Group exploits an old version of the INITECH process to perform the initial

compromise before downloading and executing the rootkit malware from the attacker's server.

The rootkit malware identified in the recent product-disabling attack abused vulnerable driver
kernel modules to directly read and write to the kernel memory area and accordingly, all

monitoring systems inside the system including AV (Anti-Virus) were disabled.

This technique is called the "BYOVD (Bring Your Own Vulnerable Driver)" method and is
known to be performed mainly on vulnerable driver modules of hardware supply companies.
With the latest Windows OS, unsigned drivers can longer be loaded, however, attackers can

use such legally-signed vulnerable drivers to control kernel area easily.

The vulnerable driver module used by the Lazarus Group, in this case, was a hardware-related
module manufactured by "ENE Technology". This module used the original form of an open
source library called "WinlQ," developed by Yariv Kaplan in 1999. The problems with this
module include not only the fact that it uses an old open source code but also the fact that
the verification condition for calling modules is weak, which enables reading and writing to

an arbitrary kernel memory area via a simple bypassing process.
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Thus, the attacker was able to read and write to an arbitrary kernel memory area through
this module and by modifying data in all areas related to the kernel including files, processes,
threads, registries, and event filters, disabled all monitoring programs within the system

including AV.
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2. ene.sys Analysis

2.1. Physical Memory Mapping

The ene.sys driver module developed by "ENE Technology" was created with the WinlO
library’, an open-source code, and it is a module that allows direct access to the physical
kernel memory and the I/O port from the user area. The driver's method of accessing the
physical memory is the shared memory mapping method via the "ZwMapViewOfSection" API

as seen in Figure 1.

Thus, the user process that communicates with ene.sys becomes able to map the physical
memory of kernel areas through IOCTL communication. This in turn means that an arbitrary

physical kernel memory area can be controlled from the user area.

' [1] https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html
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RtlInitUnicodeString(&DestinationString, L™\\Device\\PhysicalMemory™};
*ad = @i64d;

Object = a5;

ObjectAttributes.RootDirectory = @ied;

ObjectAttributes.Length = 48;

ObjectAttributes.Attributes = 576;

*a5 = @ie4;
ObjectAttributes.ObjectName = &DestinaticnString;
*( OWORD *)&0bjectAttributes.SecurityDescriptor = @ig4;

v8 = ZwOpenSection(ad, @xF@@1Fu, &0bjectittributes});

if (v <8 )
goto LABEL 9;

w9 = ObReferenceObjectByHandle(*ad4, @xF@@lFu, @ied, @, Object, @ied);

if ( vo <8 )
goto LABEL 9;

AddressSpace = @;

TranslatedAddress = BusAddress;

BusAddressa.QuadPart = BusAddress.QuadPart + CommitSize;

w18 = HalTranslateBusAddress(Isa, @, BusAddress, &AddressSpace, &Translatediddress});

AddressSpace = @3

w1l = v1e;

w12 = HalTranslateBusAddress(Isa, @, BusAddressa, &AddressSpace, &BusAddressa);

if ( wvil &8 w12 )

{
SectionOffset = TranslatedAddress;
Commit5ize = BusAddressa.QuadPart - TranslatedAddress.QuadPart;
vl = ZwMapViewOfSection(

* - A
a5,
(HANDLE )@xFFFFFFFFFFFFFFFFi64,
&Basefddress,
ei6d

¥
BusAddressa.QuadPart - TranslatedAddress.QuadPart,
&SectionOffset,
&Commitsize,
Viewshare,
@,
Bx284u);

Figure 1. Physical memory mapping code of ene.sys (WinlO library)

The feature to map directly onto the physical memory area may be needed by certain drivers
depending on their features. However, as it can become a huge risk if abused, drivers using

this feature must undergo extensive caller verification processes.
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2.2 Caller and Data Validity Verification

The caller verifications process of ene.sys is designed in a way that attackers can easily bypass
it. The process through which a driver verifies the caller and the validity of the data is shown

in the following Figure 2.

DeviceHandle
WDevicetWEneTechlo Entzgg?;:;ata
locTL
User space User space (0x80102040)
Kernel space Kernel space
v v
@ Validate loaded module @ Buffer decrypt and Call time check
SB_SMBUS_SDK.dll Deiﬁg‘_‘;‘é;‘"“

Figure 2. Caller and data validity verification process of ene.sys

2.2.1. SB_.SMBUS_SDK.dIl Module Loading Verification

ene.sys calls "PsSetLoadlmageNotifyRoutine” API when the driver is loaded and registers a
callback routine related to module processing to the kernel. When the module callback is
registered, the kernel provides a feature that allows the execution of a callback routine when

the module is loaded in the process.

The callback routine registered by ene.sys checks if the loaded module in the process is
SB_SMBUS_SDK.dII, and if it is confirmed to be SB_SMBUS_SDK.dII, the routine recognizes the
process in question as one that can be trusted and saves its PID information onto the global

variable of the ene.sys driver.

As a result, the process which has loaded SB_SMBUS_SDK.dIl can undertake 1OCTL
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communication with the ene.sys driver.

