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Abstract
Behavioral program analysis is widely used for understanding
malware behavior, for creating rule-based detectors, and for
clustering samples into malware families. However, this ap-
proach is ineffective when the behavior of individual samples
changes across different executions, owing to environment
sensitivity, evasive techniques or time variability. While the
inability to observe the complete behavior of a program is a
well-known limitation of dynamic analysis, the prevalence of
this behavior variability in the wild, and the behavior com-
ponents that are most affected by it, are still unknown. As
the behavioral traces are typically collected by executing the
samples in a controlled environment, the models created and
tested using such traces do not account for the broad range
of behaviors observed in the wild, and may result in a false
sense of security.

In this paper we conduct the first quantitative analysis
of behavioral variability in Windows malware, PUP and be-
nign samples, using a novel dataset of 7.6M execution traces,
recorded in 5.4M real hosts from 113 countries. We analyze
program behaviors at multiple granularities, and we show how
they change across hosts and across time. We then analyze
the invariant parts of the malware behaviors, and we show
how this affects the effectiveness of malware detection using
a common class of behavioral rules. Our findings have action-
able implications for malware clustering and detection, and
they emphasize that program behavior in the wild depends
on a subtle interplay of factors that may only be observed at
scale, by monitoring malware on real hosts.

1 Introduction

The ability to understand and model malware behavior plays
a key role in many security applications. This typically in-
volves executing samples inside an instrumented environ-
ment, designed to collect system and API call traces that
can be further analyzed to reconstruct the runtime behavior.
Such behavioral analysis methods have been applied to de-
tecting [10,12,16,23,24,32] new or polymorphic malware for

which static analysis fails [37, 48], and to clustering samples
into malware families [5, 7, 40, 41], in order to identify the
malicious behaviors that characterize each family. However,
the effectiveness of all these methods depends on their ability
to identify invariant parts of the behavioral traces. In conse-
quence, variations in the observed malware behavior, which
may arise from adversarial intent [6, 20] or biases in the data
collection [43], can result in models that overfit the analysis
environment and fail to generalize to the behavior observed
in the wild. This problem, which is a consequence of the
limitations of dynamic analysis, is widely accepted among
researchers and practitioners as a fundamental challenge for
behavioral analysis.

Unfortunately, just how much the behavior of malware
varies in the wild is a largely open question, outside of a
few prominent and well studied malware families. A common
approach to accounting for behavior variability is to acquire
multiple samples of the same family and to analyze their ex-
ecutions together, in order to extract the common behavior
patterns of the malware family. However, if the behavior of in-
dividual samples varies, across different hosts and across time,
the common patterns extracted will not be representative of
the malware’s behavior on real hosts. Additionally, the behav-
ioral traces are typically collected by executing the malware
in a controlled environment [1, 2, 17, 52], in order to prevent
it from harming other hosts. If the behavioral models are cre-
ated and tested with traces collected in the same environment
and during the same time period, artifacts that only manifest
under those conditions will inflate the apparent effectiveness
of those models and give a false sense of security.

It has been challenging to measure per-sample variability
systematically, despite the fact that researchers and practition-
ers have known about it for over a decade. For example, Lin-
dorfer et al. reported that one sample’s behavior may change
across execution environments because of different OS ver-
sions and libraries [31]. Other researchers studied the evasive
techniques implemented by malware authors to ensure that
traces collected in a sandbox environment are not represen-
tative of its behavior in the real world [6, 20]. Rossow et al.

USENIX Association 30th USENIX Security Symposium    3487



reported how downloader behaviors change over time, owing
to time bombs or new instructions received from the com-
mand and control (C&C) channel [42]. These prior studies
have confirmed the existence of per-sample behavior variabil-
ity and showed its potential impact. However, because they
were conducted in experimental infrastructures, they did not
reveal the prevalence of this variability in the wild, or which
components of the sample’s behavior are most likely to vary.
How much, and in what ways, the behavior of benign pro-
grams varies in the wild are also open questions. The prior
research has also showed that the effectiveness of malware-
detection models degrades over time, as new samples exhibit
previously unseen behaviors [19, 38, 47]. Previously unseen
behaviors of the samples already covered by the model may
similarly degrade the detection performance, but this effect
has not been quantified before.

In this paper we conduct the first study to understand and
measure the variability in the behavior of malware and poten-
tially unwanted programs (PUP) at scale. We focus on API-
and system-call based behavioral profiles, and we conduct
a quantitative analysis of per-sample behavioral differences
on end hosts. To this end, we use a unique dataset of 7.6M
execution traces, recorded in 5.4M real Windows hosts from
113 countries. At the time when the data was collected, it was
not known whether the samples were benign or malicious.
The samples were executed by the users, who interacted with
them naturally, and the behavioral monitoring and analysis
was employed as a last line of defense against unwanted be-
haviors.

We measure the variability in the behavior of samples later
determined to be malware and PUPs, and we compare it to
a baseline we draw from the benign samples. Across execu-
tions recorded on different hosts we found that the number
of actions performed (e.g. the creation of a new file or the
modification of a registry key) varies 6× more for malware
than for benign samples, and this difference increases to 15×
when looking at the number of created files. In contrast, dif-
ferent executions recorded weeks apart on the same host do
not show such a high range of action variability. When con-
sidering action parameters, (e.g. file names), we observe little
to no variability across time for benign samples (the action
parameters tend to remain constant on the same machine), and
a very large variability for malicious samples (the intersection
of the common values is almost empty).

We further assess the challenges for identifying the invari-
ant parts of per-sample behaviors, which have implications
for building behavioral rule-based detection signatures, and
for clustering samples into malware families. We show that,
when building rules that use actions and tokenized parameters,
the information collected from a single execution is inconclu-
sive, but it is possible to observe most of the behaviors from
a few traces. For instance, file names extracted from three
different hosts cover, on average, 90% of the executions and
using more than four traces provides diminishing returns. We

also show that, when performing a malware clustering experi-
ment, one third of the samples exhibit sufficient variability in
behavior that their traces appear in multiple clusters. As this
would not be observed when using a single trace per sample,
our result suggests that the accuracy of mapping samples to
the correct family, through clustering, is lower than previously
believed.

These findings emphasizes that real malware behavior de-
pends on a subtle interplay of factors, such as environments,
time, and user interactions, which cannot be observed by exe-
cuting the sample once in a sandbox environment. We discuss
the actionable implications of our results and the alternatives
to account for behavioral variability. More importantly, these
results emphasize the unique insights that we can gain by mon-
itoring malware behavior at scale, on real hosts. Importantly,
such monitoring can be performed ethically by anti-virus sys-
tems. This radical shift from the way behavioral analysis is
conducted today may bring a degree of external validity that
sandboxes cannot provide.

In summary, we make three contributions:

• We analyze program behavior at scale, using 7.6M call
traces recorded in 5.4M real hosts. These traces include
natural user interactions with the programs and have high
external validity compared to the prior work.

• We study how the behavior of individual samples
changes across hosts and time, and we compare the vari-
ability of Windows malware, PUP, and benign programs
at multiple granularities.

• We analyze the invariant parts of the malware behav-
iors, and we show how this impacts a common class of
behavioral rules for malware detection.

2 Problem and Methodology

The main goal of malware analysis is to identify and charac-
terize the behavior of unknown samples such that behavioral
indicators that are specific to a malware family could be used
for malware detection or classification. Because the behavior
of executables could vary depending on when, where and at
what setting it is executed, part of the behavior for any given
program is transient in nature.

