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Abstract—In recent years, we have been experiencing fast pro-

liferation of different types of ransomware targeting home

users, companies and even critical telecommunications in-

frastructure elements. Modern day ransomware relies on

sophisticated infection, persistence and recovery prevention

mechanisms. Some recent examples that received significant

attention include WannaCry, Petya and BadRabbit. To de-

sign and develop appropriate defense mechanisms, it is im-

portant to understand the characteristics and the behavior of

different types of ransomware. Dynamic analysis techniques

are typically used to achieve that purpose, where the mali-

cious binaries are executed in a controlled environment and

are then observed. In this work, the dynamic analysis re-

sults focusing on the infamous WannaCry ransomware are

presented. In particular, WannaCry is examined, during its

execution in a purpose-built virtual lab environment, in order

to analyze its infection, persistence, recovery prevention and

propagation mechanisms. The results obtained may be used

for developing appropriate detection and defense solutions

for WannaCry and other ransomware families that exhibit

similar behaviors.
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1. Introduction

Ransomware threat is currently considered to be the main

moneymaking scheme for cyber criminals and the key threat

to Internet users [1], [2]. In recent years, the appearance of

new types of ransomware has been observed, combining the

use of worm-like spreading mechanisms and advanced re-

covery prevention schemes. Recent examples include Wan-

naCry [3], [4] and Petya [5], [6], which exploit the weak-

nesses of Microsoft Windows, as well as BadRabbit [7],

which spreads via insecure compromised websites.

From the defense perspective, the design of new counter-

measures is considered, in addition to traditional security

approaches, an important and trending task in this field.

Such a design, however, requires a comprehensive analysis

of ransomware functionality and behavior. This typically

involves a wide range of malware analysis tools and tech-

niques. Such techniques may be broadly classified as static

and dynamic. Static analysis is performed without execut-

ing the malicious binary, while dynamic analysis involves

executing the binary in an isolated environment.

In one of our previous works [8], we performed an initial

static and dynamic analysis of WannaCry to identify its re-

sources and functions, as well as its use of dynamic-link

libraries (DLLs) and communication protocols. In this

work, we have performed a comprehensive dynamic anal-

ysis, focusing on WannaCry’s infection, persistence, re-

covery prevention and propagation mechanisms. The tech-

niques presented are also applicable in the cases of other

ransomware families whose characteristics are similar to

that of WannaCry, such as worm-spreading mechanisms

and public-key based encryption. In particular, the research

presented examines WannaCry’s behavior during its execu-

tion in a safe, purpose-built virtual lab environment at the

University of York. The results obtained may form a basis

for designing and developing effective ransomware defense

solutions.

The rest of the paper is organized as follows. In Section 2,

we present the relevant background information on ran-

somware in general and on WannaCry in particular. In

Section 3, the main findings from the dynamic analysis

of WannaCry we have performed, including its encryption

process, recovery prevention and propagation mechanisms,

are presented. Finally, Section 4 draws conclusions and

discusses potential future directions.

2. Background

2.1. Ransomware

Ransomware is a type of malicious software (malware) that

prevents users from accessing or limits their access to the

system or files, either by locking the screen or by encrypting

files, until a ransom is paid [9]. In most cases, ransomware

leaves the user with very few options, such as only allowing

the victim to communicate with the attacker and pay the

ransom.
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The most common types of ransomware use some form of

encryption, including both symmetric and public-key based

encryption schemes. Ransomware that relies on public-

key encryption is particularly difficult to mitigate, since

the encryption keys are stored in a remote command and

control (C&C) server. There is usually a time limit for

ransom to be paid, the users are provided with a special

website to purchase cryptocurrency (e.g. Bitcoins) and step-

by-step instructions on how to pay the ransom.

The lifecycle of modern day ransomware typically consists

of the following steps [10]: distribution, infection, C&C

communications, file search, file encryption and ransom

demand.

2.2. WannaCry

WannaCry ransomware (also known as Wana Decrypt0r,

WCry, WannaCry, WannaCrypt, and WanaCrypt0r) was ob-

served during a massive attack across multiple countries on

12 May 2017 [11]. According to multiple reports from se-

curity vendors, the total of 300,000 systems in over 150

countries had been severely damaged. The attack affected

a wide range of sectors, including healthcare, government,

telecommunications and gas/oil production.

