[RE018-1] Analyzing new malware of China Panda hacker
group used to attack supply chain against Vietnam
Government Certification Authority - Part 1

L= blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-
against-vietnam-government-certification-authority.html

l. Introduction

In process of monitoring and analyzing malware samples, we discovered an interesting blog
post of NTT here. Following the sample hash in this report, we noticed a hash on VirusTotal:

History

Creation Time 2020-04-261512:58
First SeenIn The Wild 2020-04-26 22:12:58
First Submission 2020-07-22 04:46:44
Last Submission 2020-07-22 04:46:44
Last Analysis 2020-12-15 01:56:18
Names

VVSup

EXE

eToken.exe

830DD354A31EF40856978616F35BD4B7_etoken.exe

Figure 1. Hash’s information in the NTT blog

On the event that a hacker group believed to be from Russia attacked and exploited the
software supply chain to target a series of major US agencies, along with discovery that the
keyword eToken.exe belongs to the software that is quite popularly used in agencies,
organizations and businesses in Vietnam, we have used eToken.exe and SafeNet as
keywords for searching on VirusTotal and Google. As a result, we uncovered information
about two remarkable installation files (1, 2) that have been uploaded to VirusTotal since
August 2020:

1/27

https://blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html?m=1
https://insight-jp.nttsecurity.com/post/102glv5/pandas-new-arsenal-part-3-smanager
https://www.virustotal.com/gui/file/97a5fe1d2174e9d34cee8c1d6751bf01f99d8f40b1ae0bce205b8f2f0483225c/details
https://1.bp.blogspot.com/-PIETpEmur5A/X92Vi8U7UQI/AAAAAAAABgY/VQz3tLTi04suHLR-PPL-ziToh9TxnF63QCNcBGAsYHQ/s668/image1.png
https://www.virustotal.com/gui/file/6be34df727fcb79123e4e8f472ad24b698d83395fb17d4db019e9976f485cd83/detection
https://www.virustotal.com/gui/file/b0fd1ff7f5d45be89fffc04937f352754c6055e1f4ca26a9257169ce168569ef/detection

Primbedk Whed Jul 00 132554 2044, Tite: Safeet Auithertication Chent B3 Subject: Safebet Suthentication Clent B 3. duthaor: Safefet, Inc., Beswsords

Figure 2. Information look up on VirusTotal

The name of the installation files are quite familiar: gca01-client-v2-x32-8.3.msi and gca01-
client-v2-x64-8.3.msi, We have tried to download these two files from the website and they
have the same hash value. However, at the present time, all files on the VGCA homepage
have been removed and replaced with the official clean version. According to the initial
assessment, we consider this could be an attack campaign aimed at the software supply
chain that can be leveraged to target important agencies, organizations and businesses in
Vietnam.

On December 17", ESET announced a discovery of an attack on APT they called "Operation
SignSight" against the Vietnam Government Certification Authority (VGCA). In that report,
ESET said they have also notified VNCERT and VGCA and VGCA has confirmed that they
were aware of the attack before and notified the users who downloaded the trojanized
software.

2/27

https://1.bp.blogspot.com/-36KwaY0mZdA/X92WQKArYeI/AAAAAAAABgg/vW9pRbt8dQ8GJeR0sc3jDGZ7OGZ0h3VJwCNcBGAsYHQ/s2502/image2.png
https://1.bp.blogspot.com/-8mOVVtBSFuk/X92WURy23MI/AAAAAAAABgk/JOVJ_7n_dbon0NQeqc-OuBz9AU18Xy48gCNcBGAsYHQ/s2478/image3.png
https://www.eset.com/us/about/newsroom/press-releases/eset-discovers-operation-signsight-supply-chain-attack-against-a-certification-authority-in-southea-1/

At the time of analysis, we have obtained two setup files that have been tampered by
hackers. This blog post series will focus on analyzing the signatures and techniques that
hackers have applied to malicious samples in these two installation files.

Il. Analyze installation file

This application is named as "SafeNet Authentication Clients" from SafeNet .Inc company.

Portable Executable (PE) files are mostly signed with SafeNet certificates.

