
1/7

NAPLISTENER: more bad dreams from developers of
SIESTAGRAPH

elastic.co/de/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph

Von

Remco Sprooten

20. März 2023
Deutsch

Introduction

While continuing to monitor the REF2924 activity group, Elastic Security Labs observed that
the attacker shifted priorities from data theft to persistent access using several mechanisms.
On January 20, 2023, a new executable Wmdtc.exe was created and installed as a
Windows Service using a naming convention similar to the legitimate binary used by the
Microsoft Distributed Transaction Coordinator service (Msdtc.exe).

Wmdtc.exe is an HTTP listener written in C#, which we refer to as NAPLISTENER.
Consistent with SIESTAGRAPH and other malware families developed or used by this threat,
NAPLISTENER appears designed to evade network-based forms of detection. Notably,

https://www.elastic.co/de/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph
https://www.elastic.co/blog/author/remco-sprooten
https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry


2/7

network- and log-based detection methods are common in the regions where this threat is
primarily active (southern and southeastern asia).

Analysis

This unique malware sample contains a C# class called MsEXGHealthd that consists of
three methods: Main, SetRespHeader, and Listener. This class establishes an HTTP
request listener that can process incoming requests from the Internet, and respond
accordingly by filtering malware commands and transparently passing along legitimate web
traffic. This class is depicted in the following image:

Malware analysis

The Main method is invoked when the program runs and creates a thread object, which will
be used by the Listener method. The thread is then put to sleep for 0 milliseconds, and then
started. Implementing a sleep capability is consistent with SIESTAGRAPH, NAPLISTENER,
and other malware developed or used by this group.

The SetRespHeader method sets the response headers for the HTTP response. It takes an
HttpListenerResponse object as a parameter and defines headers such as Server,
Content-Type, and X-Powered-By. In one aggressively-targeted victim environment, the IIS
web server returns a 404 response with a Server header containing Microsoft-IIS/10.0 as
seen below, unless specific parameters are present:



3/7

However, the 404 error when requesting the listener URI adds Content-Type: text/html;
charset=utf-8 as an extra header. When NAPLISTENER is installed, the string Microsoft-
HTTPAPI/2.0 is appended to the Server header. This behavior makes the listener detectable
and does not generate a 404 error. It is likely this filtering methodology was chosen to avoid
discovery by web scanners and similar technologies.

Defenders may instinctively search for these errors in IIS web server logs, but the
NAPLISTENER implant functions inline and Windows will redirect these requests to the
registered application, allowing the malware to ensure those errors never reach the web
server logs where analysts may see them. Additionally, security tools that ingest web server
logs will not have an opportunity to identify these behaviors.

The Listener method is where most of the work happens for NAPLISTENER.

First, this method creates an HttpListener object to handle incoming requests. If
HttpListener is supported on the platform being used (which it should be), it adds a prefix to
the listener and starts it.

Once running, it waits for incoming requests. When a request comes in, it reads any data
that was submitted (stored in a Form field), decodes it from Base64 format, and creates a
new HttpRequest object with the decoded data. It creates an HttpResponse object and an
HttpContext object, using these two objects as parameters. If the submitted Form field
contains sdafwe3rwe23, it will try to create an assembly object and execute it using the Run
method.

This means that any web request to /ews/MsExgHealthCheckd/ that contains a base64-
encoded .NET assembly in the sdafwe3rwe23 parameter will be loaded and executed in
memory. It's worth noting that the binary runs in a separate process and it is not associated



4/7

with the running IIS server directly.

If that fails for some reason (e.g., invalid or missing data), then a "404 Not Found" response
will be sent with an empty body instead . After either response has been sent, the stream is
flushed and the connection closed before looping back to wait for more incoming requests.

Proof-of-concept prerequisites

Attention: Please remember that this is meant as a proof-of-concept to illustrate how
NAPLISTENER must be prepared for a target environment: it should not be deployed in
production environments for any reason.

In order to properly run NAPLISTENER, an SSL certificate must be generated and the
application registered to use it on a target endpoint. A general example of generating a self-
signed certificate resembles the following commands:

The adversary needs to then Import the certificate.pfx object into the windows certificate
store, as depicted in the following image:

Each certificate contains a thumbprint, and the following screen capture depicts an example
certificate:



5/7

The thumbprint value is necessary to register the application as seen in the following
command:

The adversary needs to replace the certhash value with the thumbprint from their certificate.
The appid is the GUID of the sample application ID. Once the environment is properly
configured, the sample can be run from any privileged terminal.

The following python script created by Elastic Security Labs demonstrates one method that
can then be used to trigger NAPLISTENER. The payload in this example is truncated for
readability, and may be released at a later time when the industry has better ability to detect



6/7

this methodology.

In our PoC, running the python script results in a harmless instance of calc.exe.

Resources

Elastic Security Labs has published a NAPLISTENER signature to the open protections
artifact repository here.

https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_SomniRecord.yar


7/7

Sources

Code similarity analyses are an important part of our process. During our investigation of
NAPLISTENER, we identified a public GitHub repository that contains a similar project.
Similar logic and identical debugging strings are present in both pieces of code, and we
assess that SharpMemshell may have inspired the threat responsible for NAPLISTENER.

Key takeaways

The attacker has shifted their focus from data theft to establishing persistent access
using new malware including NAPLISTENER, an HTTP listener written in C#

NAPLISTENER creates an HTTP request listener that can process incoming requests
from the internet, reads any data that was submitted, decodes it from Base64 format,
and executes it in memory

NAPLISTENER is designed to evade network-based detection methods by behaving
similarly to web servers

The attacker relies on code present in public repositories for a variety of purposes, and
may be developing additional prototypes and production-quality code from open
sources

https://github.com/A-D-Team/SharpMemshell/blob/main/HttpListener/memshell.cs

