
7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 1/12

CosmicStrand: the discovery of a sophisticated UEFI
firmware rootkit

securelist.com/cosmicstrand-uefi-firmware-rootkit/106973

Authors

GReAT

Introduction

Rootkits are malware implants which burrow themselves in the deepest corners of the
operating system. Although on paper they may seem attractive to attackers, creating them
poses significant technical challenges and the slightest programming error has the
potential to completely crash the victim machine. In our APT predictions for 2022, we
noted that despite these risks, we expected more attackers to reach the sophistication
level required to develop such tools. One of the main draws towards malware nested in
such low levels of the operating system is that it is extremely difficult to detect and, in the
case of firmware rootkits, will ensure a computer remains in an infected state even if the
operating system is reinstalled or the user replaces the machine’s hard drive entirely.

In this report, we present a UEFI firmware rootkit that we called CosmicStrand and
attribute to an unknown Chinese-speaking threat actor. One of our industry partners,
Qihoo360, published a blog post about an early variant of this malware family in 2017.

Affected devices

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/author/great/
https://securelist.com/advanced-threat-predictions-for-2022/104870/
https://bbs.360.cn/thread-14959110-1-1.html

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 2/12

Although we were unable to discover how the victim machines were infected initially, an
analysis of their hardware sheds light on the devices that CosmicStrand can infect. The
rootkit is located in the firmware images of Gigabyte or ASUS motherboards, and we
noticed that all these images are related to designs using the H81 chipset. This suggests
that a common vulnerability may exist that allowed the attackers to inject their rootkit
into the firmware’s image.

In these firmware images, modifications have been introduced into the CSMCORE DXE
driver, whose entry point has been patched to redirect to code added in the .reloc section.
This code, executed during system startup, triggers a long execution chain which results
in the download and deployment of a malicious component inside Windows.

Looking at the various firmware images we were able to obtain, we assess that the
modifications may have been performed with an automated patcher. If so, it would follow
that the attackers had prior access to the victim’s computer in order to extract, modify
and overwrite the motherboard’s firmware. This could be achieved through a precursor
malware implant already deployed on the computer or physical access (i.e., an evil maid
attack scenario). Qihoo’s initial report indicates that a buyer might have received a
backdoored motherboard after placing an order at a second-hand reseller. We were
unable to confirm this information.

Overview of the infection process

Before getting into the various components that compose this rootkit, we would like to
provide a high-level view of what it tries to accomplish. The goal of this execution chain is
to deploy a kernel-level implant into a Windows system every time it boots, starting from
an infected UEFI component.

UEFI malware authors face a unique technical challenge: their implant starts running so
early in the boot process that the operating system (in this case Windows) is not even
loaded in memory yet – and by the time it is, the UEFI execution context will have
terminated. Finding a way to pass down malicious code all the way through the various
startup phases is the main task that the rootkit accomplishes.

The workflow consists in setting hooks in succession, allowing the malicious code to
persist until after the OS has started up. The steps involved are:

The initial infected firmware bootstraps the whole chain.
The malware sets up a malicious hook in the boot manager, allowing it to modify
Windows’ kernel loader before it is executed.
By tampering with the OS loader, the attackers are able to set up another hook in a
function of the Windows kernel.
When that function is later called during the normal start-up procedure of the OS,
the malware takes control of the execution flow one last time.

[1]

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 3/12

It deploys a shellcode in memory and contacts the C2 server to retrieve the actual
malicious payload to run on the victim’s machine.

These steps are summed up in the following graph:

UEFI implant – detailed analysis

MD5 DDFE44F87FAC7DAEEB1B681DEA3300E9

SHA1 9A7291FC90F56D8C46CC78397A6F36BB23C60F66

SHA256 951F74882C1873BFE56E0BFF225E3CD5D8964AF4F7334182BC1BF0EC9E987A0A

Link
time

Wednesday, 12.08.2015 12:17:57 UTC

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20124904/CosmicStrand_UEFI_malware_01.png
https://opentip.kaspersky.com/DDFE44F87FAC7DAEEB1B681DEA3300E9/?utm_source=SL&utm_medium=SL&utm_campaign=SL

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 4/12

File
type

EFI Boot Service DXE Driver

File
size

96.84 KB

GUID A062CF1F-8473-4AA3-8793-600BC4FFE9A8 (CSMCORE)

Having established what the malware implant tries to accomplish, we can now look into
more detail at how each of these steps is performed.

1. The whole execution chain begins with an EFI driver. It appears to be a patched
version of a legitimate one named CSMCORE (intended to facilitate the boot of the
machine in legacy mode via the MBR), where the attackers have modified the
pointer to the HandleProtocol boot service function. Every time this function is
called, the execution is redirected to attacker-supplied code that tries to determine
which component called it (it is looking for a specific one to infect – efi). By
examining the function arguments as well as the bytes located at the return address,
CosmicStrand can identify the exact “call” it is looking for.

