
© COPYRIGHT 2015-2025 ARYAKA NETWORKS, INC. ALL RIGHTS RESERVED.

Aryaka Threat Research Lab

Vidar Infostealer in Action
From API Hooking to Covert Data Exfiltration

Bikash Dash and Varadharajan Krishnasamy

www.aryaka.com

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 2

Table of Contents
03
03
03
04
04
06
06
06
07
08
11
12
13
15
15
16
16
16

Introduction

 Distribution: Social Engineering at Its Core

 Evolution: From Arkei Origins to a Prolific Infostealers

Overview

Technical Details

 Defense Evasion Techniques

 AMSI Bypass

 Defender Exclusion

 Payload Execution & Persistence

 CryptProtectMemory API Hijacking for Credential Theft

 Dead Drop Resolver Technique

 Collection

 Exfiltration

Conclusion

How Unified SASE as a Service Helps Disrupt Vidar Infostealer

Appendices

 Appendix A: Indicators of Compromise

 Appendix B: Mapping MITRE ATT&CK® Matrix

Aryaka Threat Research Labs analyzed a variant of Vidar, a notorious infostealer operating
under the Malware-as-a-Service (MaaS) model. First observed in late 2018, Vidar has
continually adapted to remain effective in the modern threat landscape. This strain exhibits
heightened stealth and persistence through encrypted command-and-control (C2) channels,
abuse of Living-off-the-Land Binaries (LOLBins), and covert exfiltration methods.
Primarily targeting Windows environments, Vidar conducts highly targeted data theft,
harvesting an extensive range of sensitive assets. These include operating system details;
browser credentials, cookies, history, autofill data, and saved credit cards; cryptocurrency
wallet files; two-factor authentication (2FA) app data; credentials from email, FTP applications;
authentication tokens from messaging and gaming platforms such as Telegram, Discord, and
Steam; document and backup files across the victim’s profile; and screenshots. Collected
data is packaged, compressed, and exfiltrated to the attacker’s C2 infrastructure for further
exploitation or sale on underground markets.

Introduction

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 3

Vidar’s delivery mechanisms are deeply rooted in social engineering, relying on deception
to trick users into executing its payload. These campaigns are carefully crafted to blend
seamlessly into everyday digital interactions, increasing the likelihood of infection.
The standard distribution methods include phishing emails containing malicious attachments
or links that silently download the Vidar binary, drive-by downloads from compromised or
malicious websites that exploit browser vulnerabilities or display convincing fake prompts,
and malvertising campaigns in which fraudulent advertisements—disguised as legitimate
software installers or updates—redirect victims to malicious payloads. This multi-pronged
strategy enables Vidar to reach a broad audience while frequently bypassing basic defenses
by exploiting user trust and closely mimicking legitimate content.

Distribution: Social Engineering at Its Core

Since its emergence, Vidar has significantly evolved from its roots in the Arkei malware family.
While it initially shared similarities, Vidar quickly branched into a standalone, more potent
infostealer with modular architecture and enhanced data harvesting capabilities.
Its versatility, ease of deployment, and support for plugin-like modules have made Vidar highly
attractive on underground forums. Distributed via the MaaS model, it enables even low-skilled
threat actors to launch customized campaigns with minimal effort. As a result, Vidar has seen
widespread adoption in financially motivated cybercrime.

Evolution: From Arkei Origins to a Prolific Infostealers

https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/what-is-vidar-malware/
https://www.hhs.gov/sites/default/files/vidar-malware-analyst-note-tlpclear.pdf
https://www.zscaler.com/blogs/security-research/vidar-distributed-through-backdoored-windows-11-downloads-and-abusing
https://blackpointcyber.com/threat-profile/vidar-stealer-malware-apg/
https://asec.ahnlab.com/en/44554/
https://blackpointcyber.com/threat-profile/vidar-stealer-malware-apg/
https://www.kroll.com/en/publications/cyber/threat-actors-google-ads-deploy-vidar-stealer
https://thehackernews.com/2023/03/batloader-malware-uses-google-ads-to.html?utm_source=chatgpt.com