2.2.2. AES Encrypted IOCTL Communication and Call Time Verification

In order for a user area process to request physical memory mapping to ene.sys, it must
transmit a specific IOCTL value (0x80102040). The buffer transmitted to the driver alongside

IOCTL can be seen in Table 1's struct information below.

WinlO Driver Memory Mapping Struct

typedef struct
_WINIO_PHYSICAL_MEMORY_INFO_EX {
ULONG_PTR CommitSize;
ULONG_PTR BusAddress;
HANDLE SectionHandle;
PVOID BaseAddress;
PVOID ReferencedObject;
UCHAR EncryptedKey[16];
} WINIO_PHYSICAL_MEMORY_INFO_EX, *
PWINIO_PHYSICAL_MEMORY_INFO_EX;

Table 1. WinlO driver memory mapping struct

Out of the struct members, the physical memory address requiring memory mapping is saved
to the BusAddress variable, and the current time value encrypted with AES-ECB is saved to

the EncryptedKey variable.

In order to verify the valid IOCTL value requested by the user area, ene.sys calculates the
difference between the time of IOCTL calling and the time this IOCTL was received by the
driver and processed. If the difference in time is less than 2ms, the driver recognizes it as

being valid and processes the requested IOCTL.
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= @:

vl ¥
if ( !gqword_l4eee4818 )
return 32212254731i64;
sub ld4aeale8e(=1);
if ( abse4({sub_ 148881C54() - *al) == 2 ) £/ Call time check

return BxCeae8622 1

return wvl;

e

J/ STATUS ACCESS DENIED

Figure 3. Call time verification routine
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2.3. ene.sys Driver (WinlO Library) Vulnerability

Putting together the aforementioned, the ene.sys driver is a driver that can map the physical
memory area from the user area and is also a vulnerable driver with inadequate verifications

for callers and data.

Upon analyzing the distribution routes of the driver with AhnLab's ASD infrastructure, it was
confirmed that it is mainly distributed as an RGB RAM module control module of MSI, a
laptop manufacturer. If ene.sys is installed in the user PC environment, it has the risk of being

abused by the attacker. Thus, if it doesn't affect performance, it must be removed.
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3. Rootkit Malware Analysis

The execution flow (D~®) of the rootkit malware used by the Lazarus Group to disable

security products is described in Figure 4 below.

A A

@ Vulnerable Driver load ® Rootkit behavior

@ Rootkit loader (Read 8 Write access to the kernel memory) (Disable monitoring system)

m

&
=L}
L

[=]

@ Rootkit load @ Verification of infection targets

Figure 4. Rootkit execution flow (D~®)

The rootkit operates as a DLL on the rootkit loader process memory and upon execution,
generates a vulnerable driver module (ene.sys) on the system drive path. It then loads the

generated driver and modifies a specific address value in the kernel memory area.

The address area modified by the vulnerable kernel driver is the PreviousMode address of
the rootkit thread object running as a DLL, and this value is changed to 0. When the
PreviousMode value of the user thread object is changed to O, the driver is able to access

the kernel area from the user area through the "NtWriteVirtualMemory" API.

Afterward, the attacker manipulated the kernel memory from the user area and disabled the

security system within the system.
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3.1 Rootkit Loader (~BIT353.tmp)

According to AhnlLab's ASD infrastructure, the Lazarus Group distributed the rootkit in 2
formats: DLL (~BIT353.tmp) and fileless formats. This report analyzes the DLL rootkit in Figure
5.

2022-05-31 11:21:16 B rundll32.exe B Comms.bin Creates executable file  Creates executahble file

in Windows path B -BIT353tmp

Figure 5. DLL distribution method

B svchost.exe Creates executable file Creates executable file in system path B dmvscmgr.sys

B rundll32.exe B svchost.exe  Writes on other process's memory  Writed on other process's memory (specific data)

Figure 6. Fileless distribution method

~BIT353.tmp saves the rootkit DLL internally with XOR encryption, which is decrypted on
memory upon execution. Thus, the rootkit itself is designed to operate on the memory. Figure
7 below shows the code with which the rootkit loader assigns new memories and executes
the rootkit export function (Create(), Close()) by XOR decrypting the rootkit in the target

space.
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V= H

¥

while { w5 };

w7 (__inted4)sub 180@81820( (char *)wi};
cmid Fyv7;

Tl

if
1

=l

vll = (_ int64 (*)(void))sub 186881ABG(vE, "Close™);
if ( vie(qword_188@3F2F2) )
@xFaaaaae4,

]
VAL

else

sub_18@@81BD@(v3);

v2 = LocalAlloc(@xd4Bu, Bx/FFBBuiRd);

v3 = v2;

va = v2;

vS = Bx1FFC@isd;

do

1
v6 = *(_DWORD *)((char *)v4++ + &unk 18000E3CO - ( UNKNOWN *)»
*(.._- _ 1:| = vl * v&;
vl *= 19;

// Rootkit Decrypt

vl2 = v11(); // Rootkit Load!!

—

Wi

bH

(unsigned int (_ fastcall *){_  int64))sub 186681ABA(v7, “Create™);

Figure 7. Rootkit execution code of the rootkit loader

3.2 Rootkit (Advance Preparation Stage)

The rootkit is compressed into a Vmprotect executable to disrupt analysis and contains the

following two export functions.