2. This specific point in the execution was chosen because at this stage the boot
manager is loaded in memory, but isn’t yet running. CosmicStrand seizes this
chance to patch a number of bytes in its Archpx64TransferTo64BitApplicationAsm

3. That function is later called during the normal OS startup process, also at a strategic
time: by then the Windows OS loader is also present in memory and can in turn be
modified.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20124935/CosmicStrand_UEFI_malware_02.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 5/12

4. When it runs, Archpx64TransferTo64BitApplicationAsm locates a function from the
OS loader (OslArchTransferToKernel) by looking for a specific byte pattern.
CosmicStrand then adds a hook at the very end of it.

5. OslArchTransferToKernel is called just before execution is transferred from the
Windows loader to the Windows kernel, which makes it a traditional hooking point
for rootkits of that sort.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125005/CosmicStrand_UEFI_malware_03.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 6/12

6. Before the Windows kernel has had a chance to run, CosmicStrand sets up yet
another hook in the ZwCreateSection Malicious code is copied into the image of
ntoskrnl.exe in memory, and the first bytes of ZwCreateSection are overwritten to
redirect to it. We note that the attackers were careful to place the malicious code
inside the slack space of ntoskrnl.exe’s .text section, which makes this redirection a
lot less conspicuous in the eyes of possible security products.

At this point, CosmicStrand also seemingly attempts to disable PatchGuard, a
security mechanism introduced to prevent modifications in key structures of the
Windows kernel in memory. To do so, it locates ntoskrnl.exe’s KiFilterFiberContext
function and modifies it so it returns without performing any work. It is worth
noting that the localization of this function, also achieved by searching for
hardcoded patterns, is very exhaustive and even contains patterns corresponding to
the Redstone 1 release from August 2016.

7. The Windows kernel then starts, and ends up calling the hooked ZwCreateSection
function while running normally. When that happens, CosmicStrand gains control
of the execution again, and restores the original code before running more malicious
code.

[2]

[3]

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125112/CosmicStrand_UEFI_malware_04.png
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://en.wikipedia.org/wiki/Windows_10_version_1607
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125145/CosmicStrand_UEFI_malware_05.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 7/12

8. The ZwCreateSection hook’s primary purpose is to collect the addresses of API
functions provided by the kernel, and create a sort of import table for the next
component. Using the resolved functions, it also allocates a buffer in the kernel’s
address space where it maps a shellcode, before calling it.

Kernel shellcode

All the steps described so far only served the purpose of propagating code execution from
the UEFI down to the Windows kernel. This shellcode is the first actually malicious
component of the chain so far. It sets up a thread notify routine that gets invoked each
time a new thread is created. CosmicStrand waits until one turns up in winlogon.exe, and
then executes a callback in this high-privilege context.

There, CosmicStrand sleeps for 10 minutes and tests the internet connectivity of the
infected machine. CosmicStrand doesn’t rely on high-level API functions to generate
network traffic, but instead interacts directly with the Transport Device Interface: it
generates the needed IRPs (I/O request packets) and passes them to the network stack by
sending IOCTLs to the TCP or UDP device object. DNS requests are performed in this
fashion, using either Google’s DNS server (8.8.8[.]8) or a custom one (222.222.67[.]208).

CosmicStrand retrieves its final payload by sending a specifically crafted UDP (preferably)
or TCP packet to its C2 server, update.bokts[.]com. The reply is expected to return in one
or several packets containing chunks of 528 bytes following this structure:

Offset (bytes) Description

0-4 Magic number

4-8 Total length of the payload

8-12 Length of the current chunk

12-16 CRC32 checksum of the current chunk

16-* Payload chunk

The various chunks are reassembled into a series of bytes that are mapped into kernel
space and interpreted as a shellcode. Unfortunately, we were not able to obtain a copy of
data coming from the C2 server. We did, however, find a user-mode sample in-memory
on one of the infected machines we could study, and believe it is linked with
CosmicStrand. This sample is an executable that runs command lines in order to create a
user (“aaaabbbb”) on the victim’s machine and add it to the local administrators group.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutine
https://www.codeproject.com/Articles/9974/Driver-Development-Part-5-Introduction-to-the-Tran
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125244/CosmicStrand_UEFI_malware_06.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 8/12

We can infer from this that shellcodes received from the C2 server might be stagers for
attacker-supplied PE executables, and it is very likely that many more exist.

Older CosmicStrand variants

During the course of our investigation, we also discovered older versions of this rootkit.
They feature the same deployment process and their minute differences pertain to the
kernel shellcode.

It attempts to hijack a thread from exe instead of winlogon.exe.
The C2 domain contacted to obtain additional shellcode in order to run is different
(erda158[.]to).
The older variant printed debugging messages every time a new process was created
in the system.

Based on our analysis of the infrastructure used for the two variants, we estimate that the
older one saw use between the end of 2016 and mid-2017, and the current one was active
in 2020.