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 4

Figure 1: Malicious PowerShell Script

Vidar Stealer is a sophisticated information-stealing malware that employs a multi-stage
infection chain, defense evasion tactics, and advanced data exfiltration methods. The attack
begins with a PowerShell script that downloads two payloads from a remote server, using
stealth techniques such as GUID-based hidden directories, randomized filenames, User-Agent
spoofing, and retry logic with exponential backoff. The script disables AMSI, adds Microsoft
Defender exclusions, and sets persistence via scheduled tasks.
The primary Vidar payload injects into trusted processes like msbuild.exe to execute malicious
activities, including credential theft and C2 communication. It hijacks the CryptProtectMemory
API to intercept sensitive browser data before encryption, forwarding stolen data via a named
pipe. Vidar retrieves its C2 addresses dynamically through a dead drop resolver mechanism,
using Telegram and Steam profiles to hide infrastructure details.
Stolen information is exfiltrated via TLS-encrypted POST requests with Base64-encoded
payloads to evade detection. Vidar’s layered approach—combining stealthy delivery,
process injection, API hooking, and encrypted communications—makes it a persistent and
hard-to-detect threat.

Overview

The Vidar infection chain begins with a PowerShell script that connects to wslm.net
to retrieve two components: hxxp://wslm.net/crypted.exe, the main Vidar binary, and
hxxp://wslm.net/code, a secondary PowerShell loader. The script incorporates retry logic with
five attempts and a five-second delay between each request. This staged loader approach
enables dynamic payload delivery, enhancing stealth and evasion against basic detection
mechanisms. Figure 1 shows the command-line parameters of the PowerShell script.

Technical Details

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 5

To retrieve its payloads stealthily, the script employs a custom Download-Reliable()
PowerShell function (Figure 2) that integrates multiple evasion techniques. The malware
blends stealth with persistence by disguising its traffic as “PowerShell” to appear legitimate
while using exponential backoff with jitter to make repeated connections less noticeable.
Errors during communication are quietly suppressed, reducing logs and avoiding attention
from defenders. To guarantee reliability, it persistently retries downloads several times even in
unstable environments. At the same time, it randomizes directories and filenames, ensuring
each instance looks different and making signature-based detection more difficult.

As part of its obfuscation, the script generates two random GUIDs via [guid]::
NewGuid().ToString('N'). The first GUID is used to create a hidden directory in
%LOCALAPPDATA%, where the primary payload (<GUID>.exe) is stored. The second GUID
names a secondary PowerShell script (<GUID>.ps1) saved in %APPDATA%. The directory is
explicitly marked as hidden using PowerShell’s Set-ItemProperty.

Figure 2: Download Reliable Function

Figure 3: Random GUID file and Directory creation

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 6

After retrieving the payload, the PowerShell script focuses on bypassing Windows’ built-in
defenses through two primary techniques: disabling AMSI to prevent script content inspection,
and adding Windows Defender exclusions to avoid real-time scanning. These measures ensure
that the malicious code can execute without interference from native security mechanisms.

Defense Evasion Techniques

The malware contains a PowerShell function named Disable-Amsi (Figure 4), designed to
circumvent the Antimalware Scan Interface (AMSI), a core Windows feature that allows
antivirus engines to scan scripts before execution. Using reflection, it accesses the internal
AmsiUtils class and sets the amsiInitFailed field to true, effectively disabling AMSI checks and
allowing malicious PowerShell code to run undetected.

AMSI Bypass

To extend persistence and evade real-time scanning, the script invokes the Add-MpPreference
cmdlet to exclude both the downloaded Vidar binary (<GUID>.exe stored in %LOCALAPPDATA%)
and the secondary PowerShell loader (<GUID>.ps1 stored in %APPDATA%) from Microsoft
Defender scans. By placing these files in excluded, hidden directories, the malware ensures
they remain invisible to active antivirus analysis.
Implementing these exclusions early in execution significantly enhances Vidar’s stealth and
survivability, allowing later stages—such as credential theft, C2 communications, and data
exfiltration—to proceed with a lower risk of detection. Figure 5 shows the Microsoft Defender
exclusion configuration.