In our dataset, we observed that some executions of the
Ramnit worm [39], result in the creation of a large number
of mutexes. The reason is that the worm uses a privilege es-
calation exploit, which creates a lot of mutexes, only if it is
executed in user-mode on a vulnerable version of Windows 7.
If instead Ramnit is executed with admin privileges or within
a different Windows version, the malware would not perform
the exploit. If an analyst, or an automated system, created a
signature by looking at the behavior collected on Windows
7 (a popular choice by many malware analysis sandboxes),
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those mutex creations could be used for constructing the sig-
nature. However, these actions would only appear in a fraction
of end user machines, thus resulting in a poor detection cov-
erage.

To mitigate this problem and identify truly invariant parts
of malware behavior, it is important to collect malware exe-
cutions across multiple machines, as suggested by Rossow et
al. [43] and over time, as suggested by Pendlebury et al. [38].
However, prior works does not make concrete recommenda-
tions for the most optimal set up (e.g, the optimal re-execution
interval, the number of different machines, the number of
different OSes, etc.) that allows those invariant parts to be
identified accurately. Our goal is to fill this gap in the state-
of-the-art.

Despite these very time-consuming therefore costly sug-
gestions, the industry practitioners often choose to aggregate
behavior of different samples of a family for signature gen-
eration [11, 24]. However, the majority of malicious samples
cannot be mapped to a known family (malware with generic
labels are 1.3 times more common than those that belong to
a well-defined family) [27], making it impossible to perform
such an aggregation.

To shed light on the magnitude of this problem, we ana-
lyze 7.6M executions out of which 3.1M belong to malicious
and unwanted programs and the rest to benign. In total, the
executions of each sample span at least 10 machines, while
45% appear at least 1 week from the sample’s first appearance.
This measurement, the first of its kind, allows us to assess the
amount of behavior variability in the wild, and to study the
minimum number of experiments required to rule out tran-
sient behaviors and derive signatures that achieve the highest
coverage on end hosts, filling a crucial gap in the state-of-
knowledge about the most optimal execution configurations
for signature generation.

2.1 Measuring Variability

We describe the behavior of a sample through its interactions
with the host Operating System. Because a semantic inter-
action, such creating a new file or spawning an OS process,
may be accomplished with various system or API calls, and
the calls differ across OS versions, we abstract these inter-
actions as actions. Our actions model high-level operations,
such as process injection, file creation, or the modification
of a registry key; we report all the action types analyzed in
Section 3. An action may have one or several parameters
to specify the target that the action is operating on (e.g. the
registry key being modified), as well as the actual value it
writes or modifies (e.g. the value written in the registry). An
execution trace for a sample consists of a sequence of actions
and the corresponding parameters. The traces captured by
malware detectors based on both system calls [10, 34] and na-
tive API calls [6, 7, 11, 18, 21] can be mapped to action-based
execution traces.

We measure variability at two levels of granularity. First,
we count the actions in an execution trace and compute the
action variability. We maintain separate counts for each ac-
tion type, as well as for all the actions taken together. We
then compare these counts across all the execution traces of
a sample, using several measures of variability as described
below. This provides a conservative assessment of variability,
indicating for example when a sample creates one file on a
host and two on another. We report how much action variabil-
ity we observe, which action types account for most of the
variability, and how these the variability changes across space
(a sample executing on different hosts in the same week) and
time (a sample executing on the same host in different weeks).
We also compare the action variability in malware, PUP, and
benign samples.

Second, we compare the action parameters coming from
different execution traces of the same sample, using measures
of set similarity. This parameter variability allows us to iden-
tify differences among executions when the number of actions
remain the same, for instance when a sample creates a file
with different names on each host. This comparison provides
further insight into the semantics of the variable actions; for
instance, we identify which parameter parts (e.g., the filename
vs the directory path) differ among different executions.

Measuring action variability. The action counts coming
from different execution traces of a sample form an empiri-
cal distribution. We can characterize this distribution using
various measures of location (e.g. mean, median, mode) and
spread (e.g. variance, standard deviation, median absolute
deviation, interquartile range); we are interested in the lat-
ter when assessing action variability. The main challenge in
selecting a statistical measure of spread is to avoid drawing
incorrect conclusions because of outliers in the distribution.

We illustrate this challenge by showing how different vari-
ability measures perform over the executions of one sample
of AutoPico, a Windows piracy software. Usually the sample
creates four files when executed: two log files, one dll and
one .sys file. However, in six traces out of 62, AutoPico only
dropped the two log files (because the samples was unable to
execute correctly), and in four traces it created more than 15
times the same log files in the same location (possibly due
to the fact that the sample modified more registry keys, each
time recreating the log file from scratch). The ordered list of
the number of file creation events for all executions in our
dataset looks like the following:

[2,2,2,2,2,2,4,4,4, . . . ,4,17,19,19,20]

The Interquartile Range (IQR) and the median absolute
deviation (MAD) are measures of spread that are robust to
outliers. Unlike the classic standard deviation, these measures
are not affected by measurement values that are either too
low or too high. For this reason, IQR and MAD are widely
used in other experimental fields [26,30]. In our study, a trace
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may exhibit an atypical number of actions owing to the mal-
functioning of the sample, because of the lack of a required
component or because the host was shut down mid-execution.
High action counts may also occur when the malware was
designed to infect all of the files in a directory and it encoun-
ters a few machines with an unusually large number of files,1

which results in outliers for the number of file actions. The
IQR is the difference between the 75th and 25th percentile
values of the action-count distribution. In the AutoPico ex-
ample, the IQR is 0, as it is the difference of the value in the
47th position (a 4 in our example) and that in the 16th position
(again a 4) in the ordered list of 62 values. The MAD is the
median of the absolute values of each count’s deviation from
the median. In the example the MAD is 0 as well, because,
after subtracting 4 (the median) from each count, we get a
vector where 0 is repeated 52 times and there are only 10
non-zero values, and the median of this vector is 0. In con-
trast, the standard deviation for the AutoPico traces is 3.67,
which inflates the action variability that would be reported.
Moreover, the variability would be heavily influenced by the
four large outliers (17, 19, 19, 20): without them, the standard
deviation of the action counts would drop 0.61, while the IQR
and MAD would remain 0. This suggests that robust measures
of spread, such as the IQR and MAD, are not likely to lead to
conclusions biased by artifacts in the data.

At the same time, the tail of the distribution may also pro-
vide meaningful insights, e.g. when it reflects the behavior
of targeted malware. We therefore select two additional mea-
sures, the 90-10 and 99-1 percentile ranges, because they are
analogous to the IQR but are gradually less conservative in
discarding the distribution tails. In the AutoPico example,
the 90-10 and 99-1 percentile ranges are 0 and 17 (19-2) re-
spectively. In our analysis, we compute the MAD, and the
75–25 (IQR), 90–10 and 99– 1 percentile ranges. We report
one representative measure when the results are similar, and
we discuss when we observe differences among the four mea-
sures.

Measuring parameter variability. We measure variability
on parameters for each action type separately. We then com-
pute the Jaccard index, which is a popular choice to measure
the distance between the parameters observed in two malware
executions [22, 31], on the parameters observed in different
executions of each sample. This way it is possible to iden-
tify whether similar parameters are chosen (e.g., create a file
with the same filename) or on contrary, the parameters are
randomized or very different among executions, therefore,
malware detection signatures should not incorporate them.
We also perform IQR measurements on the count of unique
parameter values,to get a precise picture of what, and how,
changes across multiple executions.

1An example is the authors’ fileserver, which stored so many files at one
time that it crashed our backup service.
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Figure 1: A sample signature from SIGMA.

2.2 Finding Behavioral Invariants

As we introduced in the previous section, actions are a com-
mon abstraction to represent units of behavior. On top of that,
researchers have proposed many different models to build sig-
natures by expressing patterns over sets of actions. While the
literature of models is very rich, ranging from simple ngrams
or ordered bags [10] to complex graph-based structures [24],
the industry still lacks a common framework for expressing
and sharing behavioral models (the role that Yara [3] plays
for static signatures).