S IARIB. Properties Digital Signature [etals ? k]
Geneal Dhglal Sgpalures Secuity Deols Pevous Vesors General D01 Srohees Seogiy Debals Previoos Versens Generdl Advarced
= = Irsgrtal Sspna bure Infurmatsn
Voperty Wakie Saralure kil =
Progaty Wk dat Thiz dhgial sonahure i (K
Ectiption arse of sgnes Dhgesal algoethen Timeestamg
Hie desaoripiion & Token Base Dnplographe: Frovids Sxehier, no shal Trarsday, July 3, 30
%y & Lagrer miemabne
Type POphCalion EdeTen
{Pp— RITE0 Pl | r=—
Poduciname Saleliel Astersicaton et -
Prochuct werson B7R0 oot avatacle
@ Saleblal, ira. Al sphts masanced o Sugyuray e [Trasstary, 2y 3, 2004 75704PM
Sz 193 KB
Dt reexlified ATR2014 257FM Verw Certficate
Lncpisge Bl [Lintmd Stateu)

(irginal flename & TCAF D

Figure 3. PE files signed with SafeNet certificate

By using UniExtract tool, we extracted the entire file from an installer (x64 setup file). The
total number of files is 218 files, 68 subfolders, the total size is 75.1 MB (78,778,368 bytes).
To find out which file has been implanted by hackers, we only focus on analyzing and
identifying unsigned PE files.

With the help of sigcheck tool in Micorsoft's Sysinternals Suite, with the test parameters is
signed, hash, scan all PE files, scan the hash on VirusTotal, the output is csv file. Then
sorting by unsigned file, resulting from VirusTotal, we discovered that eToken.exe is the file
was implanted by the hacker.

Figure 4. Discovered file was implanted by hacker

The hash of this eToken.exe matches with the one in NTTSecurity's report. Another strange
point is that it's a 32bit PE but located in the x64 directory, the version information such as
“Company, Description, Product...” are not valid for such a large company application. Here
is the scan result of the eToken file on VirusTotal.

3/27

https://1.bp.blogspot.com/--LKfFQcWqgo/X92W4k9OL9I/AAAAAAAABgw/ab6_0paBtoMbZ6eayGigvQaChkMN3AfAQCNcBGAsYHQ/s1124/image4.jpg
https://1.bp.blogspot.com/-5RDhfOgCLjQ/X92XInZr-eI/AAAAAAAABg8/D_vtg7klMfU5cDTo6B9KRao-mv2m2NCxwCNcBGAsYHQ/s1429/image5.jpg
https://www.virustotal.com/gui/file/97a5fe1d2174e9d34cee8c1d6751bf01f99d8f40b1ae0bce205b8f2f0483225c/detection

Since this application is built with Visual C ++ of Visual Studio 2005 which is old version, and
uses the Qt4 library, some of the dll files of this installer are also unsigned. We checked each
file and determined that the files were clean, leaving only three suspicious files:
RegistereToken.exe, eTOKCSP.dIl and eTOKCSP64.dlIl.

So eToken.exe file is a malware that hackers have added to the installation of the software
suite. To find out how eToken.exe is executed, we analyze the installation file: msi file
(Microsoft Windows Installer file): gca01-client-v2-x64-8.3.msi

Extracting the msi file to raw format before installing, we obtained two .cab files (Microsoft
Cabinet file): Data1.cab and Cabs.w1.cab. This is anomaly because a normal msi file has
only one main .cab file. Check the Data1.cab file and the MSI log text file, eToken.exe and
RegistereToken.exe are in Data1.cab file. And both .exe files have no GUID ID info:

¥ |

JCratal.caby
Mame Size Modifed Attributes Bethod
[o registerctoken.exe a0 334 A MSip
[etoken.exe 196 608 A MSZip

nosxs . 98CB24AD_52FB_DBSF_FF1F_CBB3BY9ATE18E
regSetInstallPath.9ED65736_0665_4650_00C1_772F5BA458F2

Feature Name: DriverFeature
Components:

aToken ,exe
RegistereToken.exe

Feature Mame: BsecDrivers
Components:

TKEYENUM_2K . 2BD440E7_B3A2_479D_8D33_AASBDAFC424D
TKEYENUM_VISTA .2BD446E7_B3A2_479D_8D33_AASBDAFC424D
TKEYENUM_XP .2BD44BE7_B3A2_479D_8D33_AASBDAFCA24D