Compile time: 05/24/2022 12:15:32 (UTC)
Close(): Executes rootkit
Create(): Verifies rootkit load process memory environment

DLL name: FudModule.dll

Ahnlab
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Ahnlab

Offset Marme Value Meaning

298A8 Characteristics 0

298AC TimeDateStamp  628CCCHE4 g9 24052022 12:15:32 UTC
29380 Majoriversion o

ZO8B2 Minorversion 0

20884 Mame 594F1 FudMaodule.dll

2OEEE Bate 1

298BC MumberGfFunc.. 2

Z98C0 MumberCfMames 2

298C4 AddressOfFunc... 594D0

298C8 AddressOfMames 594DC

298CC AddressOfMam... 59408

Exported Functions [ 2 entries ]

Offset Crdinal Function R\WA Marne RVA Marne Forwarder
29800 1 11B0 594E4 Close

29804 2 1010 S94EA Create

Figure 8. Rootkit compile time and export function information
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3.2.1. Rootkit Export Function

a. Close()

The Close function verifies the image and memory areas where the rootkit was loaded

through the "NtQueryVirtualMemory" API.

® Type of pages in the region (DLL base path) & 0x20000 == 0 (MEM_PRIVATE
verification)

® Type of pages in the region (DLL base path) & 0x1000000 == 0 (MEM_IMAGE
verification)

® Check if the mapped file name exists in the DLL BASE address

® Check if the running OS is Win 10 RS3 or more recent

® Check if the ImageSignaturelLevel includes at least one of the following:
B SE_SIGNING_LEVEL_MICROSOFT
m  SE_SIGNING_LEVEL_WINDOWS
W SE_SIGNING_LEVEL_WINDOWS_TCB

memset{Dst, @, sizeof(Dst)); J7 al : DLL Base address
ProcessEnvircnmentBlock = NMtCurrentTeb()->ProcessEnvironmentBlock;
stropy (ModuleName, “ntdll™);
strepy (ProcName, “NtQueryVirtualMemory™);
if ( 'al )
return @i64;
ModuleHandled = GetModuleHandleA(ModuleName);
ProcAddress = GetProcAddress(ModuleHandleA, Proclame);
return (ProcAddress)(-1i64, al, @ie4, v7, @x30is4, @ied) < 8// MemoryBasicInformation
[| (vE & ex2eeea) == // MEM_PRIVATE
&% ((vB & ©x1000000) == @ // MEM_IMAGE
|| ((ProcAddress){-1i64, al, 2i64, Dst, Bx7D@Bi64, Bi64) < @ || Dst[@])// MemoryMappedFilenameInformation
&% (ProcessEnvironmentBlock->05BuildNumber < 16299u// Win 18 RS3
|| (ProcAddress)(-1i64, al, 6i64, v5, @x18i64, @i64) < @// MemoryImageInformation
|| (ve[18] & @x3Cu) < 4)); // ImageSignaturelevel »= SE_SIGNING_LEVEL_MICROSOFT
/7 ™ SE_STGNING LEVEL WINDOWS
/4 ™ SE_SIGNING LEVEL_WINDOWS_TCB

Figure 9. Close() function

b. Create()

Create is the core function of the rootkit responsible for ene.sys driver creation, service

execution, and disabling of security products.
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3.2.2. Infection Target Verification Routine

The rootkit calculates the result value of the "GetComputerNameW" API call with SHA256
and only when it matches the value below, performs the malicious behaviors. This signifies

that the infection target is clear, and it can be deduced that this is an APT attack.

® 05/24/2022 compile date file : A1 53 1C 4B FE 51 78 E3 E1 2F 10 35 9D 54 BF 29
42 3C BD 3D 24 F7 71 3D BC 9B D9 0D FA 60 DF C6

® 07/13/2022 compile date file: B4 2D CA BA A0 8D 91 6D F3 B9 66 11 62 24 3F B9
CB 94 DD 08 BD E9 A6 72 30 8D B2 88 AF 73 DA 04

3.2.3. Checking OS Version

The rootkit refers to the OSBuildNumber field of the PEB struct to obtain the OS information
of the current system. The purpose of the rootkit is to disable security products by modifying
the global kernel data (callbacks and global variables). In order to successfully disable the
system, the kernel area offset data, which is different for each OS, must be precisely modified.
Therefore, the offset information is saved to the memory space for the purpose of modifying

global kernel data based on the obtained OS information.

For example, in the case of the PreviousMode field of ETHREAD object which the rootkit of

Lazarus Group modifies, the offset is different for each OS version.

® Win7 (7601) PreviousMode field: ETHREAD struct's Ox1F6 location
® Win10 (1809) PreviousMode field: ETHREAD struct's 0x232 location

3.2.4. Loading Vulnerable Driver Modules

In order to obtain read and write permissions for the kernel memory area, the rootkit utilizes

AhnlLab 19



Analysis Report on Lazarus Group's Rootkit Malware

vulnerable kernel driver modules. The kernel driver module used in the attack is called ene.sys,
manufactured by "ENE Technology". As the details on this driver have already been discussed

thoroughly in the "2. ene.sys Analysis” chapter, an analysis of its features will be omitted.