The difficulty in protecting against WannaCry stems from

its ability to spread to other systems by using a worm com-

ponent. This feature makes the attacks more effective and

requires defense mechanisms that can react quickly and in

real time. Furthermore, WannaCry has an encryption com-

ponent that is based on public-key cryptography.

During the infection phase, WannaCry uses the Eternal-

Blue and DoublePulsar exploits that were allegedly leaked

in April 2017 by a group called The Shadow Brokers. Eter-

nalBlue exploits the server message block (SMB) vulnera-

bility that was patched by Microsoft on March 14, 2017 and

has been described in the security bulletin MS17-010 [12].

This vulnerability allows the adversaries to execute a re-

mote code on the infected machines by sending specially

crafted messages to an SMB v1 server, connecting to TCP

ports 139 and 445 of unpatched Windows systems. In par-

ticular, this vulnerability affects all unpatched Windows ver-

sions starting from Windows XP to Windows 8.1, except

for Windows 10.

DoublePulsar is a persistent backdoor that may be used to

access and execute code on previously compromised sys-

tems, thus allowing the attackers to install additional mal-

ware on the system. During the distribution process, Wan-

naCry’s worm component uses EternalBlue for initial in-

fection through the SMB vulnerability, by actively probing

appropriate TCP ports and, if successful, tries to implant

the DoublePulsar backdoor on the infected systems.

3. WannaCry Analysis

In this section, we present our findings based on the dy-

namic analysis of WannaCry we have performed. Samples

of WannaCry were obtained from VirusShare [13]. Two

executable files were analyzed: the worm component and

the encryption component (Table 1).

Table 1

WannaCry components

Worm component

MD5 db349b97c37d22f5ea1d1841e3c89eb4

SHA1
e889544aff85ffaf8b0d0da705105dee7c

97fe26

SHA256
24d004a104d4d54034dbcffc2a4b19a11

f39008a575aa614ea04703480b1022c

File type
PE32 executable (GUI) Intel 80386,

for MS Windows

Encryption component

MD5 84c82835a5d21bbcf75a61706d8ab549

SHA1
5ff465afaabcbf0150d1a3ab2c2e74f3a4

426467

SHA256
ed01ebfbc9eb5bbea545af4d01bf5f1071

661840480439c6e5babe8e080e41aa

File type
PE32 executable (GUI) Intel 80386,
for MS Windows

3.1. Testbed

In order to analyze WannaCry, a virtual testbed shown in

Fig. 1 was built. The characteristics of the host machine

are as follows: Intel Core i7-4700MQ 2.40 GHz and 16 GB

RAM. The host machine acts as a virtual switch and is run-

ning REMnux [14], which is a free Linux toolkit for reverse

engineering and malware analysis. Two virtual machines

(VMs), running Windows 7 SP1, were used. The first VM

was infected with WannaCry, whereas the other VM was

clean. A custom network VMnet 5 – 192.168.180.0/24 was

created with the Virtual Network Editor option in VMWare

hypervisor. This testbed allows observing domain name

system (DNS) queries made by WannaCry during the in-

fection and replication process across internal and external

Fig. 1. Testbed for dynamic WannaCry analysis.
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networks via port 445 of the SMB v1 protocol. The REM-

nux machine acts as a DNS and HTTP server, and is able

to intercept all network communications using Wireshark.

DNS and HTTP services in REMnux were enabled using

FakeDNS and HTTP Daemon utilities, respectively.

The system level actions performed by WannaCry were ob-

served on the infected Windows 7 SP1 machine with the

192.168.180.130 IP address. In order to observe and report

the actions that WannaCry took while running on the sys-

tem, the SysAnalyzer tool [15] was used. The main benefit

of SysAnalyzer is that it is capable of taking system snap-

shots before and after malware execution, thus making it

possible to inspect system attributes, such as running pro-

cesses, open ports, DLLs loaded, registry key changes, run

time file modifications, scheduled tasks, mutual exclusion

objects (mutexes) and network connections. SysAnalyzer is

also capable of taking memory dumps and scanning them

for specific regular expressions. Before executing the Wan-

naCry sample on the infected machine, the SysAnalyzer’s

configuration wizard was set to apply a 120 s delay be-

tween system snapshots, thus allowing to inspect all system

attribute changes.

