
1/11

June 18, 2020

Maze ransomware continues to be a threat to the
consumers

blogs.quickheal.com/maze-ransomware-continues-threat-consumers/

Maze is a recently highlighted ransomware among the ever-growing list of ransomware
families. The ransomware is active from the past one year, although it came into limelight
due to its new approach of publishing sensitive data of infected customers publicly.

The malware uses different techniques to gain entry like the use of exploit kits or email
impersonation. These phishing emails are having a Word document attachment that
contains macros to run the malware in the system.

Maze uses CHA-CHA algorithm for encryption and its key is encrypted using the RSA
algorithm. Maze can run with or without mutex —it uses some Russian IPs for the
webserver to sends information from the victim system(s). It uses RSA encryption request
for CnC communication and it will not encrypt the system for the specific region by checking
keyboard type.

Stage – I

VBA MACRO

https://blogs.quickheal.com/maze-ransomware-continues-threat-consumers/

2/11

The attached document file has a form containing an input box in which the number array of
encrypted URL and path is present. The document file contains an ActiveX object. When it
is executed, URL and path are decrypted post which it calls URLDownloadToFileA() that
downloads an executable to the specified location.

Fig 1. URLDownloadToFileA() Call with their parameters

The number array is read from text box then converted into characters and concatenated to
form a URL and path where the file is downloaded. Sometimes it also uses PowerShell to
download the file. In most of the cases, file is downloaded at “C:\Windows\temp” location.

Fig 2. Characters stored in Number Array

Stage – II

3/11

A. CRYPTER

The first stage of Maze ransomware is custom cryptor. This cryptor is a packed one with
few imports. It loads libraries by calling LoadLibrary() and GetProcAddress() from
kernel32.dll. In this cryptor, function names are stored with their adler32 checksum.

The cryptor is for anti-debugging, it passes junk strings to the function
OutputDebugStringW().

Fig 3. Call to OutputDebugStringW()

In the below code, it checks whether the file is present or not, if present it will terminate.
Similarly, it also checks specific command-line arguments if it is present it will change
execution flow. Then malware loads the resource where actual DLL is present. The loaded
resource is encrypted and XOR operation is used with key 0x41. After decryption, we get
base64 encoded data.

4/11

Fig 4. Xor Loop and API resolution

After copying all data onto the stack, API names are formed and then it calls Loadlibrary()
Win32 API. Then it decodes base64 data by calling CryptStringToBinaryA() API. The
decrypted buffer is again decrypted using CHA-CHA 20 algorithm which brings the actual
payload of Maze ransomware. Along with payload (which is a DLL of Maze), it also decrypts
shellcode. By using CreateThread() API, it executes the shellcode.

5/11

Fig 5. Call to CreateThread()

In this payload code, it first loads the base address of kernel32 for PEB. The below code
shows the loading of the address.

Fig 6. The address is loaded from PEB

The shellcode allocates memory using VirtualAlloc() and copies DLL file to newly allocated
space. Then it creates a thread and executes code from DLL. This code changes bytes at
the original entry point and then jump to OEP.

B. MAZE PAYLOAD

In decrypted payload, it first loads all the APIs and then does patching of
dbgUiRemoteBreakin from ntdl.dll. It is one of the anti-debugging techniques it uses to
avoid attachment of debugger.

First it calls VirtualProtect() on dbgUiRemoteBreakin with PAGE_EXECUTE_READWRITE
as new flNewProtect. Then it replaces byte 6A with C3 by simple mov instruction. So, if
someone tries to attach debugger it will get failed.

Fig 7. Copy 0xC3 at dbgUiRemoteBreakin Entry point

6/11

Fig 8. Code before and after patching

Then it enumerates running processes using Process32First() and process32Next(). It calls
APIs using ‘je’ instruction and address is pushed onto the stack which is executed after API
call. The call is replaced with ‘push’ and ‘jz’ or ‘je’ instruction.