After verifying the infection target and checking the OS version, the rootkit generates the
ene.sys driver on the system path. Also, in order to execute the driver, it modified the binary

path of the preregistered service.

Figure 10 below shows the binary path of the Windows service registry after it has been

modified by the rootkit.

® Before: ¥SystemRootWSystem32¥#tdriversiWumpass.sys
® After: #WSystemRoot#System32#tdriversitumpassmagr.sys

Z EE#HKEY_LOCAL_MACHINE#SYSTEM#ControlSet001#Services#lmPass
- UmPass Al oz z= 0|

il C T REG_SZ GRS
UnistoreSye. 3 || iDisplayName - REG_SZ @umpass.inf %UmPass SVCDESC:Microsoft UMPass Driver
upnphost - #is| ErrorControl REG_DWORD 000000001 (1)
Ufs(?hipidea 28]Group REG SZ Extended Base
UrsCx01000 ab] imagePath REG_EXPAND_SZ  wSystemRootwSystem32wdriversWumpassmgr.sys
UrsSynopsys ab| Owners REG_MULTI_SZ bthleenum.inf umpass.inf eaphostinf pnpxinternetgatewaydevices.inf
usbaudio ) Start REG_DWORD 0x00000001 (1)
usbaudio2 | Tag REG_DWORD 0x0000000e (14)
usbceqp 8| Type REG_DWORD 0x00000001 (1)

Figure 10. Modification of the existing Windows service registry key (umpass.sys -> umpassmgr.sys)

The rootkit modifies the binary path, then calls the "NtLoadDriver" API to run the appropriate

service.

For reference, Lazarus Group not only has used the ene.sys driver but also has been found
to have exploited the DELL vulnerability (CVE-2021-21551) depending on the variation of

rootkit used.

2022-03-30 09:15:43 B rundli32.exe @ FileRepository.cpl Creates executable file Creates executable file in
system path B DBULL_2_3.5ys

Figure 11. A case of exploiting DELL vulnerability (CVE-2021-21551)

AhnlLab 20




Analysis Report on Lazarus Group's Rootkit Malware

Similarly, if the CVE-2021-21551 vulnerability is exploited, the driver can obtain read and write
permissions for the kernel memory area. This means that although only two cases of driver
module exploitation have been identified until now, there is a potential for various drivers to

be abused to disable systems.
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3.2.5. Obtaining the Kernel DTB (Directory Table Base) Address

Through the processes above, the rootkit uses the ene.sys module to obtain read and write
permissions with physical memory mapping on arbitrary kernel memory areas. However, as
memory mapping is only possible for physical memory addresses, the rootkit must know the
physical memory address of the PreviousMode field of the ETHREAD object which it

ultimately aims to modify.

0: kd= dt _ETHREAD FFFFB88C41945080 +0x232(PreviousMode)
nt!_ETHREAD

+0x000 Tcb : _KTHREAD
[+0x232] PreviousMode  : 1 [Type: char]

Figure 12. ETHREAD object's PreviousMode field address information (rootkit's modification target

value)

The rootkit transmitted SystemExtendedHandlelnformation as a function argument to the
"NtQuerySysteminformation” APl and obtained the virtual address (Figure 12) of the
PreviousMode of the currently running ETHREAD object. Then, in order to convert this address
into a physical address, the rootkit implemented a code? that finds the DirBase value of the

System process to directly obtain the Kernel DTB address as shown in Figure 13.

AhnlLab 22


https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/utilities/loading-device-driver

Analysis Report on Lazarus Group's Rootkit Malware

v2 = 8;
while ( 2 )
1
v3 = sub_JFEF3182588(al1, v2, 8x10e88u); // MapPhysicalMemory
vi = Bikd;
V5 = v3;
VB a;
do
1
if { (*(v2 + v5) & @xFFFFFFFFFFFF@BFFUiGL) == Bx10BR6BEEIiAL
&% (~*(v4 + u5 + @x78) & @xFFFFFE00RRAEREERUiG) ==
&& (*(v4 + v5 + @xA8) & BXFFFFFFOPBAP@GFFFUiGd) == @ )
1
VB = *(v6 + V5 + BxAB);
sub_7FEF31@825F@(al);
return va;

4 += Bx10668i61;
vE += Bx18e8 ;

pcbResult = @i64d;
*(al + 32) = @ie4;
*(al + 72) = times4(0icd);
BCryptEncrypt(*(al + 24), (al + 72}, @x16u, @icd4, @ied, @, (al + 72}, 6x16u, &pcbResult, @);
DeviceIoControl( // UnmapPhysicalMemory
*(al + 16),
Bx80182044 ,
(a1 + 32),
@x38u,
(a1 + 32),
@x38u,
&BytesReturned,
8ied);
v2 += Bx1e0606;
if ( v2 < oxnPeee )
continue;
break;

1

return @i6d;

Figure 13. Code to obtain the Kernel DTB
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3.2.6. Address Conversion (Virtual Address > Physical Address)

The reason the rootkit obtained the Kernel DTB (CR3 register) address of the system process

is to implement a code that can directly convert the virtual address to a physical address.

Figure 14 shows the process through which the Kernel DTB (CR3 register) value is used to

convert the virtual address to a physical address.