To the best of our knowledge, the only available resource
that contains a sufficiently-large set of signatures of this kind
is provided by SIGMA [44], a project that proposes a lan-
guage to express patterns for log analysis. As OS audit logs
contain information about the interaction of each process with
the environment (something equivalent in nature to system
calls or the abstract actions in our model) the language used
to express SIGMA rules allows analysts to write Yara-like
pattern over the runtime events of a sample.

By reviewing previous papers and the SIGMA ruleset, we
found that a common building block of all these signatures is
the ability to check for the presence of an action and match
a portion of the its parameters (typically through a regular
expression). For instance, Canali et al. [10] use the action
type and the full parameter value to create complex signatures.
Similarly Trinius et al. construct a representation of malware
behavior that uses the action type and parts of the parameters
to create a behavior profile for their malware and Trinius
et al. [51] use an exact match on their proposed features.
This is also the case for SIGMA rules, as the one reported in
Figure 1, which matches a process creation action in which
the command line parameter matches the specified pattern.

Our goal is not to create signatures nor to evaluate different
signature models. Instead, we want to measure which constant
elements exist across multiple executions, with the assump-
tion that any good signature would need to build upon these
elements and avoid using information from other transient
behaviors.

For this reason, we break down each parameter value in a
set of tokens according to classic windows delimiters [49]—
such as backslashes for directories and spaces for command-
line arguments—and study the evolution of each token both
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Mal PUP Ben

Num. samples 2424 1621 22443
Num. machines 0.5M 0.9M 4M
Num. executions 1.1M 2M 4.5M

Table 1: Dataset summary.

individually and aggregated with other tokens extracted from
the execution traces. As an example, we observed that around
70% of the SIGMA rules contain at least one of such token,
confirming their role of building blocks for more complex
signatures.

3 Dataset

The dataset we are using is a collection of 7.6M execution
traces that the AV vendor has collected across 5.4M real users
during the year of 2018. The data is collected by a component
of the AV engine that is responsible for behavior-based detec-
tion. This component records high-level behavioral data about
the executed programs until they terminate or until the system
is able to classify them as either benign or malicious and
kill. For the sake of validity, our data only includes programs
that terminate normally. Therefore, unlike data collected from
sandboxes, our data is not limited to few minutes of execu-
tion and because the traces are collected from real users, they
do not suffer from the limitations introduced by synthetic
analysis environment. Our data does not consist of malware
samples that were executed intentionally for data collection,
but samples that at the time of collection were not yet known
to be malicious or pup and were able to evade the static mal-
ware detection solution installed on the computers. Our data
is a reflection of the set of threats with which the behavioral
detection components need to combat.

Dataset coverage statistics. Each item in our data consists
of a sequence of behavioral actions performed by a sample
together with SHA-256 hash of the sample, an anonymous
machine identifier and a timestamp. Thanks to the unique
SHA-256 hashes of the samples, we were able to query Virus-
Total (VT) in the following year (2019) of the data collection
and identify the corresponding labels assigned to those sam-
ples by various AV engines. While we labeled the samples
that were consistently labeled as benign by all AV products,
we label samples as malicious or PUP using AVClass [46], a
state-of-the-art technique for massive malware labeling. From
the VT reports obtained in August 2019, AVClass identified
22,443 benign, 2,424 malware and 1,621 PUP samples, as
listed in Table 1. We perform our variability analysis on exe-
cution flows we were able to label with high confidence and
those that were observed in at least 10 machines. This ex-
perimentally chosen threshold made it possible to accurately

Ratio

Windows 7 56%
Windows 10 35%
Windows 8.1 3.1%
Windows Server 2.6%
Windows XP 2%
Other Windows Versions 1.3%

Table 2: OS version distribution.

measure variability of the sample sample across different
machines. 85% of the samples were executed between 10
and 100 machines, rest were observed in more than 100. The
data was collected from computers from across 133 countries:
USA(48%) and China (14%) have the largest fraction of our
data points.

In Table 2 we show the distribution of the Operating Sys-
tems for the machines in our dataset. The vast majority of
machines run the Windows 7 build 7601 and the rest run a
flavor of Windows 8.1 or 10. 55% of the executions happen
less than one week apart, while respectively 12%, 6%, 4%
and 3% are executions that were collected after the second,
third, fourth and fifth week from the initial recorded execution.
On the 11% of the samples’ re-execution happens 9 weeks
after the first appearance of the malware. As a matter of fact,
we measure the time variability for the executions happening
during the first 4 weeks after the first appearance, covering
over 80% of the executions. For instance, a crypto miner sam-
ple first appeared on April 5th and within 7 days we had 47
executions from 35 machines. During the next 7 days we
captured 18 executions, 4 of which on new machines. In the
3rd week we record the last 7 executions, none of which from
any new machines.

Execution statistics. An execution trace is composed of
multiple actions. The actions are heuristically-defined be-
havior units such as file creation/modification, registry key
creation/modification, mutex creation etc. In addition to those
common behaviors analyzed largely by the literature, we also
have some behavioral actions that were defined by the security
vendor such as disable Windows defender, disable updates,
change firewall options, keylogging, change IE settings etc.

In table 3 we show the top 8 action types in our dataset
which corresponds to 87% of the whole data. On average,
per execution trace we identified 150 actions out of which
39 are file creations. In our study, due to space constraints
we present the action level variability analysis for a subset of
these actions. To this end, we set the following criteria:

1. Action occurs in any execution in more than 25% of
the machines. To measure a non-zero machine variabil-
ity of a certain action with IQR, it is necessary to observe
it at least 25% of the machine.
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Ratio of dataset

File Create 26%
Mutex Create 20%
Registry Set 14%
ProcessLoad 8%
PECreation 6%
RegistryKeyCreated 6%
DirectoryCreated 4%
ServiceCreation 2%
Others 14%

Table 3: Ratio of action types over all the dataset.

2. More than 1 action appears in the executions. If the
action happens only once in executions, it is not possible
to measure its variability (the only possible result could
be 0 or 1.

7 of the actions in Table 3 meets this criteria. More details
for other actions in our dataset are provided in Tables 8 and 7
in Appendix.

Ethical Considerations. As mentioned earlier, we did not
distribute or launch any samples on the user machines; instead,
all the executions in our data set were triggered by the users,
and the malware and PUPs we report reflect real-world attacks
agains those machines. The anti-virus detects and blocks
all the malicious samples known at the time and collects
execution traces for samples that remain suspicious, in a last-
resort effort to discover unknown malware. In consequence,
we do not cause any harm to the machines in our study that
would not have occurred without the anti-virus product and
our data collection. Moreover, future updates to the anti-virus
will clean the infected hosts once the malware is discovered,
owing to the data collection. The behavioral analysis data
was collected from users who opted in sharing their data.
Necessary anonymization actions are taken to preserve the
privacy of the customers. None of the data fields in the dataset
contains any identifiable information.

4 Behavior Variability in the Wild

In this section, we analyze the variability we observed in
the behavior of malware, PUP, and benign programs when
executed on different end-user machines. We measure both the
action variability and the parameter variability, as discussed
in Section 2.1. We first conduct these measurements across
space (the differences among a sample’s execution traces on
different machines) and time (the differences among its traces
in different weeks).

In our data, some executions contain duplicates (i.e., the
same action type with the same parameter value). This could

happen for example when a sample opens the same file mul-
tiple times. As these operations are idempotent with respect
to the our behavioral specifications, defined in Section 2.1,
we perform deduplication on our data before we apply the
variability analysis.

4.1 Machine Variability
We start by measuring the variability of executions of the
same sample across different machines. Our goal here is to
understand whether this phenomenon exists and if it does, on
which type of executables it is more prevalent. We only look
at executions of a sample that happen max one week apart
to identify variability that happen only due to being run on
different machines not due to time.