Infrastructure

We are aware of two C2 servers, one for each variant. According to passive DNS data
available for them, these domains had a long lifetime and resolved to IP addresses during
limited timeframes – outside of which the rootkit would have been inoperative. It is
therefore interesting to note that while the attackers opted to deploy an extremely
persistent implant, the actual exploitation of the victim machines may not have lasted
more than a few months. It is, however, possible that these domains were occasionally
reactivated for very short durations, and that this information would not have been
recorded by passive DNS systems.

Domain IP First
seen

Last
seen

ASN

www.erda158[.]top 58.84.53[.]194 2016-12-
27

2017-04-
26

AS48024
(NEROCLOUD)

115.239.210[.]27 2017-04-
30

2017-06-
24

AS58461 (CHINANET)

update.bokts[.]com 23.82.12[.]30 2020-05-
03

2020-05-
03

AS30633 (Leaseweb
USA)

23.82.12[.]31 2020-07-
25

2020-07-
25

AS30633 (Leaseweb
USA)

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125314/CosmicStrand_UEFI_malware_07.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 9/12

23.82.12[.]32 2020-03-
09

2020-07-
25

AS30633 (Leaseweb
USA)

Careful readers will notice the three-year gap between the activity periods of the two
domains. It is possible that during that time, the attackers were controlling the victim’s
machines using user-mode components deployed through CosmicStrand, or (more likely)
that other variants and C2 servers that we did not yet discover exist somewhere.

Victims

We were able to identify victims of CosmicStrand in China, Vietnam, Iran and Russia. A
point of interest is that all the victims in our user base appear to be private individuals
(i.e., using the free version of our product) and we were unable to tie them to any
organization or even industry vertical.

Attribution

Several data points lead us to believe that CosmicStrand was developed by a Chinese-
speaking threat actor, or by leveraging common resources shared among Chinese-
speaking threat actors. Specifically, a number of code patterns featured in CosmicStrand
were also observed in another malware family, the MyKings botnet (e.g., MD5
E31C43DD8CB17E9D68C65E645FB3F6E8). This botnet, used to deploy cryptominers,
was documented by Sophos in 2020 where they noted the presence of several Chinese-
language artifacts.

Similarities with CosmicStrand include:

The use of an MBR rootkit to establish stealthy persistence in MyKings.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125341/CosmicStrand_UEFI_malware_08.png
https://opentip.kaspersky.com/E31C43DD8CB17E9D68C65E645FB3F6E8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-uncut-mykings-report.pdf

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 10/12

CosmicStrand and MyKings use identical tags when they allocate memory in kernel
mode (Proc and GetM).
Both families generate network packets the same way, and leverage the UDP and
TCP device objects directly.
The API hashing code used in the two of them is identical, as evidenced by the
screenshot below. As far as we know, this algorithm was only ever found in two
other rootkits, MoonBounce and xTalker – also tied to Chinese-speaking threat
actors.

https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 11/12

In addition to this code similarity, the fact that the hardcoded fallback DNS server used
by CosmicStrand is located in CHINANET-BACKBONE (AS4134) could be perceived as a
very low-confidence sign that the attackers are part of the Chinese-speaking nexus.
Beyond this tie, we have decided that we do not have sufficient information that would
allow us to link CosmicStrand to an existing cluster.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125416/CosmicStrand_UEFI_malware_09.png

7/26/22, 11:13 AM CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit | Securelist

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/ 12/12

Conclusions

CosmicStrand is a sophisticated UEFI firmware rootkit that allows its owners to achieve
very durable persistence: the whole lifetime of the computer, while at the same time being
extremely stealthy. It appears to have been used in operation for several years, and yet
many mysteries remain. How many more implants and C2 servers could still be eluding
us? What last-stage payloads are being delivered to the victims? But also, is it really
possible that CosmicStrand has reached some of its victims through package
“interdiction”? In any case, the multiple rootkits discovered so far evidence a blind spot in
our industry that needs to be addressed sooner rather than later.

The most striking aspect of this report is that this UEFI implant seems to have been used
in the wild since the end of 2016 – long before UEFI attacks started being publicly
described. This discovery begs a final question: if this is what the attackers were using
back then, what are they using today?

The GReAT team would like to extend its special thanks to their former
colleague, Mark Lechtik, for his key involvement in this research.

 A hook is a modification to the normal flow of execution of a program. It aims to
execute additional code provided by the attacker before or after a given function. In some
environments, function hooking is provided for legitimate purposes and can be set up
easily through conventional programming mechanisms. In other cases, where they are
not explicitly supported, attackers can still achieve hooking by overwriting (and later on,
restoring) the code that is about to be executed. Both cases are leveraged by this rootkit.

 Here we skip the implementation details and shellcode tricks used by the rootkit in
order to obtain the address of the malicious code. The precise workflow of this part is left
as an exercise to the reader, and documented extensively in our private report on this
activity.

 More information about this function is available in research from other vendors.

CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit

Your email address will not be published. Required fields are marked *

[1]

[2]

[3]

https://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden?r
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf

