
1/19

Dynamic Imports and Working Around Indirect Calls -
Smokeloader Study Case

m.alvar.es/2019/10/dynamic-imports-and-working-around.html

When reversing malware it is common to find an injected payload loading references to
external resources (DLL functions). This happens for two main reasons:

1. The hosting process does not have all resources necessary to the execution of the
injected payload;

2. Making reversing engineering the malware trickier since the dumped segment will have
all calls pointing to a meaningless address table.

This article explains how to revert this trick and get back API call names annotations in an
IDApro database. A sample of Smokeloader was used for illustrating the ideas described in
this post.

This article is divided in three main parts:

1. Explaining the observed technique;
2. How it works; and
3. How to circumventing it in order to facilitate reversing.

First of all, shout out to Sergei Frankoff from Open Analysis for this amazing video tutorial on
this same topic which inspired me to write about my analyses. Regards also to Mark Lim who
also wrote a very interesting article about labelling indirect calls in 2018. His article uses
structures instead of patching the code (which is also a good approach) but I think it lacks
important details and I will try to cover these points in here.

Examples presented in this article were extracted from the following Smokeloader sample:

Filename: p0n36i2d.exe
MD5: a8cc396b6f5568e94f28ca3381c7f9df
SHA1: 12948e36584e1677e80f78b8cc5c20576024c13f
SHA256: 17b548f9c8077f8ba66b70d55c383f87f92676520e2749850e555abb4d5f80a5
Size: 215.5 KB (220672 bytes)
Type: PE32 executable for MS Windows (GUI) Intel 80386 32-bit

Explaining what is going on in the first stage (packer/crypter) is out of scope; this article
focuses on characteristics found in the final payload. This sample injects the main payload in
"explorer.exe" as it is possible to observe in this AnyRun sandbox analysis.

Figure 01 shows how the code looks immediately after the execution control passes to the
injected code.

https://m.alvar.es/2019/10/dynamic-imports-and-working-around.html
https://www.hex-rays.com/products/ida/
http://security.neurolabs.club/2019/08/smokeloaders-hardcoded-domains-sneaky.html
https://www.openanalysis.net/
https://www.youtube.com/watch?v=hM2Zvsak3GM
https://twitter.com/peta909
https://findingvulns.blogspot.com/2018/04/using-ida-pro-debugger-and-idapython.html
https://app.any.run/tasks/c3ab622a-8c68-42c8-aeb7-bf88226983cc/

2/19

Figure 01 - Smokeloader's final payload.

Three points were marked in this code snip (1, 2 and 3). The first point (1) is the call to the
main function (located at 0x002F1853). This function expects to receive an address through
ECX register. This address points to a data segment where all temporary structures will be
stored.

The third point (3) is an indirect call to an address stored in register ESI plus offset 0xEAE.
The debugger was not able to resolve this address since the "memory segment" pointed by
ESI is not set at this point of the execution (Instruction Pointer pointing to 0x002F1844). This
pattern usually is an indicator that this code will dynamically resolve and import
external resources to a specific address table (in this case stored in what we called "data
segment"). This is an interesting technique because this table can be moved around by
changing the address stored in ESI as long as offsets are preserved. In this code ESI is set
to "0x002E0000" which is the address of a read-and-write memory segment created during
the first stage. Figure 02 shows the region pointed by the offset 0xEAE which is empty at this
point of the execution.

https://1.bp.blogspot.com/-v7-nyrwPHmw/XbBhxlCTdHI/AAAAAAAAbfM/X-G6l_ns7DQxs4Pulkuq8lSUjtn6gu5CQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B16.20.24.png

3/19

Figure 02 - Address pointed by the indirect call.

The second point (2) marks a function call immediately before the indirect call (3). This is a
strong indicator that the code for creating the address table must be somewhere inside this
function. The address located in "002E0EAE" will be filled with pointers to the expected API
function. Figure 3 shows this same memory region after the "__load_libraries" function is
executed.