Defender Exclusion

Figure 4: AMSI Bypass

Figure 5: Windows Defender Exclusion

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 7

The PowerShell script follows a series of stealth-oriented steps to maintain persistence and
evade detection. After downloading its components, it attempts to launch the dropped
executable with elevated privileges. If elevation is denied, it silently executes the payload in
the background using the Start-Process cmdlet.
Both the .exe and .ps1 files are marked as hidden and excluded from Microsoft Defender scans
via the Add-MpPreference cmdlet. To evade sandbox-based detection, the script introduces
a randomized delay of 10 to 30 seconds using Start-Sleep, decreasing the likelihood of being
flagged in automated analysis environments that monitor only brief execution periods.
For persistence, it creates a scheduled task configured to execute the PowerShell script at
user logon with a hidden window and a bypassed execution policy. This ensures the malware
is automatically executed after each reboot while remaining concealed from the user.

When the executable is launched, it injects its malicious code into msbuild.exe, a trusted
Windows process often abused to evade detection. The injected code is responsible for
executing all subsequent malicious activities associated with the Vidar stealer. As part of
its execution chain, the code running inside msbuild.exe launches a PowerShell command
containing a Base64-encoded payload. Once decoded, the PowerShell script reveals
functionality for in-memory process injection. It achieves this by dynamically compiling
a C# helper class in memory using the Add-Type cmdlet. The compiled C# class utilizes
Windows API calls — including OpenProcess(), VirtualAllocEx(), WriteProcessMemory(), and
CreateRemoteThread() — to inject a second-stage payload into a designated target process,
enabling stealthy execution without writing the payload to disk, as shown in Figure 7.

Payload Execution & Persistence

Figure 6: Payload Execution and Persistence

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 8

The malware in this case is hooking the CryptProtectMemory API so that it can intercept and
steal sensitive data whenever a legitimate program, like a web browser, tries to encrypt it.
Many modern browsers (like Chrome or Edge) use CryptProtectMemory to protect passwords,
cookies, and authentication tokens stored in memory.
By hijacking this function, the malware silently inserts its malicious code. So, when the browser
calls CryptProtectMemory to encrypt sensitive data, the malware's hook gets triggered first.
Instead of just letting the encryption happen, it copies the raw, unencrypted data and secretly
sends it through a named pipe to another part of the malware.
This trick allows the malware to steal passwords and session tokens from the browser without
needing to break any encryption because it grabs the data before it gets encrypted. This
approach is stealthy, efficient, and very hard to detect.

CryptProtectMemory API Hijacking for Credential Theft

Figure 7: De-obfuscated PowerShell

As observed in the PowerShell script, the injection targets a remote process with PID 9576,
which in this case corresponds to msedge.exe. After establishing access to the target
process, the script loads a secondary payload that had previously been dropped in the
%TEMP% directory under the name tmp7E4B.tmp.
This secondary payload consists of shellcode designed to load an embedded DLL directly into
memory. Once executed, the DLL patches the legitimate function, replacing it with a custom
malicious implementation. By doing so, the malware can intercept cryptographic operations,
enabling it to extract sensitive information without triggering standard security controls.

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 9

First, the malware dynamically loads the crypt32.dll library and resolves the address of
CryptProtectMemory() using LoadLibraryA() and GetProcAddress().
As shown in Figure 8, once the address of the target function is resolved, the malware
copies the first 14 bytes of the function’s prologue. These original bytes are stored
temporarily so they can be restored later if needed.

The following steps are performed by the malware to hook CryptProtectMemory():

The memory protection of the function is then changed using VirtualProtect() to allow write
access, enabling the upcoming overwrite of the function prologue.
It then overwrites the prologue bytes with a custom inline hook. This hook replaces
the beginning of the function with a small jump stub that redirects execution to
attacker-controlled code, as illustrated in Figure 9.

Figure 8: Extraction of function prologue bytes from CryptProtectMemory

Figure 9: Trampoline Hook Implementation

Figure 10: NamedPipe IPC

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 10

The redirection is implemented using a 64-bit trampoline. It starts with the opcode
0xB848 (mov rax, imm64), followed by the absolute address of the malware hook routine
sub_180001000. This address is split into individual bytes using bitwise right-shift operations
and written sequentially into memory.