4.1.1 Action Variability

We analyze action variability through IQR and MAD. In or-
der to understand the impact of the outliers on the results,
we also look at the difference among 90-10 and 99-1 per-
centiles. Figure 2 illustrates the distribution of IQR variabil-
ity, across all actions (Figure 2a) and only for the two most
common actions we observed in our dataset: file creation (Fig-
ure 2b) and registry modification (Figure 2c). The numbers
between parentheses for each category is the number of sam-
ples that we use for our variability analysis. Because not all
samples had file creation or registry key modification actions
in their executions, these numbers are lower than the total
number of samples (Table 6 in the appendix provides a de-
tailed breakdown of action variability). The separate boxplots
for malware, PUP and benign samples allow us to compare the
action-variability distributions within these categories and to
assess the extent of these differences. To confirm these visual
observations we compare these empirical distributions using
pairwise U-tests [33], a non-parametric method for inferring
whether the samples are likely drawn from distinct distribu-
tions. In the paper, we report differences that are statistically
significant at p < 0.001 level.

Malware exhibits higher variability across machines. We
expect to see a higher behavior variability in malware sam-
ples, owing to a host targeting, evasion and obfuscation at-
tempts, or the tendency to attempt operations that may fail
on some hosts (e.g. privilege escalation). Figure 2a confirms
this: comparing the three boxes, which represent the bulk of
the measurements from each empirical distribution, suggests
that the action-variability of malware is typically higher than
that of PUPs, which is typically higher than that of benign
programs. The median IQR for malware is 59 actions, which
means that the top 25% of a sample’s execution traces are
> 59 actions longer that its bottom 25% traces, for half of the
malware samples in our dataset. In contrast, the median IQRs
are 19.25 and 8 actions for PUP and benign, respectively. We
observe similar trends with the MAD measurements. While

3492    30th USENIX Security Symposium USENIX Association



Malware(2424) PUP(1621) Benign(22443)
Category

0

25

50

75

100

125

150

175

200

In
te

rq
ua

rt
ile

 R
an

ge

59.0

19.25
8.0

IQR for total number of actions

(a)

Malware(2060) PUP(1363) Benign(18624)
Category

0

20

40

60

80

100

120

140

In
te

rq
ua

rt
ile

 R
an

ge

33.875

2.75 1.75

IQR for File Creation actions

(b)

Malware(2361) PUP(1311) Benign(15415)
Category

0

5

10

15

20

25

30

In
te

rq
ua

rt
ile

 R
an

ge

7.5

3.0
1.0

IQR for Registry Modification actions

(c)

Figure 2: IQR action variability for all actions and the two most common actions in our dataset.

the average difference from the median for malware is 35.5
actions, for PUP and benign, it is 10.3 and 2.9 respectively.

This leads to the question where does this variability come
from? When breaking down the variability according to action
types, we observe a striking difference for file creation actions
(Figure 2b). The median IQR for malware is 15× larger than
for PUP and benign samples, and the bulk of the distribution
includes much larger values. In contrast, the variability dis-
tributions for PUP and benign samples do not appear to be
different for file-creation actions, while PUPs exhibit more
variability for registry-modification actions (Figure 2c). This
suggests that malware classification solutions based on file
creation actions could lead to inaccurate results, as the high
variability among the execution traces of a sample may place
some of these traces in different clusters; we investigate this
in more depth in Section 6. Conversely, a malware detector
able to observe executions on multiple hosts could utilize
file-creation variability as an indicator of malicious behavior.
Case study. We refer back to the Ramnit sample in Section 2
At least 25% of the executions occur on Windows 7 machines
where the malware is running with user privileges. Therefore,
the malware runs a privilege escalation exploit causing a large
number of mutex creations. The rest of the executions happen
in different OS version or with admin privileges, thus the
executions are shorter. The action variability is affected by
the longer executions showing an IQR of 34, which is the
number of mutex creations.

There is a significant variability on the behavior of
malware among different machines. When malware
detection solutions rely on data collected only from
one sample up to 200 (med. 59) behaviors could be
underrepresented in the detection model.

Even though malware still shows a significantly higher
variability when expressing the variability in terms of the
90–10 and 99–1 percentile ranges instead of the IQR, the
action-variability distribution of malware becomes harder to
distinguish from the PUP and benign distributions This is
not surprising as these measures are not as robust to outliers

Median 75th percentile
Mal PUP Ben Mal PUP Ben

Fi
le

Path 4 1 - 10 3 2
Name 25 2 1 49 8 8
Ext. 3 1 - 5 2 1

PE
Path 1 - - 1 1 -
Name 1 - - 3 2 1
Ext. 1 - - 1 1 -

R
M

Key Path 2 1 - 3 3 1
Key Name 5 2 - 9 6 2
Value 5 2 1 10 6 3

D Path 1 - - 1 1 -
RC Path 2 1 - 3 3 1
MC Name 6 3 1 9 7 4
P CMD line 4 - - 6 1 1

Table 4: Parameter(s) IQR variability for malware, PUP and
benign.

[PE] PE File Creation actions, [D] Directory Creation,
[RM] Registry Key Modification, [RC] Registry Key

Creation, [M] Mutex Creation, [P] Process Creation actions.

as the IQR and MAD. The PUP and malware distributions
remain distinguishable for file-creation actions, but overlap
significantly for registry-modification and mutex-creation ac-
tions. In fact, a few PUP samples seem to have more extreme
outliers causing the 99–1 range to be larger than that of mal-
ware.

While malware and PUP both vary more than be-
nign in all the action types, they show variability in
different action types.

4.1.2 Parameter Variability

We now take a closer look at the variability in the parameter
values. We calculate the Jaccard index among the parameters
of the same actions types in the execution traces. In this
experiment use the full value of the parameters types listed
in Table 4. Our observation was that the parameters values
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across different machines have a high variability for both
malware, PUP and benign programs. For all of the parameter
types, we obtain a Jaccard index is 0, indicating that there
is no full value shared across all executions. Note that for
this step, we do not normalize the data to remove computer
specific artifacts and also do not extract substrings from the
parameters. However in Section 5, when exploring invariants
parts among executions of samples, we will perform deeper
investigation on the substrings as well.

No parameter value is shared among all machines
except for file extension. An analyst has to rely on
substrings/tokens of the parameter values to create
signatures.

We also perform IQR measurements, to obtain more in-
sights about the distribution of the variability among different
parameter types. In Table 4 we report the median and 75th per-
centile IQRs of different parameter types. We can clearly see
that benign programs rarely change the directory they work
on, the file names created or the executables they launch. On
the other hand, malicious samples tend to create a significant
amount of new files (25 new files for 50% of the malware),
to work on several directories and even to create different
executables over different executions. This finding indicates
that the same sample’s behavior can vary to an extent that it
could be hard to identify a behavioral indicator that is com-
mon among all. We will explore this aspect in more detail in
the following section.
Case study. In the executions of a Glupteba malware sam-
ple we observed that the Jaccard index across multiple
machines is 0 for file names and 0.2 for mutex names,
while the IQR for file and mutex creation is 0 and 2 re-
spectively. This means that the malware changes signif-
icantly the name of files but not their absolute number,
while mutex names are more similar but with a larger vari-
ability in terms of number. In this particular case, mu-
texes were a better candidate for building signatures, as we
found that h48yorbq6rm87zot appeared in all the machines,
which is also confirmed by a report from TrendMicro [50].
On the contrary, the mutex ZonesCacheCounterMutex and
ZoneAttributeCacheCounterMutex only appeared in half
of the machines, which explains the IQR of 2.

4.2 Time Variability
In this section we look at how variability is impacted by the
time in which a sample is executed. We start again by looking
at the volume of actions and then zoom into those actions by
including their parameters into the analysis.