47 39 38 30 29 21 20 12 11 %)

I Page Map Level 4 Page Directory Pointer Page Directory Page Table I Byte Within Page |
9 Bits 9 Bits 9 Bits 9 Bits I 12 Bits

\

/

Page Map Page Directory Page Directories Page Tables
Level 4 Pointers

Figure 14. Virtual address - physical address conversion process

The rootkit implemented the process in Figure 14 into a code, and as a result, it was able to
calculate the physical address of the PreviousMode field's virtual address obtained from this

process.

3 Windows Internals: System Architecture, Processes, Threads, Memory Management, and More, Part 1
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result = sub JFEF31@2588(al, a2 + & * ((a3 >> 39) & @x1FF), 8u);

if ( result )

1
ve = *result;

sub_7FEF31825F@(al);

if ( w7 )
return @i6d;

R = _'-
v = *

sub ?FEF31925FB{a )3

if ( (vE & 8xB6u) != 8isd )

1
v9 = vB & BxFFFFFCOAABARRIiGA;
v1® = a3 & @x3FFFFFFF;
return {v18 + v9);

h

return @154

w12 = *._.'__J

sub_7FEF31@25F@(a1);
if ( Iwl2 )
return @i6d;
if ( (w12 & ex8eu) != @ipgd )

1
vd = v12 R @xFFFFFFFE@@@RRi64;
vie = a3 & axlFFFFF;
return (v18 + vO3});

¥

if ( w13 &R (v14 = *v13, sub 7FEF31025F@(al), vid) )
return ((a3 & @xFFF) + (v14 & 8xFFFFFFFFFF@88i64));
else
return @164;

}

return result;

v13 = sub JFEF31@25@@(a1, (v12 & @xFFFFFFFFFF@@@icd) + 8 * ((=3 >> 12) & @xIFF),

v7 = sub_JFFEF31825@@(a1, (v6 & @xFFFFFFFFFF@@RiE4) + 8 * ((23 »> 3@) & 8xIFF), Bu);

vil = sub_?FEF3laZSBB[aL, (v & @xFFFFFFFFFF@@@i64) + 8 * ((a3 »» 21) & @x1FF), Bu);

Buj;

Figure 15. Virtual address - physical address conversion code
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3.2.7. Modification of the Thread Object's PreviousMode Field

The PreviousMode field is a field that verifies in the kernel whether the thread object has
been called from the user area.
Thus, if this member variable is set to "0", one can access the kernel area even from the user

area.

PreviousMode

Article = 12/15/2021 = 2 minutes to read = 2 contributors

When a user-mode application calls the Nt or Zw version of a native system services routine, the system call mechanism

traps the calling thread to kernel mode. To indicate that the parameter values originated in user mode, the trap handler
for the system call sets the PreviousMode field in the th ect of the caller to UserMode The native system services
routine checks the PreviousMode field of the calling thread to determine whether the parameters are from a user-mode

source.

Figure 16. Explanation of PreviousMode - msdn

In order to modify the PreviousMode field, the rootkit used the virtual address-physical
address conversion code and physical kernel memory mapping to change the PreviousMode

field value from "1" to "0".

UserSpace MemoryMap (MapViewOfSection) Kernel Memory
o Hex
0000021959215282 |01 08 00 00(00 02 28 00|00 00 00 00|00 0O 03 00
00000219592152C2 e 00 ( 00(00 00 00 00|00 01 01 00|00 00 05 00
00000219592152D02 | 00 00 00 00|00 OO0 D8 52|94 41 8C B8|FF FF D8 52

00000219592152E2 |94 41 8C B8|FF FF E8 52|94 41 8C B8|FF FF E8 52
00 00 00

00000219592152F2| 94 41 8C B8|FF FF 00 00|00 00 DO 00|00 00 ¢ c*419452f2 94 41 8c b8 ff ff @0

(0x01 -> 0x0)

R
0000021959215282 | 00

00000219592152C2 09" 00 00 (
00000219592152D2 | 00 00 00 (
00000219592152E2
00000219592152F2

Figure 17. PreviousMode modification using physical memory mapping

The thread where the PreviousMode is set to "0" enters a sort of "GOD MODE" where through

the "ZwWriteVirtualMemory" API, it can access both user and kernel areas.
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The rootkit uses the "ZwWriteVirtualMemory'

ultimately disable the system.

APl to modify the global kernel data to

|

7
48:8DAC24 BSFEFFFF
48:81EC 48020000
48:8B05 92EB0000

33C4
48:8985 28010000
:8BF8
:8BE2
48:8D4424 38
:8BC2
4C:8BF1

55 AO

41:89 40000000
48:83C9 FF
48:894424 20
41:FF96 FOOD000O
BA 3D5A0000
66:3955 A0

v 74 07

PoSTTT=
push ris

lea
sub
mov
xor

rbp,qword
rsp,248
rax,qword
rax,rsp
qword ptr
ris,rs
ri2,rdx
rax,qword
r8,rdx
rid,rcx
rdx,qword
rad,s0

ptr ss:frsp-14s8)
ptr ds: [7FFA47FA2000]
ss:Prbpr128y,rax

ptr ss:frsp+38)

ptr ss:frbp-603

or rcx,FFFFFFFFFFEFFFFF

mov

mov

qword ptr

edx,5A4D

ss:firsp+20§,rax

call gword ptr ds?[n«oro]

cmp word ptr ss:frbp-60J,dx
ie patched 48 89.7FFA47F93485

qword ptr E:Ir:mmi-ioooooz:.ssuxsuo dzmitﬁnuaiumry;i-qmii.mitﬁrtuinmp '