Figure 03 - Address pointed by the indirect call is filled after the "__load_libraries" function
is called

x32dbg has a memory dump visualisation mode called "Address" which will list every
function pointed to each address loaded in the call table we just described.

https://1.bp.blogspot.com/-EpYGj5DLQtE/XbBvW-ciITI/AAAAAAAAbfY/Al4XubHsX-oK961TdnspSzuqMG4WlgIdACLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.18.02.png
https://1.bp.blogspot.com/-mHqmdsQog38/XbB1JPLLPgI/AAAAAAAAbfk/P22-2SdyWig5G2qWDHFHMi7XwxIs71QrgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.42.28.png

4/19

Figure 04 - Resolved address in call table

Figure 04 shows that the position pointed by the indirected call listed in point (3) points to
function "sleep" inside "kernel32.dll". Basically this call table is an Array of unsigned integers
(4 bytes) containing an address pointing to an API call in each position.

The "__load_library" function is responsible for creating this "call table" so the focus of this
article will move to understand how it works.

--- End of part I ---

Figure 05 - "__load_libraries" zoomed out CFG representation.

https://1.bp.blogspot.com/-3dV0BYr_4zY/XbB2CN2r6BI/AAAAAAAAbfs/vxzFgw8sWhQT9W_b4dRYJx1wCYw41oGJACLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.47.03.png
https://1.bp.blogspot.com/-md2iHJazlJw/XbCfUgEMgdI/AAAAAAAAbf4/Ebas5NCTAesgFCXqO7cUtTPKxJS7EBXRwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B20.35.09.png

5/19

Figure 05 shows an overview of the "__load_library" function created by IDA. This function is
quite large and performs few connected steps which we need to go through in order to fully
understanding its behaviour. This function can be divided in three main sections:

1. Code responsible for finding the base addresses for core libraries;
2. Code responsible for loading addresses for calls within code libraries;
3. The last section is responsible for loading other libraries necessary for executing the

malware.

Figure 06 presents the first part of the "__load_libraries" function. In its preamble the code
navigates through the TEB (Thread Environment Block) and loads 4 bytes from
offset 0x30 into register EAX. This address contains the address of the PEB (Process
Environment Block). Next step is to get the location for the "PEB_LDR_DATA" structure
which is located in offset 0xC. This structure contains a linked list containing information
about all modules (DLLs) loaded by a specific process.

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://www.aldeid.com/wiki/PEB_LDR_DATA
https://1.bp.blogspot.com/-NcZGCyVXneg/XbCiLoDNw_I/AAAAAAAAbgQ/651D1Ka7uMMYQAqA0dFZvKcQXDn1YRW7QCLcBGAsYHQ/s1600/ida_function_part_001.png

6/19

Figure 06 - first section of the "__load_libraries" function.

https://1.bp.blogspot.com/-NcZGCyVXneg/XbCiLoDNw_I/AAAAAAAAbgQ/651D1Ka7uMMYQAqA0dFZvKcQXDn1YRW7QCLcBGAsYHQ/s1600/ida_function_part_001.png

7/19

The code accesses the offset 0xC in the "PEB_LDR_DATA" structure which contains the
head element for the loaded modules in the order they were loaded by the process. Each
element in this linked list is a combination of "_LDR_DATA_TABLE_ENTRY" and
"_LIST_ENTRY" structures. This structure has an entry to the base name of the module in
the offset 0x30. Figure 07 summarises all this "structure maze" used in order to fetch loaded
module names (excusez-moi for my paint brush skills :D).

Figure 07 - Path through the process internal structures to get loaded DLL names and
base addresses

The main loop, beginning at "loc_2F189F" (Figure 06), goes through all modules loaded by
the "explorer.exe" process. This algorithm fetches the module name and calculates a hash
out of it. The second smaller looping located at "loc_2F18AB" (Figure 06) is the part of the
code responsible for calculating this hash. Figure 08 shows the reversed code for this
hashing algorithm.

https://www.aldeid.com/wiki/PEB_LDR_DATA
https://www.aldeid.com/wiki/LDR_DATA_TABLE_ENTRY
https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-list_entry
https://1.bp.blogspot.com/-z6SIo3sxaSY/XbGI2AQoawI/AAAAAAAAbhU/ROY_IV2m3i0tEp0foF2ePcdlYVDjIJZIQCLcBGAsYHQ/s1600/TEB_accessing.png

8/19

Figure 08 - Reversed hashing algorithm used in the first part of the analysed code

Moving forward, after calculating a hash the algorithm does a XOR operation with a
hardcoded value 0x25A56A90 and this value is compared with two hardcoded hashes:
0x4C5DACBC (kernel32.dll) and 0x7FA40424 (ntdll.dll). The base addresses of each DLL
are stored in two global variables located in the following addresses [ESI+0x1036] and
[ESI+0x103A].