Fig 9. Call to Process32NextW () using jz instruction

After process enumeration, it will obfuscate all the names with its algorithm which uses
XMM registers. Then it calculates the hash of this obfuscated string which is then compared
with some hardcoded hashes. Some of them are:

Procmon64.exe: 0x776E0635

Procexp64.exe: 0x78020640

Ida.exe: 0x33840485

Dumpcap.exe: 0x5FB805C5

X32dbg.exe: 0x5062053

Fig 10: Compare hashes with running process hashes

When any of the process hash matches it calls TerminateProcess() and exits the running
process.

7/11

It will not encrypt files for specific keyboard type. To get keyboard type it calls the function
GetUserDefaultUILanguage(). For eg:

Russsian : 0x419 // NOT Encrypt For this value

Ukrainian : 0x422 // NOT Encrypt For this value

Serbian : 0x7C1A // NOT Encrypt For this value

en_US : 0x409 // Encrypt For this value

Fig 11. Check value return by GetUserDefaultUILanguage()

Then It first communicates with CnC server where the IP list is hardcoded, all below
mentioned IP seems to belong to Russia.

91.218.114.4

91.218.114.11

91.218.114.25

91.218.114.26

91.218.114.32

91.218.114.37

91.218.114.38

Fig 12. Hardcoded Ip list

8/11

Then data is sent to CnC on the first request: Data which is sent is Username,
Computername, OsVersion.

Malware create mutex with unique ID unique ID is created using SHA(GetComputerName()
+ VolumeID()) .

For the ransomware marker, it creates a unique file on root and each folder.

Maze Encryption Process:

Malware selects files for encryption based on the extension. It excludes the following
extensions:

· Exe

· Dll

· Sys

· lnk

It also excludes the following files:

· Decrypt-Files.txt

· Autorun.inf

· Boot.ini

· Desktop.ini

· Temp/000.bmp

Excluded folders:

%windows%, @gaming%, %programdata%, %tor Brower%, %local Settings%, %appdata%
etc

Fig 13. Checking folder names and if the same found it will not encrypt the folder.

Encryption process:

9/11

It first creates key and then exports it in the “c:\programdata\data1.tmp” folder. Then it drops
a ransom note in each folder before encryption. Later it will just import the key from this file
and call “CryptEncrypt()”.

It retrieves drive letters and then determine type of drive using GetDriveType(). Further it
enumerates using API calls FindFirstFileA() and FindNextFileA().

It deletes shadow copy by creating a fake path for wmic and then calls delete recover by
calling CreateProcessW()It encrypts files using CHA-CHA algorithm and the key of chacha
is encrypted using RSA. For this, it uses crypto APIs. Encrypted files are having a marker at
the end which is ‘66116166’.

Fig 14. Encrypted File by Maze ransomware

It creates a thread for each drive, which then again call create thread function for each
folder which does the encryption. Encryption will start from the root of C: or D: and parallelly
it also accesses the shared drive by using WNetShareEnum() API. The same encryption
function is used for encrypting shared drive files. The first folder which is encrypted is
“$Recycle Bin”.

10/11

CreateThread() with following function for each folder. File is opened as follows. File is
encrypted by calling CryptEncrypt() and it is renamed by calling moveFileEx() with
extension.

Encrypted File:

Fig 15. File After encryption

Maze Malware uses many tactics for anti-Analysis:

APIs are resolved at runtime.
Indirect calling of API & functions using JE & JNE instructions.
Patching DbgUiRemoteTracking to avoid attaching of debugger at runtime.
Checking being debugged flag.
Checking for VM.
Checks RAM & hardware size by using API – GlobalMemoryStatusEx &
GetDiskeSpaceW.
Check process names by calculating its hashes.

Prevention measures to stay away from ransomware

Common infection vectors used by Maze Ransomware are phishing emails with MS Office
attachments and fake/phishing websites laced with Exploit Kits. Hence, we advise our end
users to exercise caution while handling emails from unknown sources, downloading MS
Office attachments, enabling macros, and clicking on suspicious links.

Indicators of compromise

49B28F16BA496B57518005C813640EEB

BD9838D84FD77205011E8B0C2BD711E0

Subject Matter Expert
 Preksha Saxena | Quick Heal Security Labs

11/11

Preksha Saxena

Follow @

https://twitter.com/