>

JIE2F (x64 fastcall)

XS/ Tagwora FFFF

X87TW_0 3 (HI US) xs7Tw_1
Xx87TW_2 3 (HI AUS) xs7Tw_3
x87Tw_4 3 (M1 AF) x87TW_S
x87TW_6 3 (Ul US) xs7TW_7

x87statusword 0000

X87SW_8 O X87SW.C3 O x87
X87SW_C1 O X87SW_CO O X87
1: rCX FFFFFFFFEFFEFEFEF

: r8 FFFFF80431400000

5: [rsp+20] 00000OFECG607FOS8

Figure 18. Example of using the "ZwWriteVirtualMemory" API to write to kernel area from user area

(GOD MODE)
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3.3. Rootkit (Security Product Disabling Stage)

Disabling of security products by the rootkit is based on a whitelist system. Thus, all
monitoring systems, excluding the crucial normal system driver files, are removed. The
removal process involves using the "ZwWriteVirtualMemory" API to control the global kernel

data.

3.3.1. Disabling Mini File Filter (fitmgr.sys)

Disabling of the mini file filter involves the checking of whether the callback address registered
to the mini file filter (FItMgr) is included in the whitelist drivers shown in the table below. If
the registered driver is not on this driver list and the Altitude of the driver is included in

"Anti-virus, Activity-Monitor, or Content Screener altitude”, it becomes a target of disablement.

List of normal drivers verified for file filter

disabling
scvtrig.sys
fileinfo.sys
afv.sys
cng.sys
filecrypt.sys
storqosflt.sys
bindflt.sys

wcifs.sys

Table 2. Normal system drivers (whitelist)
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Disabling is done by modifying the object data of the filter manager (FIitMgr). The modified

objects are "_FLT_FILTER", "_FLT_VOLUME", and "_FLT_INSTANCE".

Disabling _FLT_FILTER object

Modify InstancelList field
(Remove instance of the target filter)

Table 3. Method of disabling the _FLT_FILTER object

_FLT_VOLUME object

Modify InstancelList field
(Remove instance of the target filter)

Table 4. Method of disabling the _FLT_VOLUME object

_FLT_INSTANCE object

List connection link of PrimaryLink — Volume
(_FLT_VOLUME)
List connection link of FilterLink — Volume
(_FLT_VOLUME)

The instance itself is untouched.

Table 5. Method of disabling the _FLT_INSTANCE object
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3.3.2. Disabling Process/Thread/Module Detection

The kernel offers a feature to monitor whenever a process, thread, or module is newly created
or loaded. Normally, this monitoring feature offered by the kernel is used to detect malware

by the security products.

For example, the kernel driver calls the "PsSetCreateProcessNotifyRoutine" kernel APl and
registers a "callback routine” for process monitoring. Afterward, the kernel enables the

execution of the callback routine registered by the kernel driver when a process is created.

By comparing the binary pattern of the ntoskrnl.exe process, the rootkit obtains the address
information of the global variable shown below, where the callback routine is registered in. It
then manipulates the data of the address to remove all process/thread/module callbacks. Like
in the case of file filters, disabling of the process/thread/module detection is performed based

on whitelist. Table 6 below shows the whitelist that the rootkit verifies.

nt!PspNotifyEnableMask
nt!PspLoadimageNotifyRoutine (Disables module load detection)

nt!PspCreateThreadNotifyRoutine (Disables thread creation/end detection)

nt!PspCreateProcessNotifyRoutine (Disables process creation/end detection)

List of drivers verified for process, image, and thread

disabling
ntoskrnl.exe
ahcache.sys
MmMCSS.Sys
cng.sys
ksecdd.sys

tcpip.sys
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iorate.sys
ci.dll
dxkrnl.sys

peauth.sys

Table 6. Normal system drivers (whitelist)

The following is an example of a thread callback routine being disabled. Before the global
data of nt!PspCreateThreadNotifyRoutine was changed, Windows Defender had been saved
in the global data, but after it was disabled, all callback routines excluding a white driver

(mmcss.sys) were removed.

<Before disabling thread callback>
fffff801°47cec3e0 ffffd60c4804baaf -> WdFilter'MpCreateThreadNotifyRoutine
fffff801°47cec3e8 ffffd60c4804ba7f -> WdFilterlMpCreateThreadNotifyRoutineEx
fffff801°47cec3f0 ffffd60c48de643f -> mmcss!CiThreadNotification

<After disabling thread callback>
fffff801°47cec3e0 ffffd60c48de643f -> mmcss!CiThreadNotification
fffff801°47cec3e8 0000000000000000 -> Remove !!
fffff801°47cec3f0 0000000000000000 -> Remove !!
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3.3.3. Disabling Registry Callback

The rootkit checks the starting byte of "CmUnRegisterCallback" by comparing the binary
pattern of the ntoskrnl.exe process. Similar to the disabling of processes/threads/modules, it
modifies the global kernel data named nt!CallbackListHead to disable the registry callback

registered on the system.