4.2.1 Total Action Variability

We measure the action variability by comparing executions of
the samples in different weeks. Since 80% of the samples in
our data were executed at most four weeks after the first week

of their appearance, we perform the per-week time analysis
on those next 4 weeks. To simulate what an analyst would
deal with, we consider the first week’s executions as the base
and compare it with each of the 4 consecutive weeks. Here,
we cannot use IQR as for each sample we only have 4 data
points. We simply count the number of missing and new
actions observed in each sample’s executions compared to the
previous week. The results are reported in Figure 3.

Malware have the highest number of missing and addi-
tional actions. The general takeaway for coarse-grained time
variability analysis is that there is a significantly larger time
variability in malware compared to PUP and benign samples.

According to the Figure 3, on average across all machines
we see 6 missing actions 1 week after the first execution. Even
though this number might seem low, depending on what those
actions types are variability over time might have an impact
on the malware detection solutions. Note that there are also
some malware samples that show a tremendous variability
(average of max being 17, max of max being 219). One possi-
ble explanation for this significant number of missing actions
is that when malware is re-executed on the same machines,
might not need to repeat some of the behavior such as creating
particular files. At time of the data collection, the malware
samples were not yet known and therefore, the machines were
not cleaned up before the re-execution. However, we also ob-
serve variability over time when looking on the new actions
that appear on the following weeks. Similarly, malware sam-
ples have on average 1 new action appearing every week,
which is larger than PUP and benign. We also highlight that
the machine with the maximum number of additional actions
seems to have a maximum of 63 new actions and more than 3
new actions for 50% of the malware samples. For malware
execution longer than 1 week from their first appearance less
new actions appear, indicating a more stable behavior by time.

Case studies. A TOR-connected coinminer was dropping
miners.ini, miners.ini.* and minergate.log and launching
minergate-cli.exe before January 18th in 2018. In some ma-
chines it was also dropping up to 14 *.tmp files. After 18th this
behavior completely stopped, resulting a number of missing
actions in the following weeks. On the other side of the scale,
we also identified a Remote Administration Tool, which ini-
tially dropped 5 dlls files and an executable (setacl.exe) before
March 16th 2018. On April 3rd, it started dropping 7 more dll
files and 3 new executables. We also have examples for mal-
ware that misses and adds new actions at the same. In it’s first
week of appearance the software was dropping various files
on different machines such as microsoft office, foxit pdf edi-
tor, autocad 2015 qqlivedownloader.exe. This behavior could
be due to the user’s interaction with the malware or simply
the malware hiding its purpose. The next week’s executions
no longer drop any of these files, but zny_znykb030.exe or
kuaizip_setup_2523474329_rytx2_001.exe appears to down-
load consistently in almost all the machines. We believe that
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Figure 3: Missing actions compared to the previous week.

in this case the user had no control of the malware and the
downloads happened silently. This malware was still running
4 weeks later performing the same actions. A final exam-
ple is a sample of Adware.Chinad, which dropped various
files (microsoft office, foxit pdf editor, autocad 2015). On the
following week, a new executable (zny_znykb030.exe) fol-
lowed by potentially pirated other software are downloaded.

In malware, time variability is the largest. While
the variability is mainly due to the missing actions,
there are also new events that appear on the follow-
ing weeks.
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Figure 4: Relation between detection and the time
variability. This result shows that malware that have high

time variability have higher VT detections.

Malware with highest detection rates vary more over time.
One interesting observation on the malware that exhibit more
variability over time was that in general more of the AV en-
gines would label them as malicious. In Figure 4 we show
the distributions of the malicious samples with low time vari-
ability (lower than 25th percentile) against the ones with high
variability (on the top of the 75th percentile). For each of sam-
ples, we check the total number of detections in VirusTotal in
November 2019 (i.e., one year after the first time we observed
the samples). As it can be seen seen, the samples that are AV

software eventually detected the most had a higher variability
across time. This shows that even if in general time variability
is low across the board, for easier to classify samples it seems
like time has a more significant effect on the variability.

To get a better understanding of this phenomenon we con-
ducted two case-studies. In the 75th percentile we found a
version of kuaizip and analyzed its behavioral data manually.
This malware seemed to stop working sometime around the
second week of April 2018, after which it still performed
host-related actions but failed to download the PE files it
was retrieving before. At the other side of the spectrum, we
chose a malicious sample that exhibits low variability. We
found an open source DLL injection tool classified as mal-
ware which performs exactly the same actions every time it
runs. This likely-to-be-malicious sample injects into roblox-
playerbeta.exe, creates settings.xml, and sets some registry
keys. Upon further analysis we found that this is being inten-
tionally used for cheating in games and this exact behavior
is observed over and over again. While preliminary, these
experiments seem to confirm that time variability affects the
most those samples that rely on an external infrastructure.

4.2.2 Parameter Variability

When switching to the fine-grained analysis of each parameter,
we now observe a very different picture from the results we
obtained by looking at the variability among hosts. In fact,
the Jaccard Indexes show that for goodware and PUP there
are a large number of perfect matches over time when the
sample is re-executed. For the full results we refer the reader
to Table 5 in the Appendix.

Over time, malware actions parameters vary a lot, while
PUP’ and benign’s ones do not vary at all. The difference
is remarkable. Even at the median, the parameters of actions
performed by benign software change very little, and the 75th
percentile they change almost nothing at all. If we consider
that the same indexes were zero when considering executions
across different hosts, this result emphasize a very important
distinction. Goodware creates different files, mutexes and
registry keys in different machines. But when we consider two
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executions on the same machine, those values remain constant.
The same phenomenon does not happens for malware, where
the Jaccard index is zero across the board, both in case of
different machines and in case of different executions on the
same host. The only few exceptions to this rule are regarding
file paths and file extensions, which still have a low similarity.

If we look at the 75th percentile things get more stable and
both malware and benign files show a high similarity. This
means that for at least 25% of the samples in our dataset we
observe a stable set of parameters at different points in time.

At least 50% of the malware do not reuse same file
names, registry keys values and paths, directories
in their reexecutions, and 25% execute at least 1
new command.

5 Invariant Analysis

Our variability analysis confirms that malware behavior
changes over time and on different machines. This indicates
that if a behavioral malware detection system is designed
with data collected at a fixed time or from a single computer
with a particular configuration setting, the real behavior that
is common to all possible executions might not be identified
correctly. However, as we showed in Section 4.2.1, the fact
that malware samples carry large variability across different
executions does not rule out the possibility of building ac-
curate detection models from behavior that remains stable.
Therefore, in this section we focus on measuring the invariant
part of malware behavior, to better understand how effective
behavioral-based detection systems can be if their models are
built upon the right set of events.

Roughly 80% of the SIGMA rules are created from values
extracted from file and process creation events, and these
two are also in top 7 most popular actions in our dataset.
Therefore, due to space limitations, in this section we focus on
those actions and their parameters. We identify the invariant
behaviors only from the malicious samples as our goal is to
evaluate behavioral malware detection techniques. We only
use benign samples when simulating a signature generation
process, by extracting the invariant parts that are not observed
in the benign execution traces.

Beyond full parameter value. In Sections 4.1.2 and 4.2.2
we utilize the full value of the parameters to measure the
jaccard index. In this section we follow a simple approach to
split those values into smaller tokens, explained in Section 2.2,
with the aim of finding a shared value across machines.

5.1 How Many Hosts Are Enough?

One of the main consequences of the findings discussed in
Section 4 is that for building more effective and accurate sig-
natures it is necessary to collect multiple data points rather
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Figure 5: CDF of number of machines and the amount of
malware values. It takes more machines to capture all the

CMD tokens than other parameters’ tokens.

than looking at a single trace collected from one environment.
While this sounds intuitive, to our knowledge, there is no
existing study that attempted to measure how many execu-
tions from different machines are needed to identify tokens
that maximize the coverage of the generated signatures. To
this end, we measure the number of executions of the same
malware in the wild that can be detected by using the tokens
extracted from a small set of executions, as well as the number
of those executions that are needed to obtain all the malicious
tokens. Based on that, we estimate how many machines are
needed to achieve a high coverage of observed behaviors.