The stub concludes with the instruction sequence 0xFFE09090(-1869553409), which
corresponds to jmp rax followed by NOP padding, commonly used to maintain instruction
alignment before overwriting the original function. The DLL invokes the VirtualProtect
function to set the memory protection of the target region to PAGE_EXECUTE_READWRITE,
allowing the modification.

When control is transferred to the malicious function sub_180001000, it intercepts the
sensitive data passed to CryptProtectMemory(). Since browsers often use this API to
encrypt sensitive information (like credentials or cookies), the malicious function gains
access to that data before it's encrypted.

It then creates a named pipe (\\.\pipe\test), establishes a connection, and transmits the
captured data through the pipe to a listening component, as shown in Figure 10..

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 11

After transmitting the captured data, the hook logic restores the original function prologue. It
first uses VirtualProtect() to change the memory protection of the target function, allowing it
to overwrite the previously hooked bytes. Then, it copies back the original 14-byte prologue,
effectively removing the hook, and finally resets the memory protection to its original state.

Figure 11: Restoring Trampoline to Original State

Figure 12: Active Telegram Channel Used as Dead Drop Resolver

Vidar Stealer retrieves its C2 server details using a dead drop resolver mechanism. Instead of
hardcoding the C2 addresses directly in the binary, the malware fetches them from seemingly
benign sources such as Steam and Telegram profiles, as shown in Figure 12.

Dead Drop Resolver Technique

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 12

Figure 13: Live Steam profile

Figure 14: Vidar Targeting Cryptocurrency wallets

Figure 15: Browser Local State File Access

The Vidar targets sensitive data from infected machines. It steals browser passwords, cookies,
and autofill data, as well as credentials from FTP and email applications. The malware
also extracts cryptocurrency wallet files and authentication tokens from messaging and
gaming platforms. Additionally, it searches for documents and sensitive files on the system
and captures screenshots. Figure 14 below shows that the malicious process msbuild.exe
is attempting to enumerate directories related to cryptocurrency wallets such as Bitcoin,
Electrum, Blockstream, etc.

It is also observed that this malicious process is attempting to access the “Local State” files of
various Chromium-based browsers such as Brave, CocCoc, Vivaldi, Cent Browser, Microsoft
Edge, and Chrome, which store sensitive metadata, including encryption keys.

Collection

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 13

Figure 16: Harvesting Browser Sensitive Information

Figure 17: Exfiltration over C2

Figure 16 shows that Vidar Stealer harvests sensitive data from Chromium-based browsers
such as Chrome, Edge, Opera, and Brave. It targets stored artifacts like cookies, credentials,
browsing history, and encryption keys.

After collecting data from the victim’s machine, Vidar Stealer exfiltrates the stolen
information to its C&C server over a TLS-encrypted connection to evade detection. The
network communication typically uses multipart/form-data POST requests, embedding
Base64-encoded filenames, randomized boundary strings, along with the file data as shown
in Figure 17.

Exfiltration

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 14

The figure below shows the Base64-decoded contents of the
MicrosoftEdge_Default_passwords.db file, de-obfuscated using CyberChef. This file was
exfiltrated by the Vidar stealer and contains stored browser credentials.

Figure 18: Decoded Microsoft Edge Database file

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 15

The Vidar Stealer campaign demonstrates a highly evolved and modular approach to
credential theft and data exfiltration. Its use of staged payload delivery, AMSI bypass, Defender
exclusions, process injection, API hooking, and encrypted exfiltration channels highlights its
ability to evade both signature-based and behavioral defenses. By dynamically retrieving C2
infrastructure and targeting a broad range of sensitive artifacts—from browser credentials to
cryptocurrency wallets—Vidar poses a significant risk to both individual users and enterprise
environments. Effective mitigation requires a layered defense strategy, including strict
PowerShell execution policies, enhanced process monitoring, network anomaly detection, and
timely threat intelligence updates.

Conclusion

In a Unified SASE deployment, multiple layers work together to disrupt Vidar’s operations from
the outset. DNS filtering blocks access to known malicious domains before the malware can
download payloads or resolve its C2 locations. The Secure Web Gateway (SWG) inspects
all outbound HTTP(S) traffic, identifying and stopping suspicious POST requests to untrusted
endpoints. At the same time, the next-generation firewall (NGFW) applies application-aware
policies to prevent unauthorized communications. IDS/IPS capabilities detect anomalies in
network flows and flag unusual traffic originating from processes, helping security teams
quickly identify compromised hosts. Endpoint anti-malware integrates into the SASE control
plane to quarantine payloads, block PowerShell AMSI bypass attempts, and prevent the
execution of hidden or excluded files. User posture checks enforce Zero Trust access, ensuring
that only healthy and compliant devices can connect to sensitive resources. Together, these
defenses create a coordinated, always-on barrier that intercepts Vidar at delivery, disrupts
its command-and-control, and blocks data exfiltration—without relying solely on endpoint
detection.
Proofpoint has also contributed signatures addressing this threat, strengthening protection
against Vidar.

2064008 - ET MALWARE Observed DNS Query to Vidar Stealer Domain

2064009 - ET MALWARE Observed Vidar Stealer Domain

2064010 - ET MALWARE Vidar Stealer User-Agent Observed

How Unified SASE as a Service Helps
Disrupt Vidar Infostealer

https://community.emergingthreats.net/t/ruleset-update-summary-2025-08-14-v10993/2978

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 16

Appendices
Appendix A: Indicators of Compromise

Appendix B: Mapping MITRE ATT&CK® Matrix

2e125cbd809e8460adb65185a45b526f65172a8536e5bb4e42fddea29e9ceeed

5b77a0a4c8433f33f01c00a21f0a6f12d232c913b73e4070eb2f77e034a4a488

https://t.me/dz25gz

https://steamcommunity.com/profiles/76561199880530249

tl.dr.softlinko.com

vidar Binary

tmpE55F.tmp

Telegram Channel

Steam profile

C&C Server

Malicious
PowerShell script

Tactic Technique Technique Name

Initial Access

Initial Access

Execution

Persistence

Defense Evasion

Defense Evasion

Credential Access

Discovery

Collection

Exfiltration

Command and Control

Command and Control

T1566.001

T1189

T1059.001

T1547.001

T1027

T1218

T1555.003

T1082

T1056

T1041

T1573.001

T1071.001

Spear phishing Attachment

Drive-by Compromise

Command and Scripting Interpreter: PowerShell

Registry Run Keys / Startup Folder

Obfuscated Files or Information

Signed Binary Proxy Execution (e.g., msbuild.exe)

Credentials from Web Browsers

System Information Discovery

Input Capture

Exfiltration Over C2 Channel

Encrypted Channel

Application Layer Protocol: Web Protocols

Sha256 Description

63cd5cc0fc20c1d19f7639e4016b77da438dcd4d1b2e94145a496fda70d2ed1c

© COPYRIGHT 2015-2025 ARYAKA NETWORKS, INC. ALL RIGHTS RESERVED.

LEARN MORE | info@aryaka.com | +1.888.692.7925

About Aryaka Networks
Aryaka is the leader in delivering Unified SASE as a Service, a fully integrated solution
combining networking, security, and observability. Built for the demands of Generative AI
as well as today’s multi-cloud hybrid world, Aryaka enables enterprises to transform their
secure networking to deliver uncompromised performance, agility, simplicity, and security.
Aryaka’s flexible delivery options empower businesses to choose their preferred approach
for implementation and management. Hundreds of global enterprises, including several in
the Fortune 100, depend on Aryaka for their secure networking solutions. For more on
Aryaka, please visit www.aryaka.com

Schedule a Free Network
Consultation with an Aryaka Expert

Experience Aryaka's
Unified SASE as a Service

See How It Works Live View Interactive Tour

www,aryaka.com
www,aryaka.com
www,aryaka.com
https://www.youtube.com/channel/UCCS7qeW2Y_TY2uQLs9yhe9g
https://www.linkedin.com/company/aryaka-networks
https://www.aryaka.com/book-a-demo/?utm_source=website&utm_medium=report&utm_campaign=vidar+threat+research+report
https://www.aryaka.com/take-the-interactive-tour?utm_source=website&utm_medium=report&utm_campaign=vidar+threat+research+report
www.aryaka.com/start-now