Bonus: these hardcoded hashes can be used for detecting this specific version of
Smokeloader.

Summarising, this first part of the code is responsible by finding the base address of two core
libraries in MS Windows ("ntdll.dll" and "kernel32.dll"). These addresses will be used for
fetching resources necessary for loading all other libraries required by the malware.

Figure 09 shows the second section of "__load_libraries". This figure shows the code with
some functions names already figured out in order to make it more didactic.

https://1.bp.blogspot.com/-vWSBk-ktTiw/XbF-j0UGhFI/AAAAAAAAbhI/pco1Imq-guo7PEEVT-7d-68sKZLpDCXXgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B12.35.03.png
https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png

9/19

https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png

10/19

Figure 09 - second section of the "__load_libraries" function.

The first two basic blocks checks if the function was able to find "ntdll.dll" and "kernel32.dll"
base addresses. If these modules are available then the "__load_procs_from_module"
function is invoked for filling the call table. This function receives 4 parameters and does not
follow the standard C calling convention. Two parameters are passed through the stack and
the other two through registers (ECX and EDX). This function expects a DLL base address
in EDX, the data segment in ECX, an address to a list of unsigned ints (api calls hashes) and
a destination address (where the calls addresses will be stored). The last two parameters are
pushed in the stack.

Figure 10 shows the hardcoded hashes passed as parameter to
"__load_procs_from_module" function. This list will be used to determine which procedures
will be loaded in the call table.

Figure 10 - Array of hashes of "ntdll.dll" function names

Next step is to take a look inside "__load_procs_from_module" function. Figure 11 shows the
code for this function. Parameters and functions were named to facilitate the understanding
of this code.

https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png
https://1.bp.blogspot.com/-T1Ik2bin5YE/XbG53MMt6TI/AAAAAAAAbh4/htzsm60B3YEil7JcNLxy380WxuIoiZG2QCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B16.48.11.png
https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png

11/19

https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png

12/19

Figure 11 - Code for "__load_procs_from_modules" function

This function iterates over a list of 4 bytes hashes received as parameter. Each element is
XORed with a hardcoded value (0x25A56A90) and passed to the function
"__get_proc_address" together with a base address of a library. This function iterates over
all procedures names exported by a DLL, calculates a hash and compares it with the hash
received as parameter. If it finds a match, "__get_proc_address" returns an address for the
specific function.

Lets take a closer look inside "__get_proc_address" to figure out how it navigates through
the loaded DLL. Figure 12 shows a snip of the code for this function.

https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png
https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png

13/19

https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png

14/19

Figure 12 - Code for "__get_proc_address" function.

The preamble of the function fetches the address for the PE header by accessing offset
0x3C in the DLL base address. Next step it fetches the relative virtual address (RVA) for the
export directory at offset 0x78 of the PE header. From the Export Directory structure this
function fetches the following fields: NumberOfNames (offset 0x18), AddressOfNames (offset
0x20) and AddressOfNameOrdinals (offset 0x24). References for all these structures can be
found in the Corkami Windows Executable format overview.

After loading information about the exports the code will iterates through the list of function
names and calculates a 4 bytes hash by calling the "__hashing" function (same algorithm
described in Figure 08). If the output of the "__hashing" function matches the hardcoded
hash then the ordinal for that function is saved and the address related to that ordinal is
returned.