Figure 5 shows the empirical cumulative density function
(CDF) of the fraction of malware samples for which we cap-
ture all tokens, for an increasing number of machines (x-axis).
We only consider tokens that never appear on benign traces
and we also exclude the unique tokens, i.e., those that only ap-
pear in one machine in the wild (as they could be the result of
random values). Finally, we construct the CDF by adding first
the traces that contain the highest number of tokens, and thus
represent a conservative estimate. For 20% of the malware,
we need only 1 machine to capture all the malicious command
line tokens. If we increase the threshold to 10, we can identify
all the command line tokens for 85% of the malware and all
the file path tokens for 98% of the malware.

Naturally, the more machines we use the more tokens we
can extract, but adding more machines provides diminish-
ing returns. As we can see, for 21% of the malware we can
capture all filenames in a single execution, and for 29% of
them one execution is sufficient to discover all file path to-
kens. However, we need to collect 39 traces to observe all the
malicious filename tokens that appear in 90% of the malware,
while this decreases to only 11 and 17 machines for capturing
file path and command line tokens respectively. Since the
file path seems to converge faster, in Figure 6 we check the
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impact of the first 8 machines in the amount of tokens we
are extracting. We observe that after 7 machines the return of
investment becomes small, as for the top 50% of the malware
samples we already extracted 68% of the tokens. When also
check the other parameters and we noticed similar correlation
between the amount of tokens extracted and the detection rate
in Figure 7, which makes sense since having all the malware
tokens means we have 100% detection.

While counting the new tokens can give an idea of how
many traces we need to compensate for the diversity of be-
haviors, it does not tell us whether those tokens are sufficient
or not to detect malware in the wild. Therefore, we conducted
a second experiment. Here we use the tokens extracted from
one execution to match the malware traces collected in other
machines. If the combination of the tokens can cover all the
other executions of the same sample, then we conclude that
one execution is sufficient (in theory) to extract a perfect sig-
nature. If instead the extracted tokens cannot achieve 100%
coverage, we add a second trace collected on a different (ran-
domly chosen) machine in the same week (as for the moment
we want to study the machine impacts and not the time impact)
and we re-iterate the process. Since the result is dependent on
the select machines, we repeat the experiments ten times and
report the average.

From the boxplot in Figure 7a we can see that while for
some malware one execution might be enough, in average
the filenames extracted from one trace cover 82% of the ex-
ecutions and the value decreases to 77% if we use path in-
formation. However, the execution traces collected on three
different machines are sufficient to achieve the highest cov-
erage when using file name as the parameter. Similarly we
find that it takes four machines to saturate the coverage for
the command line and seven for the file path. The respective

results can be found in Figures 7b and 7c.
Our results suggest that an analyst should analyze
the malware in 3 random virtual machines to cap-
ture most of the file names, 4 for CMD line and 7
for file path. A possible way to generate such ran-
dom machines, instead using the same machines
for all malware, may be to use a random vm gen-
erator like SecGen [45] with the features proposed
by Miramirkhani et al. [35].

5.2 How Soon Should We Re-Execute?
We now investigate the re-execution interval needed to
achieve the best coverage in the wild. This is more diffi-
cult to measure, as it represents a trade-off. If you re-execute
the sample too early, you may learn little and your signature
may not catch the behavior that the malware will exhibit in
the future. But if you re-execute the sample too far in the
future, than your initial model might get outdated before you
re-analyze the sample.

For this analysis, we take a first execution trace during the
first week of appearance of the malware. Then we collect a
second trace on the same machine, varying the time between
one and four weeks in the future. We then use the tokens
extracted from the first execution to match all malware ex-
ecutions until we re-execute the sample. From that time on,
we incorporate the information of the second execution and
update the signature to be used for future executions.

Figure 8 shows the results for the filename tokens. While
the median detection does not change much, re-executing after
three weeks provide more benefits (the minimum detection
and the 25 percentile are much higher, which suggests that
for some malware this makes a big difference).

For the file path the difference in the re-execution interval
is smaller, which means that we need more machines to get
better detection. However, even in this case we still notice
a slightly smaller range when re-executing on the 4th week,
which means some malware show a different behavior around
that time. The results are the same for command line argu-
ments, where in week 4 we have a more impactful increase
in detection, suggesting that malware will be spawning new
processes or using different parameters one month from their
first appearance.

An analyst should re-execute a sample between 3–4
weeks apart. However, having multiple executions
in different days provides less useful information
about the malware behavior than having different
executions on different machines.

5.3 Hunting for the Most Invariant Artifacts
As we showed in previous sections the number of file cre-
ations is not a good metric to profile a malware sample due
to variability. Similarly, the same file name doesn’t appear in
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Figure 7: Detection coverage of tokens obtained by combining multiple execution traces The detection rate/coverage of file
names or extensions reaches the maximum after 3 to 4 machines while for file path we need about 7 machines to capture all the

malware tokens.
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Figure 8: Total filename signature coverage for
re-execution intervals. A periodic execution of every 3
weeks yields the highest coverage across all malware.

all machines. Using more than 1 file name to profile malware
seems like the right choice. While using both variant and
invariant features is not going to affect the performance of
the detector, we need intuition to be sure we have an invari-
ant in our signature. In this section, we measure the covered
machines that individual tokens can detect the malware on.
For this we extract the malware tokens in the first week and
compare their performance to executions happening in the
following weeks, to simulate the scenario where an analyst
creates a signature with 1 token and deploys it. We show the
average effectiveness of each token. We don’t remove the
random tokens to show the amount of randomness that an
analyst has to deal with for each parameter.

We measure the file name token coverage for file writes.
The results show that most of the tokens are random and hav-
ing more than 1 machine allows the analyst to remove them.
We noticed that the tokens with the highest coverage were the
extensions, therefore we encourage the analysts to split the

file name using the dot(.) delimiter and remove the known
benign extensions to obtain highly performing malware file
extension signatures. Random tokens happen more often in
file names than any other parameter, which means that an an-
alyst should have more than 1 execution to remove the tokens
that appear only once.

We noticed that malware tends to write to non-random and
non-benign paths. However, there is no clear trend to which
subdirectories and on which level are invariant to the malware,
therefore, an analyst will need multiple values to construct a
signature based on the file path. While we couldn’t identify
a heuristic to pick the better path tokens we noticed that on
average, for all malware, 25% of non-benign subdirectory
names (tokens) appear in all the machines. This means that
an analyst will achieve a better detection using a subdirectory
name to detect malicious file write than the file name, exten-
sion or even command line of process creation. Our study
reveals a source for constructing high-performance detection
rules using file extension tokens, which future generations of
malware may no longer posess. We also reveal the success of
file path tokens in constructing a malware detection signature.

6 Discussion and Limitations

Impact on State-of-the-Art Solutions. In our paper, we per-
formed an extensive analysis about behavioral variability on
malware, concluding that to observe the complete behavior
of malware it is necessary to run the malware on several
machines repeatedly over time. We conduct two further exper-
iments to illustrate the impact of our results on state-of-the-art
solutions.

First we reproduce the experiments conducted in one of
the most cited behavioral malware clustering techniques [5].
Such clustering techniques commonly rely on only one exe-
cution trace per sample. Note that our goal here is not to call
into question the results of the prior work, but to demonstrate
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the effects of variability in a typical malware-clustering ex-
periment. When evaluating this technique on our data, which
consists of several executions of the same malware samples,
we observe that one third of the samples exhibit sufficient
variability in behavior that their traces were scattered among
multiple clusters, thus decreasing the accuracy of mapping
samples to the correct family. This suggests that we must be
cautious when drawing conclusions from clustering exper-
iments, as the results may be inaccurate if the experiment
utilizes a single trace per sample. The details of this experi-
ment can be found in Appendix A.1.

In a second experiment, we assess the impact of behavioral
variability on the accuracy of anomaly-detection approaches.
In this case, we selected AccessMiner [29], a popular solution
for building models based on benign execution alone. It is
interesting to note that although variability was not explicitly
discussed by the authors, Accessminer correctly accounted
for it by including multiple execution of benign software
collected from different real-world machine.

Again, we repeated the experiments by following the tech-
nique explained in the paper (the details can be found in
Appendix A.2), training the AccessMiner model with a pro-
gressively increasing number of traces from benign files in
our dataset. Our results suggest that behavioral variability of
benign programs also impact the detection rate and that only
few executions are insufficient to build and accurate model.
Moreover, our experiment shows that to improve the accuracy
of the models and reduce false alarms, it is necessary to also
include lower-reputation and low-prevalence benign files to
the dataset. In the original AccessMiner paper, only traces
from popular benign files behavior were incorporated into the
anomaly detector.

Alternative Solutions to Account for Behavioral Variabil-
ity. Our findings suggest that the more accurate way to collect
information about malware behavior is to record program
executions on real end-user machines. However, the main
drawback of this solution is that known malware needs to
be blocked to guarantee the user security, and thus the data
collection is limited to files that other methods cannot classify
one way or another.

Other options exist for researchers to account for the behav-
ioral variability of malware. For instance, Multipath Explo-
ration, proposed by Moser et al. [36], allows to automatically
explore multiple execution paths of the malware binary in the
same system. As this method is capable of triggering hidden
functionalities, it can replace the need to observe the behav-
ior over different machines and at different points in time.
However, this solution is complex and has a very high per-
formance overhead, which makes it unsuitable for large-scale
experiments.

Similarly, Symbolic execution could be used to trigger unob-
served behaviors during malware analysis, such as in the case
of time-triggered malware [15]. While this can also help an

analyst to tackle the issue of behavior variability, similarly to
the multipath exploration solution, symbolic execution is diffi-
cult to scale due to the large overhead and the state explosion
problems [53].

A more practical solution consists in running the samples
on different VMs, with different configurations. While still re-
source intensive, this method has comparably lower overhead
than the previous approaches, making it is easier to apply to
a large number of samples. As we showed in section 5, we
suggest running the malware in at least three (and for better
coverage even seven) different VMs to capture significant
machine-induced variability. We also suggest the analyst to
re-execute the samples at least every three weeks to capture
any time-induced variability.

Threats to validity and limitations. Our study carries some
limitations due to the nature of the data that was provided
by the security vendor. The data was collected from users
who have installed the AV product, who might be in general
more careful with the security of their computers and, there-
fore, might be less exposed to attacks. Although we cannot
rule out the possibility of selection bias, the large size of the
population in our study, the large fraction of malware (9.15%
of the unknown samples that could not be classified with
other means), and the large spectrum of variability that we
observed in the experiments, suggest that our results have a
broad applicability.

Our data consists of executions of Windows PE files and
therefore, our findings might not apply to the behavior of pro-
grams that run on other platforms (Linux [14], Android [55],
IoT, etc.). Another unfortunate limitation is that the data does
not contain network events. Previous work [43], however, has
already shown the existence of a high variability in the net-
work events and discussed its impact on the overall behavior
of malware. Since our goal is not to establish a root cause for
the behavior variability, the lack of network data does not im-
pact our main findings. We expect to actually observe higher
variability on network events.

All samples in our dataset were not flagged neither as be-
nign nor malicious at the time of their collection. Therefore,
the data does not include popular benign programs and mal-
ware that can be detected by traditional means (i.e., AV En-
gines). While this might be seen as a limitation because easier
to label programs might not show similar variability on their
behavior, the set of samples we analyzed also make our study
more unique in its nature. We only analyze those programs
that need to be detected by looking at the behavior. In reality,
samples that can be identified simply by other means, such
as static signatures, do not require a behavioral analysis in
the first place. Even if our measurement does not capture the
variability of those samples, the impact on behavioral detec-
tion would have been irrelevant. Moreover, since our goal
is to study variations in the runtime behavior, the analysis
can only be performed if a sample is executed multiple times,
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both in the same environment and across a different set of
machines. Therefore, polymorphic samples (in which each
SHA-256 hash is only observed once) cannot be included in
our analysis.

A recent work [46] has shown that for the vast majority
of malware samples its impossible to identify a family name,
owing to the use of generic signatures and to inconsistencies
among the AV labels. Our clustering experiment provides
further insight into this challenge. As we were unable to find
a family name for most of the samples in our dataset, we did
not study the behavior variability across malware families.

When measuring the time variability, some actions may not
re-occur. For example, the malware might not recreate files
already created in the previous runs, resulting in a significant
number of missing events in following runs. However, our
results show that during the re-executions of the same sample
we often observe new events, thus confirming the existence
of variability over time.

Finally, our study might have missed malware that can
compromise the kernel of the operating system to evade the
AV data collection component. This is common to all studies
performed on AV telemetry, and since we do not have control
over the execution environment we cannot verify the extent
of this problem.

7 Related Work

Many prior works explore malware behavior and evolution
over time [4, 8, 28] as well as their effects on the accuracy of
malware detectors [19,38]. Our work is also inspired by prior
work that establish differences in malware behavior across
different sandbox [6, 20, 22] or on behavior that remains dor-
mant [9, 13, 25, 47]. Prudent practices have been proposed
when dealing with behavioral data, such as reporting on the
exact OS version used for the analysis, which is assumed to
affect the observed malicious behavior [43]. Some effort has
been made by Lindorfer et al. to detect the existence of one
of the factors that affect the behavior of malware: the environ-
mental bias [31]. Our work does not aim at detecting malware
that show such biases, but instead focus on measuring which
parts of the behavior are more prone to environment sensitiv-
ity and to which extent. We also differ from this paper, since
we are not trying to establish a causal relationship for our
results. Pendlebury et al. show that time is another factor af-
fecting the behavior of malware, which they observe through
the deteriorating performance of a behavioral classifier [38].
We also measure the effect of time, but look at changes in the
behavior instead of at the precision of a classifier.

Finally, while a large body of research has been dedicated
to the construction of complex detection models (such as ML
classifiers [5, 11, 24, 54]), in but our work we focus on sim-
ple token-based rules like those used by SIEM systems [44]
and other rule-based detection models [10, 51], because these
tokens are the building blocks for more elaborate signatures.

8 Conclusions

It has been known, for over a decade, that malware samples
can change their behavior on different hosts and at different
points in time, but no study has yet measured this variability
in the real world. In this paper, we report the first analysis of
malware, PUP and benign-sample behavior in the wild, using
execution traces collected from 5.4M real hosts from around
the world. We show that malware exhibits more variability
than benign samples, In particular, we find that, for at least
50% of the malware, 30% of the actions observed in an execu-
tion will not appear in other machines. While there is a lower
variability in benign actions, the parameters of these actions
are often different. In fact most of the parameters (except
for file extension) for all the 3 classes of programs have few
values in common across machines. We further show that, for
malware that can still execute 2 or more weeks from their
first appearance, the variability is lower and so is their detec-
tion rate. We then assess the prevalence of invariant parameter
tokens that are commonly used to derive behavior based signa-
tures for malware. Even though action parameters that appear
in every machine execution are uncommon in malware—50%
of the malware samples have only 8% of parameters in com-
mon across all executions—we show that we can use 3 to 7
machines to collect parameter tokens that appear in more than
90% of the executions. Our results also suggest that analysts
should re-execute the malware samples 3 weeks after first
receiving them to update their behavior models. The findings
have important implications for malware analysts and sand-
box operators, and they emphasize the unique insights that
we can gain by monitoring malware behavior at scale, on real
hosts.
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A Appendix

A.1 Implications of Variability on Malware
Clustering

Dynamic malware clustering [5, 7, 40, 41] aims to identify
malware families (or variations withing the same family) by
grouping together samples with similar behaviors. These ap-
proaches commonly rely on only one execution trace per
sample. Therefore, we investigate how the large variability
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among the traces of each sample could influence the results
reported from clustering experiments.