3.2. Libraries and Functions

Analysis performed with the Pestudio tool [16] revealed

that the worm and the encryption components of WannaCry

Table 2

DLLs of the worm component

Library Imports Description

ws2 32.dll 13
Windows Socket 2.0 32-bit

DLL

iphlpapi.dll 2 IP Helper API

wininet.dll 3 Internet Extensions for Win32

kernel32.dll 32
Windows NT Base API

Client DLL

advapi32.dll 11
Advanced Windows 32 Base

API

msvcp60.dll 2
Windows NT C++ Runtime

Library DLL

msvcrt.dll 28 Windows NT CRT DLL

Table 3

DLLs of the encryption component

Library Imports Description

kernel32.dll 54
Windows NT Base API

Client DLL

advapi32.dll 10
Advanced Windows 32 Base

API

user32.dll 1
Multi-User Windows User

API Client DLL

msvcrt.dll 49 Windows NT CRT DLL

contain DLLs shown in Tables 2 and 3, respectively. During

its execution, the worm component invokes iphlpapi.dll to

retrieve network configuration settings for the infected host.

Kernel32.dll and msvcrt.dll are the two libraries most fre-

quently invoked by the encryption component. This may

indicate that the main encryption functionality was im-

plemented by these two malicious libraries. To confirm

this, the imported functions of the libraries needed to be

examined.

Table 4

Functions of the encryption component

Function Location

GetCurrentThread 0xa53a

GetStartupInfoA 0xa97a

StartServiceCtrDispatcherA 0xa6f6

RegisterServiceCtrDispatcherA 0xa6d8

CreateServiceA 0xa688

StartServiceA 0xa662

CryptGenRandom 0xa650

CryptAcquireContextA 0xa638

OpenServiceA 0xa714

GetAdaptersInfo 0xa792

InternetOpenUrlA 0xa7c8

Table 5

Functions of the encryption component

Function Location

OpenMutexA 0xda84

GetComputerNameW 0xd8b2

CreateServiceA 0xdc2a

OpenServiceA 0xdc62

StartServiceA 0xdc52

CryptReleaseContext 0xdc14

RegCreateKeyW 0xdc04

fopen 0xdcd4

fread 0xdccc

fwrite 0xdcc2

fclose 0xdcb8

CreateFileA 0xd922

ReadFile 0xd964

The imported functions of the samples were observed by

Pestudio. The most suspicious functions identified among

them are shown in Tables 4 and 5. One may observe that

in general, WannaCry uses Microsoft’s crypto, file manage-

ment and C runtime file APIs. The crypto API library is

used to generate and manage random symmetric and asym-

metric cryptographic keys.
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Fig. 2. FakeDNS capture of the malicious DNS request.

Fig. 3. Wireshark capture of the malicious DNS request.

3.3. Initial Interactions

The dynamic analysis conducted has revealed that, upon

startup, the worm component tries to connect to the fol-

lowing domain, using the InternetOpenUrl function:

www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

The aforementioned domain is a kill-switch domain. This

means that if the domain is active, the worm component

stops running. On the other hand, if the worm component

cannot establish a connection with this domain (e.g. if the

domain is not active or if there is no connectivity), it con-

tinues to run and registers itself as a “Microsoft Security

Center (2.0) Service” mssecsvs2.0 process on the infected

machine. Hence, this kill-switch domain may be used as

part of a detection technique when developing a defense

system.

The FakeDNS utility at REMnux captures the malicious

DNS request on port 80 (Fig. 2), while Wireshark shows

(Fig. 3) the DNS packet query field from the infected ma-

chine (IP 192.168.180.130) to the DNS server on REMnux

(IP 192.168.180.128).