After the registry callback is disabled, monitoring of registry-related behaviors becomes

impossible.

Figures 19 and 20 below show the nt!CallbackListHead data before and after it has been

modified.

WdFilter!MpObPreOperationCallback
0xffffb008ae885080

AhnRghNt+0x9984

0xffffb008b614bc00
(FLink Oxffffb008b614bc00) (FLink Oxffffd60c468c7f48)
(BLink Oxffffd60c468c7f48) (BLink Oxffffb008ae885080)

FLink FLink > FLink
|_ BLink BLink BLink '|

Oxffffd60c468c7f48
(FLink Oxffffb008ae885080)
(BLink Oxffffb008b614bc00)

Figure 19. Before disabling registry callback

WdFilter!MpObPreOperationCallback

0xffffb008ae885080
(FLink 0xffffb008a2e885080)
(BLink 0xffffb008ae885080)

AhnRghNt+0x9984

0xffffb008b614bc00
(FLink Oxffffb008b614bc00)
(BLink Oxffffb008b614bc00)

Oxffffd60c468c7f48
(FLink Oxffffd60c468c7f48)
(BLink Oxffffd60c468c7f48)

FLink

FLink
W BLink

BLink

FLink

] [

BLink

] [

]

Figure 20. After disabling registry callback

As a result, the rootkit disabled the registry scan of security products and Windows Defender

by modifying nt!CallbackListHead.
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3.3.4. Disabling Object Callback

The rootkit modified the object callback list to disable the security products' access control

over process and thread objects.

First, it acquired the starting byte address of ObGetObjectType by comparing ntoskrnl.exe
byte patterns and subsequently obtained the global data address information named
"nt!ObTypelndexTable". Then, among each factor saved in the table, the rootkit manipulated

the callback list for process and thread objects.

Figures 21 and 22 below show callback list of the process object before and after it has been

modified.

WdFilter!MpObPreOperationCallback

0xffffb008ae885080
(FLink Oxffffb008b614bc00)
(BLink Oxffffd60c468c7f48)

FLink > FLink
|_ BLink T~ BLink

AhnRghNt+0x9984

Oxffffb008b614bc00
(FLink Oxffffd60c468c7f48)
(BLink Oxffffb008ae885080)

FLink

BLink '|

Oxffffd60c468c7f48
(FLink Oxffffb008a2e885080)
(BLink Oxffffb008b614bc00)

/

Figure 21. Before disabling object callback

WdFilter!MpObPreOperationCallback

0xffffb0082e885080
(FLink Oxffffb008ae885080)
(BLink Oxffffb008ae885080)

AhnRghNt+0x9984

Oxffffb008b614bc00
(FLink Oxffffb008b614bc00)
(BLink Oxffffb008b614bc00)

Oxffffd60c468c7f48
(FLink Oxffffd60c468c7f48)
(BLink Oxffffd60c468c7f48)

FLink

FLink
W BLink

BLink

FLink

] [

BLink

] [

]

Figure 22. After disabling object callback

By removing the callback connection list, the rootkit was able to disable the security products'

access control over process objects
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3.3.5. Disabling WFP Network Filter

Windows Filtering Platform (WFP) is a platform offered by the kernel which enables network
packet control within the application. Thus, security products can use WFP in features such

as firewall and intrusion detection.

The rootkit searches the WFP driver's callout and disables the network monitoring system
installed on the system through object flag manipulation. As in the case of mini file filters
and process/image/module callback manipulation, only the flag value of the callout drivers

excluding the normal Windows driver callout is modified on a whitelist-basis.

List of drivers verified for network disabling
ndu.exe
tcpip.sys

mpsdrv.sys

Table 7. Normal system drivers (whitelist)

The callout search process is similar to past methods. First, the rootkit finds the starting byte
address of the "WfpProcessFlowDelete” function in NETIO.sys. After finding the
"NETIO!gwfpGlobal" address, it circulates the callout entries and checks the names of

registered drivers.

If the callout driver is not a whitelisted driver of Table 7, the rootkit computes "1" with OR

into a specific byte, as shown below, to attempt to disable it.

if ( v1i[@] && v12 &% !sub 7FEF31@4@D@(al, v1i2, 1) )

= vd + *(al + @xCoC) + 1 * *(al + 8xC98);
= v11[*(al + BxC9C) »>> 3] | 1;
(*(a1 + @xDF@))(-1i64, v4, &6, 8i64, v1E);

Figure 23. Network filter disabling code
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3.3.6. Disabling Event Tracing

Windows offers the feature to record and trace various events that occur in the kernel and
user areas. These events are used in security products such as EDR and help trace behaviors

of malware.

The rootkit disabled relevant handles and variables to disable event tracing. The disabling
method is similar to the past methods. Through the internal ntoskrnl.exe binary pattern
comparison, the rootkit found the starting address of "EtwRegister" function and obtained
the registered handle information as shown below. Then, it filled all addresses where handle

values were saved to with "NULL", disabling handle information.