Figure 13 shows a code in Python that reproduces the above mentioned comparison
algorithm using hardcoded hashes extracted from memory (Figure 10) and all function
names exported by ntdll.dll.

https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png
https://github.com/corkami/pics/blob/master/binary/pe102/pe102.pdf
https://www.geoffchappell.com/studies/windows/win32/ntdll/api/index.htm?tx=7

15/19

Figure 13 - Reversing outcome for code responsible by resolving "ntdll.dll" hardcoded
hashes

This code produces the following output:

https://1.bp.blogspot.com/-EDfPO5-HOrQ/XbYj-ogQHjI/AAAAAAAAbjU/BQFm62fv6koMgh4I89cmXnU46iUOMOZpQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.10.23.png

16/19

Finally, these addresses are used for filling the call table which will be referenced by indirect
calls in the main payload. It is possible to confirm that what was described so far is true by
observing the function addresses written in the data segment after executing the second
section of "__load_libraries". Figure 14 shows the part of the call table filled so far with the
expected "ntdll.dll" calls.

Figure 14 - Segment of Smokeloader's dynamically generated call table

The last segment of the "__load_libraries" function de-obfuscates the remain libraries names
and load them by using the same resources used for loading "ntdll" and "kernel32". The
libraries loaded by Smokeloader are: "user32", "advapi32", "urlmon", "ole32", "winhttp",
"ws2_32", "dnsapi" and "shell32".

Now that the whole process of creating the call table used by the indirect calls is described,
next step will get into fixing the memory containing the main payload by using IDA Python.

https://1.bp.blogspot.com/-DMOTm7iLKoM/XbYkoB8lH2I/AAAAAAAAbjc/euMmHofBiZ8Gzol98BddYYvr8-woj9czgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.13.04.png
https://1.bp.blogspot.com/-UaYf7SsVE7A/XbYpfe3dteI/AAAAAAAAbjo/wFp_gOIZdNkL8z6K34wPLaqILRaB-stSQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.31.21.png

17/19

--- End of part II ---

When the main payload of Smokeloader is imported into IDApro it is possible to see code
containing indirect calls which uses a base address stored in a register plus an offset. Figure
15 presents a snip of the main payload containing such indirect calls.

Figure 15 - Indirect calls calling functions pointed at the dynamic generated calls table.

This characteristic makes the processing of reversing this code harder since the interaction
with other resources in the Operating System is not clear as all external calls is not explicit.
The goal in this part of the article is to patch these calls for pointing to addresses we going to
map and label (using IDA Python). The code below implements the change we want.
This code performs the following actions into our IDB:

https://1.bp.blogspot.com/-X1mDkdBLW78/XbgugSuGdkI/AAAAAAAAbkE/OEhfFs48oQUT-ojDtsHyxrDrrPRBLWHqgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-29%2Bat%2B13.19.48.png

18/19

1. Reads a memory dump of the data segment of an executing Smokeloader binary (line
106);

2. Creates a DATA segment mapped into 0x00000000 (line 107).
3. Loads the dumped data segment from the running sample into this new segment (line

35);
4. Imports API names extracted from x32dbg to specific positions in the new data

segment (line 112);
5. Patches all indirect call instructions (opcode 55 9X) to direct call instructions (line 51).

Figure 16 shows the code listed after executing the script above. As we can see, all indirect
calls were translated to direct calls to a labeled table located in the freshly created data
segment starting at address 0x00000000.

Figure 16 - Patched code with calls containing meaningful labels.

Just heads up for preventing people against messing up research IDBs: for obvious reasons
(different instruction sets) the script above can not be used for patching 64 bits
Smokeloader IDBs but it could be easily adapted to do the same task.

https://1.bp.blogspot.com/-CETEyKaym24/XbgvzZ4Tj5I/AAAAAAAAbkQ/xv1oi6EcQd8vbRVDmyLZlOote08M8d9pACLcBGAsYHQ/s1600/Screenshot%2B2019-10-29%2Bat%2B13.25.30.png

19/19

--- End of part III ---

That's all folks!

The ideas described in this article can be extended and used to analyse any other malware
families dynamically importing libraries and using indirect calls. Another thing cool for
experimenting in future would be write a script which loads DLLs and extracts labels
statically by using the reversed "__hashing" function and native functionalities in IDA for
mapping DLLs in the process address space.

https://github.com/nihilus/IDA-IDC-Scripts/blob/master/PE-scripts/pe_dlls.idc