3.4. Persistence Mechanisms

After connection failure with the kill-switch domain, the

worm component attempts to create a mssecsvs2.0 pro-

cess with the DisplayName of “Microsoft Security Center

(2.0) Service”. This can be observed in the Process Hacker

tool with 4016 PID, indicating that the service has been

launched (Fig. 4). In addition to this, the worm compo-

nent of WannaCry extracts the hardcoded R resource bi-

nary and then copies it to “C:\Windows\taskche.exe” di-

rectory path. The R resource represents the binary of the

WannaCry encryption component. After that, the worm

runs the executable with the following parameters in the

command line: “C:\Windows\taskche.exe/i”. Next, the

worm tries to move the “C:\Windows\taskche.exe” file to

“C:\Windows\qeriuwjhrf”, to replace the original file if it

exists. This is done to ensure multiple infections and avoid

any issues with creating the tasksche.exe process.

Fig. 4. Microsoft Security Center (2.0) Service.

Finally, WannaCry creates an entry in the Windows reg-

istry in order to ensure that it runs every time the

computer is restarted. The new entry contains a string

(e.g. “midtxzggq900”), which is a unique identifier ran-

domly generated by using the computer name. Once the

tasksche.exe component runs, it copies itself to a folder

with a randomly generated name in the Common Appdata

directory of the infected machine. Then, it attempts to es-

tablish memory persistence by adding itself to the AutoRun

feature.
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Fig. 5. WannaCry dropped files to the working directory.

Fig. 6. WannaCry extortion message.
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In summary, the dynamic analysis has revealed that, to

achieve persistence on the infected machine, WannaCry per-

forms the following actions:

• creates an entry in the Windows registry to ensure

that it executes every time the machine is restarted,

• attempts to achieve memory persistence by adding

itself to the AutoRun feature of Windows,

• uses Windows icacls command to grant itself a full

access to all files on the machine,

• deletes all backup (shadow) copies and tries to pre-

vent being booted in safe mode by executing several

commands in the Windows command line,

• deletes all backup folders,

• by using the Windows command line, creates a

VBScript program which generates a single shortcut

of the @WanaDecryptor@.exe decrypter file,

• tries to kill SQL and MS Exchange database pro-

cesses by executing several commands in the Win-

dows command line.

3.5. Configuration Data Load

After the persistence phase, WannaCry loads the XIA re-

source, which corresponds to a password protected ZIP file.

It decompresses the files and drops them to the working di-

rectory of the running process (Fig. 5), as observed in the

DirWatch module of SysAnalyzer.

As one can see, WannaCry loads configuration data from

the c.wnry file into memory. WannaCry randomly chooses

one of the three available Bitcoin addresses and then writes

this address back to the configuration data. This is done

in order to display the payment address in the extortion

message (Fig. 6). After that, WannaCry sets the hidden

attribute (Fig. 7) for the working directory with the help

of the CreateProcess function. Next, with the help of the

Windows icacls command, WannaCry grants full access to

all files on the target system (Fig. 8).

Fig. 7. WannaCry sets the hidden attribute for the working

directory.

Fig. 8. WannaCry grants full access on the target system.

The next step is to import one of the hardcoded public RSA

keys as was identified at offset 0xec00 of the tasksche.exe

process (Fig. 9). WannaCry then loads and executes, in

memory, the contents of the t.wnry file (Fig. 10) which

contains the default encrypted AES key required for de-

crypting the DLL responsible for the file encryption rou-

tine. The first 8 bytes of the file are checked to match the

WANACRY! string. Then, the imported public RSA key

hardcoded within binary is used to decrypt the AES key

stored at the beginning of the t.wnry file. The AES key

obtained is then used to decrypt and load the encryption

DLL, which can be observed with the help of OllyDbg de-

bugging tool [17] during WannaCry execution, as shown in

Fig. 11. This DLL is responsible for file encryption on the

infected machine and is summarized in Table 6.

Table 6

Encryption DLL

MD5 f351e1fcca0c4ea05fc44d15a17f8b36

SHA1
7d36a6aa8cb6b504ee9213c200c831e

b8d4ef26b

Size 65536 bytes

File type Dynamic-Link-Library

Internal name kbdlv.dll

File description Latvia keyboard layout

Timestamp Mon, Jul 13 18:12:55 2009

3.6. Encryption Process

The encryption component of WannaCry is invoked with

the TaskStart system thread. During its execution, the en-

cryption component checks if one of the following mutexes

exists:

GlobalnMsWinZonesCacheCounterMutexA,

GlobalnMsWinZonesCacheCounterMutexW,

MsWinZonesCacheCounterMutexA.