<Saved address of ETW event handles>
FFFFF80147C19990 ; nt!EtwpEventTracingProvRegHandle
FFFFF80147C19780 ; nt!EtwKernelProvRegHandle
FFFFF80147C19940 ; nt!EtwpPsProvRegHandle
FFFFF80147C19938 ; nt!lEtwpNetProvRegHandle
FFFFF80147C19930 ; nt!EtwpDiskProvRegHandle
FFFFF80147C19928 ; nt!EtwpFileProvRegHandle

FFFFF80147C19968 ; nt!EtwSecurityMitigationsRegHandle

Aside from these, it found the address of nt!EtwpHostSiloState, a global kernel data, and
modified the 4 byte value at a 0x1080 offset distance from the address to 0x0 to disable the

event tracing related variables.

<Before disabling nt!EtwpHostSiloState >
ffffd60c'469d4080 0001230500000006
ffffd60c'469d4088 0000000000004080

<After disabling nt!EtwpHostSiloState>
ffffd60c'469d4080 0001230500000000 > Modified !!
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ffffd60c’'469d4088 0000000000004080

The offset that the rootkit modifies at the "nt!EtwpHostSiloState" address is different for each
Windows OS version as described in "3.2.3. Checking OS Version".

® Offset when infection target is Windows Server 2022: 0x1088
® Offset when infection target is Windows 11: 0x1098
® Offset for all other OS: 0x1080

v2 = *(vl + @x128); // 05BuildNumber
if (w2 € 17763u || v2 > 19844y ) // 17763 : winl@ 1809, 19044 : winl@ 21h2
1
if ( v2 == 28348 ) J// 28348 : windows server 2822
1
al[@x1A2] = @x1e88i64;
else if ( w2 == 22888 ) J/ 22688 : win 11 21h2
1
al[@x1A2] = @x10898i64;
¥
b
else
1
al[@x1A2] = @x18809i64;
¥

Figure 24. Offset information saved to the memory space of each OS
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AhnlLab Response Overview

The alias and the engine version information of AhnLab products are shown below.

[File Detection]
Trojan/Win.Lazardoor.C5157217 (2022.06.04.01)
Rootkit/Win.Agent.C5192169 (2022.07.04.02)
Rootkit/Win.Agent.C5177679 (2022.06.23.00)

[Behavior Detection]
InitialAccess/MDPEvent.M4422 (2022.08.08.02)
InitialAccess/MDPEvent.M4419 (2022.09.21.01)

Although the activities of this threat group have been announced recently, some of their
malware was being diagnosed in AhnlLab products. The ASEC team tracked the activities of
the identified group and responded to the malware, but there may be variants that have not

been detected yet.
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Conclusion

The Lazarus Group used vulnerable drivers in the APT attack process to disable all internal
monitoring systems. There are currently two vulnerable drivers that have been identified, but
it is expected that cases of abuse will increase as there are many more normally-signed

vulnerable drivers.

Ever since the DSE (Driver Signature Enforcement) policy was applied from Windows Vista,
attacks using rootkit seemed to decrease, however, BYOVD (Bring Your Own Vulnerable Driver)
attack cases have been continuously identified since 2014. The BYOVD attacks until now were
known as acts of abuse for privilege escalation, but as can be seen in this case, Lazarus Group
is the first to design an elaborate rootkit to disable all systems from the old Windows 7 to

the most recent OS, Windows Server 2022.

In order to respond to BYOVD attacks, Microsoft has been blocking unauthorized drivers
from being loaded based on the block rules* in Window 10's hypervisor code integrity (HVCI)
mode and S mode. As such, the best method of prevention for this type of attack at the

moment seems to be strictly blocking drivers from being loaded.

Thus, corporate security managers must restrict drivers from being loaded in normal user
environments and update security software to the latest version to prevent APT attacks that

use BYOVD.
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loC (Indicators of Compromise)

File path and name

The file paths and names used by the malware are as follows. Some may be identical to the

names of normal files.

[Rootkit loader]
® %SystemRoot%#Comms.bin
®  %SystemRoot%#miblib.bin

[Rootkit]
®  %SystemRoot%Wmiblib.dat
®  %SystemRoot%WtempW~bit353.tmp
®  %SystemRoot%#tbf.dat

[Rootkit related module] - SB_SMBUS_SDK.dII

® %USERPROFILEY%WappdataWlocaltempt1b6955_sb_smbus_sdk.dll
%SystemRoot%WtempW206778_sb_smbus_sdk.dll
%SystemRoot%WtempW4018a066_sb_smbus_sdk.dll
%SystemRoot%WtempW6d0b88f_sb_smbus_sdk.dll
%SystemRoot%WtempW4ab916_sb_smbus_sdk.dll
%SystemRoot%WtempW18532412_sb_smbus_sdk.dll
%SystemDrive%Wusers%ASD%Wappdatailocalttemp¥9e1126_sb_smbus_sdk.dll

File hashes (MD5)

The MD5 of the related files are as follows. (However, it is omitted if there is a sensitive

sample.)
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[Rootkit loader]
® (13b4c4e9387d8feleab738c42c451da

[Rootkit]
® 98e58a39ede26af7980ed4de2873caab
® a6e309f97ffada2d4d0d4aecfb255a91

[Rootkit related module] — SB_SMBUS_SDK.dII
® 40643751b426dec01bd390e192b4542
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