This can be performed by clustering execution traces, and
then verifying whether the traces of the same sample are clus-
tered together or they are scattered among multiple clusters.
For this experiment, we implemented the clustering technique
described by Bailey et al. [5], which also uses similar fea-
tures to our dataset. As suggested in the paper, we apply
their normalized compression distance to our samples, and
we utilize the same hierarchical clustering algorithm and the
same method to determine the number of clusters. We clus-
tered execution traces from 2,424 malware samples. For each
sample we randomly select 4 traces collected in the same
week but on different machines; we repeat this step 10 times.
We cluster the resulting 9,696 traces, and we obtain 88–105
clusters, of which we pick the median with 93 clusters. To
interpret these clusters as families of malware samples with
similar behaviors, it is necessary that all executions of a sam-
ple fall within its family cluster. In average we found that for
67% of malware samples all 4 executions appeared indeed in
the same cluster. However, one third of the samples exhibit
sufficient variability in behavior that their traces appear in
multiple clusters: 27% fall into 2 clusters, 5% in 3 clusters,
and 1% in 4 different clusters. This calls into question the
conclusion that the behavior clusters reflect malware families.
Because some samples exhibit too much behavior variability
to be clustered correctly into families, we must be cautious
when drawing conclusions from clustering experiments. Im-
portantly, this threat to validity comes to light when we cluster
multiple traces per sample, but remains hidden when using
only a single trace per sample.

A.2 Impact on Anomaly Detection
One way of detecting malware regardless of their variability
is to detect deviations from benign behavior. In this cate-
gory, Lanzi et al. proposed AccessMiner [29], as system-level
anomaly detector based on behavioral traces of benign pro-
grams. It is interesting to note that the authors already adopted
a technique that accounted for behavioral variability over time
and different machine profiles. Similarly to our data, their
dataset was also collected from real users but their goal was
not to study changes in the application behavior but to obtain
a complete picture about how benign files interact with the
underlying operating system.

Since in the AccessMiner paper the authors did not discuss
how many executions of benign programs are needed to train
the anomaly detector, we decided to leverage our data to find
an answer to this question such that security companies that
opt for anomaly detection rather than malware detection could
benefit from our results.

Following the AccessMiner approach, we construct the
benign profile by using 90% of the benign executions in our
dataset. Remaining 10% is used to measure the false-positive

rate. As AccessMiner found file write events to be the most
successful in identifying malware, we first build the graph
using the file write actions in our dataset. We measure the
success of an anomaly based model that relies on only one
execution per benign sample (Figure 9a), then the success
when all of the executions available to us included (9b). As
seen from the figures, a single random benign execution is
not sufficient to train an anomaly detector, because it treats
most of the executions as anomalies.

The detection rates we obtained from this experiment are
lower than the ones reported in the original paper. Concerning
that the nature of our data is very different to the benign
dataset of AccessMiner this is actually expected. Note that
our data consists of unpopular benign applications, whose
behavior might be more similar to malicious and unwanted
programs. To obtain a better behavioral coverage for benign
programs, not only popular benign files such as those used
in AccessMiner should be consider but also lower reputation,
lower prevalence benign files.
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Figure 9: Amount of samples for the ratio of machines with
anomalous file writes.
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25th percentile Median 75th percentile
Mal PUP Ben Mal PUP Ben Mal PUP Ben

Fi
le

Path 0.1 - 0.3 0.2 0.5 0.9 0.7 1.0 1.0
Name - - - - 0.3 0.5 0.8 1.0 1.0
Ext. 0.1 0.1 0.5 0.3 0.7 1.0 1.0 1.0 1.0

PE
Path - - - - 0.5 0.9 1.0 1.0 1.0
Name - - - - 0.3 1.0 0.5 1.0 1.0
Ext. - - - 0.3 1.0 1.0 1.0 1.0 1.0

R
eg

.S
et Key Path - - - - 0.3 1.0 0.75 1.0 1.0

Key Name - - - - 0.3 1.0 0.81 1.0 1.0
Value - - - - - 0.5 0.33 0.8 1.0
Dir. Create Path - - - - 0.6 0.9 0.8 1.0 1.0
Reg. Create Path - - - - - - - 0.7 1.0
Mtx Create Name - - 0.1 0.1 0.4 0.8 0.7 1.0 1.0
New Proc. CMD line - - - - - 0.5 0.1 1.0 1.0

Table 5: Parameter variability for malware, PUP and benign.
Jaccard index distribution for the top 7 most common actions in our dataset, from week 0 to week 1.

Median ratio >0 ratio >2 ratio >5
Mal PUP Ben Mal PUP Ben Mal PUP Ben Mal PUP Ben

All actions 39 19 8 99% 95% 83% 96% 91% 68% 92% 77% 57%

File Create 33 2.8 1.8 92% 74% 64% 84% 58% 45% 71% 36% 35%
Mutex Create 6 3 1.3 93% 78% 65% 80% 68% 37% 57% 33% 20%
Registry Set 7.5 3 1 92% 74% 54% 77% 60% 34% 58% 42% 22%
Directory Create 4 1 0 82% 55% 41% 56% 36% 16% 42% 12% 8%
Reg. Key Create 1.8 1 0 71% 52% 36% 39% 34% 18% 7% 16% 10%
PE Create 1.3 0.3 0 76% 50% 35% 28% 29% 18% 6% 13% 12%
Process Load 4 1 0 83% 54% 29% 60% 20% 3% 34% 6% 1%

Table 6: IQR variability across machines for malware, PUP and benign samples across different machines. In the last 3
columns we measure the ratio of samples that show a variability greater than 0, 2 and 5 events across machines. The larger the

percentage value in those columns, the more samples have IQR greater than the threshold.

Action type Mal PUP Ben
FileCreated 25 60 27
IESecurity 17 12 12
RegistryValueSet 17 10 16
DirectoryCreated 6.7 9 6.3
ProcessLoad 2.7 5 1.9
RegistryKeyCreated 7.8 4 9.9
PECreation 7.9 3.8 15
ProcessInjection 2.9 1.7 2.6
DesktopShortcut 1.4 1.6 1.5
ProcessManipulationInjection 1.2 1.4 1.2
IEHomePage 1.0 1.1 1.6
InternetProxyServer 1.2 1.0 1.4
Others (mean) ≈1.5 ≈0.3 ≈1.4

Table 7: Average number of actions per execution for executions
with at least 1.

Action type Mal PUP Ben
FileCreated 0.74 0.88 0.75
DirectoryCreated 0.47 0.73 0.35
RegistryValueSet 0.56 0.67 0.47
ProcessLoad 0.65 0.65 0.79
PECreation 0.42 0.57 0.29
RegistryKeyCreated 0.31 0.41 0.25
OpenService 0.24 0.29 0.15
DesktopShortcut 0.04 0.14 0.02
CreateService 0.01 0 0.01
KeyloggerShield 0.03 0 0.11
ProcessInjection 0.04 0 0.02
IESecurity 0 0 0
Others (mean) ≈0 0 0

Table 8: Average appearance of an action type across machines.
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