If the mutex “MsWinZonesCacheCounterMutexA” is

present, then the encryption component automatically stops

without taking any further action. If the mutex is not

present on the system, the encryption process starts. In

particular, TaskStart creates a new mutex named “MsWin-

ZonesCacheCounterMutexA” and reads the contents of the

c.wnry file from the current directory. After that, Wan-

naCry creates three configuration files shown in Table 7.

Table 7

WannaCry configuration files

Filename Description

00000000.res TOR/C2 info

00000000.pky Public RSA key

00000000.eky Encrypted private RSA key

After the configuration files have been created, the encryp-

tion component is ready to start encrypting files on the sys-

tem. To accomplish this, it spawns several threads. First,
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Fig. 9. Imported RSA private key.

Fig. 10. Loaded and executed t.wnry file.

Fig. 11. Decrypted AES key in a memory dump.

WannaCry attempts to load and check the existence of two

keys in the 00000000.pky and 00000000.dky files. The

00000000.dky file presents a decryption RSA key which

is received upon the payment has been verified. When the

victim clicks the “Check Payment” button, WannaCry starts

checking for the presence of the 00000000.dky file on the

system. If the two aforementioned files do not exist, Wan-

naCry generates a new unique RSA 2048-bit asymmetric

key pair, which can be seen in the memory dump made

with with SysAnalyzer tool at 0x2B3795 offset (Fig. 12).

Fig. 12. Generation of an RSA key pair.

Once the key pair has been generated, WannaCry exports

the victim’s public RSA key to a 00000000.pky file using

Microsoft’s CryptExportKey function. Next, WannaCry ex-

ports the victim’s private RSA key and encrypts it with

another hard-coded RSA public key. The encrypted pri-

vate key is stored as a 00000000.eky file. After the key

has been safely stored, WannaCry calls upon the CryptDe-

stroyKey function to destroy the private key in memory, to

limit any key recovery options.

Next, WannaCry starts enumerating, every 3 seconds, in-

formation about all logical drives attached to the system.

If a new attached drive is not a CD ROM drive, then it be-

gins the encryption process on the new drive. At this stage,

WannaCry also starts iterating through all existing directo-

ries and searching for predefined file extensions of interest.

To encrypt each file, it generates a 16-byte symmetric AES

key using the CryptGenRandom function. Then, it encrypts

every generated AES key with the public RSA key and

stores it inside the file header starting with the WANACRY!

string value. Encrypted files are renamed and appended

with the .WNCRY file extension.

Fig. 13. Password for a ZIP archive in the encryption component.

The encryption component contains a password-protected

ZIP archive. We managed to obtain the password, “WN-

cry@2ol7”, by disassembling the encrypter with the IDA

Pro tool [18] (see Fig. 13). The contents of the ZIP archive

are summarized in Table 8 and described below:

• msg is a folder that contains a list of rich text format

(RTF) files with the wnry extension. These files are

the readme instructions used to show the extortion

message to the victim in different languages, based

on the information obtained from the system by ma-

licious WannaCry functions;

• b.wnry is an image file used for displaying instruc-

tions for the decryption of user files. It starts with 42

4D strings, which indicates that this file is a bitmap

image;

• c.wnry contains a list of Tor addresses with the .onion

extension and a link to a zipped installation file of

the Tor browser from Tor Project [19];
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Table 8

Files in the password protected ZIP archive

Name Size [bytes] Modified

msg 1,329,657 2017-05-11

b.wnry 1,440,054 2017-05-11

c.wnry 780 2017-05-11

r.wnry 864 2017-05-10

s.wnry 3,038,286 2017-05-09

t.wnry 65,816 2017-05-11

taskdl.exe 20,480 2017-05-11

taskse.exe 20,480 2017-05-11

u.wnry 245,760 2017-05-11

• r.wnry is a text file in English with additional de-

cryption instructions to be used by the decryption

component (the u.wnry file mentioned below);

• s.wnry file is a ZIP archive (HEX signature 50 4B 03

04) which contains the Tor software executable. This

executable has been obtained with the assistance of

the WinHex tool [20] by saving raw binary data with

the .zip extension;

• t.wnry is an encrypted file with the WANACRY!

encryption format. The file header starts with the

WANACRY! string;

• taskdl.exe is a supporting tool for the deletion of

files with the .WNCRY extension. By observing the

properties of the file, the following masquerade de-

scription can be found: “SQL Client Configuration

Utility”;

• taskse.exe is a supporting tool for malware execu-

tion on remote desktop protocol (RDP) sessions. The

following file description was identified: “waitfor –

wait/send a signal over a network”;

• u.wnry is an executable file (HEX signature 4D 5A)

with the name of “@WanaDecryptor@.exe”, which

represents the decryption component of WannaCry.

At the same time, another thread calls the taskse.exe process

every 30 s, which tries to enumerate active RDP sessions on

connected remote machines and to run the @WanaDecryp-

tor@.exe binary file. This file is extracted from the u.wnry

file and represents the decryption component of WannaCry.

The persistence of RDP session injections is ensured by

adding the value in the AutoRun registry key.

3.7. Recovery Prevention

After finishing the encryption process, WannaCry tries to

prevent various common data recovery methods by exe-

cuting several commands on the system. To prevent data

recovery, WannaCry executes the following commands:

• vssadmin delete shadows/all/quiet. Deletes all the

shadow volumes on the system without alerting the

user. By default, these volumes contain backup data

in the event of a system fault;

• wmic shadowcopy delete. Ensures deletion of any

copies relevant to shadow volumes;

• bcdedit/set default bootstatuspolicy ignoreallfailures.

Ensures that the machine is booted, even if errors are

found;

• bcdedit/set default recoveryenabled no. Disables the

Windows recovery feature, thus preventing the vic-

tims from the possibility to reverting their system to

a previous build;

• wbadmin delete catalog −q. Ensures that victim can

no longer use any backup files created by Windows

Server.

3.8. Propagation

The worm component of WannaCry carries the main prop-

agation and exploit functionality, which utilizes the Eter-

nalBlue exploit and the DoublePulsar backdoor to leverage

the MS17-010 SMB vulnerability [12]. After performing

the initial interactions and checking connectivity with the

kill-switch domain, the worm functionality is established by

initiating the mssecsvs2.0 service, which WannaCry installs

after being executed. This service tries to spread WannaCry

payload through the SMB vulnerability on any vulnerable

systems on both internal and external networks.

In order to perform this, WannaCry creates and spawns

two separate threads that simultaneously replicate worm

payload in all detected networks. In the internal network,

before starting the propagation process, the component ob-

tains the IP addresses of local network interfaces by in-

voking the GetAdaptersInfo function, and determines the

subnets existing in the network.

After that, the worm component tries to connect to all

possible IP addresses in any available local network on

port 445, which is the default port for SMB over IP

service. If successful, the worm attempts to exploit the

service for the MS17-010 vulnerability. In our testbed,

connection attempts were observed with Wireshark on

a REMnux machine, when the infected machine (IP

192.168.180.130) sent SMB probe packets to the clean ma-

chine (IP 192.168.180.134), as shown in Fig. 14.

During the SMB probing, one of the unique features of

the generated traffic is that it contains two hardcoded IP

addresses: 192.168.56.20 and 172.16.99.5. They can be

observed by extracting strings from the binary. In particu-

lar, WannaCry sends three NetBIOS session setup packets,

where two of them contain the aforementioned hardcoded

IP addresses.

At the same time, the worm component attempts to spread

across the external networks by generating various IP ad-

dresses and by trying to connect to TCP port 445. This

can be observed with Wireshark on REMnux, as shown
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Fig. 14. WannaCry internal network traffic attempting the SMB exploit.

Fig. 15. WannaCry external network traffic attempting the SMB exploit.

in Fig. 15. As it can be seen, the worm attempts to probe

external Internet IP addresses for the MS17-010 vulnera-

bility. This explains the reason for the widespread infec-

Table 9

External IP addresses generated

by WannaCry

IP address : port

109.140.223.210 : 445

206.242.244.156 : 445

52.213.90.240 : 445

202.76.26.154 : 445

205.215.5.24 : 445

80.133.73.130 : 445

198.73.58.205 : 445

40.188.28.244 : 445

184.55.110.103 : 445

tion seen during the massive outbreak on 12 May 2017.

The full list of WannaCry generated IP addresses obtained

during the analysis is presented in Table 9.

3.9. C&C Communication

During its execution, the software also tries to contact

the C&C servers. To this end, WannaCry unpacked

and dropped files from the s.wnry file, containing the

Tor executable, into the installation directory as shown

Fig. 16. Tor executable dropped into the installation directory.

in Fig. 16. Before unpacking, it starts listening on the

localhost address 127.0.0.1:9050. This address, with the

specified 9050 port, is typically used for configuring the
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Tor browser application. If the contents of the s.wnry

file are corrupted, then WannaCry tries to download

the Tor executable from a hardcoded URL. After the

successful extraction of the Tor executable, it copies

“TaskData\Tor\tor.exe” to “TaskData\Tor\taskhsvc.exe”

and executes it. Next, WannaCry parses the contents of

the c.wnry file, which specifies the configuration data,

including the following .onion addresses to connect and

the zipped Tor browser installation file:

gx7ekbenv2riucmf.onion

57g7spgrzlojinas.onion

xxlvbrloxvriy2c5.onion

76jdd2ir2embyv47.onion

cwwnhwhlz52maqm7.onion

https://dist.torporject.org/torbrowser/6.5.1/tor

-win32-0.2.9.10.zip

After that, WannaCry sends the first eight bytes of the

00000000.res file content to the C&C server. These bytes

specify the host and user name of the infected machine.

The 00000000.res file, which is dropped during encryption

process, accumulates in total 88 bytes of configuration data,

including internal flags, counters, and timestamps.

During its communication with Tor addresses, WannaCry

establishes a secure HTTPS channel to port 443, and uses

common Tor ports, 9001 and 9050, for network traffic and

directory information.

4. Conclusions and Future Work

We have performed a comprehensive dynamic analysis of

WannaCry ransomware in a purpose-built virtual testbed.

We analyzed the WannaCry version which was observed

during the massive attacks on 12 May 2017. The analysis

has revealed that the given ransomware is composed of two

distinctive components, which enable the worm-like self-

propagating mechanism and combined encryption process.

Both worm and encryption components of WannaCry have

been examined.

The focus of this study was on WannaCry’s initial inter-

actions and the infection process, its persistence mech-

anism, encryption process, recovery prevention as well

as its propagation mechanisms and communication with

C&C servers. The analysis has revealed important char-

acteristics and behaviors of WannaCry during its execu-

tion. In particular, we identified Tor addresses used for

C&C, observed TCP and DNS connections, SMB probes,

as well as actions related to WannaCry persistence and

obfuscation.

The worm component of WannaCry weaponized by the

functionality enabling it to exploit and propagate via

Microsoft’s MS17-010 on unpatched systems by sending

SMB probing packets on port 445. In addition to the

modular nature of WannaCry, it was also observed that

it has embedded RSA keys used to decrypt the required

malicious DLL representing the encryption component. It

was identified that the worm component scans both in-

ternal and external networks for MS17-010 vulnerability,

by generating a list of local and global IP addresses. The

worm tries to probe the hosts from the generated list by

sending packets to port 445. Before its execution, Wan-

naCry also performs an initial check with the kill-switch

domain.

At the same time, the analysis has identified two hardcoded

IP addresses (192.168.56.20 and 172.16.99.5), which are

sent during the SMB probing. Depending on the condition

of the s.wnry file dropped during execution, WannaCry can

also communicate with embedded .onion addresses via a se-

cure channel on port 443 and via common Tor ports 900

and 9050 to download the Tor browser installation software

from a specified URL.

The findings of this work could be used for designing effec-

tive mitigation mechanisms for WannaCry and other ran-

somware families that exhibit similar behavior. This is left

as future work. In particular, we plan to investigate the

use of software-defining networking (SDN) [21], [22] for

ransomware detection and mitigation. SDN is an emerg-

ing paradigm of programmable networks that decouples the

control and data planes. SDN controllers maintain a view

of the entire network and implement policy decisions. On

the other hand, each device at the data plane maintains

one or more flow tables, where the packet handling rules

are stored. This changes the way that networks are de-

signed and managed, and enables new SDN-based security

solutions [23]–[25], such as firewalls and intrusion detec-

tion systems for various types of malware, including ran-

somware mitigation [26], [27].
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