Figure 5. Exe files do not have a GUID ID info

Continue checking the features: DriverFeature, and two files eToken.exe and
RegistereToken.exe msi file with Microsoft's Orca tool (a specialized tool for analyze and
modify msi files). Through a search, the hacker has added a custom action: RegisterToken
(without "e" before Token) to the msi file and added that CustomAction at the end of
InstallExecuteSequence. RegistereToken.exe will be called with the parameter is
eToken.exe:

4/27

https://1.bp.blogspot.com/-bJ6hG3GDEXw/X92XrXSjSaI/AAAAAAAABhE/wDt3tKDd83oMz7HtsC_SQhrgHltug-wugCNcBGAsYHQ/s821/image6.jpg
https://1.bp.blogspot.com/-khpUY39gFL4/X92YAWXH_0I/AAAAAAAABhM/MLsnyIxhkZk_Ka4dTvjVqhcbUeuzQ0wvQCNcBGAsYHQ/s580/image7.jpg

| fction |ypng Hource Lagait | Action Conditinn Srguence

Register Token Register Token
| Feg g

| £ 3 — - I =
! ables = InsteliEvecuteSequence - 176 rows

w

Figure 6. Hacker implanted a custom action

Analyzing the RegistereToken.exe file, we see that this file was built on "Wednesday,
22.07.2020 07:40:31 UTC", ie 07/22/2020, 2h40m31s PM GMT +7, PE64, using VC ++

2013:

Figure 7. Information of the Registere Token.exe file

RegistereToken.exe's pseudo code only calls the WinExec API to execute the passed in
argument:

@, MAX_PATH);
sZExePath, MAX_PATH):

nput = argv[1];

aChar = pExeInput[i++]:;
pos[li - 1] = aChar;

[aChar)
ExePath, @);

Figure 8. Tasks of RegistereToken.exe

With all the information above and based on the timestamp in the Data1.cab and
RegistereToken.exe files, we can conclude:

e Hacker has created and modified the .msi file and created the Data1.cab file at
timestamp: 07/20/2020 - 15:15 UTC time, added the eToken.exe file at this time.

5/27

https://1.bp.blogspot.com/-ISkJO1rUxxg/X92YZmteNQI/AAAAAAAABhY/GLO29EWLxxwVvsl35RYzAS2WAzvcnpsswCNcBGAsYHQ/s1037/image8.jpg
https://1.bp.blogspot.com/-IcwZNrM1A20/X92Y27Xv1sI/AAAAAAAABhg/H2ejAmyt7wY0S7AH5k5iWhv1gaKH82bowCNcBGAsYHQ/s1126/image9.jpg
https://1.bp.blogspot.com/-RcjCLA8Jf4M/X92ZAz4yTjI/AAAAAAAABhk/Tb1t6FpLvZgU0tbYSt3_HA472YeqhdWEgCNcBGAsYHQ/s515/image10.jpg

» Build RegistereToken.exe file at timestamp: 22/07/2020 - 07:40 UTC
* Add RegistereToken.exe file to Data1.cab at timestamp: 22/07/2020 - 08:40 UTC

Note: According to Cab file format, the two Date and Time fields of a file in the cab file are
DOS Datetime format, each of which is a Word 2 bytes which reflect the time when the file
was added according to DOS time. Cab file processing programs will convert and display in
UTC time. That is, the above UTC times are the current time on the hacker machine. See
more here.

00 00 00 03 01 01 00 02 Q0 00
0 00 00 F4 50 FO 79 20 00 65 74 6F 6B

Figure 9. MS DOS Datetime Information

lll. Analyze eToken.exe
1. Analyze PE Structure
File eToken.exe:

« Size: 192 KB (196,608 bytes)
« MD5: 830DD354A31EF40856978616F35BD6B7

o SHA256:
97ASFE1D2174E9D34CEE8C1D6751BF01F99D8F40B1AEOBCE205B8F2F0483225C

Information about compiler, RichlD and build timestamp:
e Build with VC ++ 6 of Microsoft Visual Studio, Service Pack 6.
 Build at: 26/04/2020 - 15:12:58 UTC
e Checksum is correct, file has not been modified PE Header.
e Linking with MFC42.dlIl library, Microsoft Foundation Class v4.2 library of Microsoft, is a
library supporting GUI programming on Windows, always included in Visual Studio
suite.

6/27

https://docs.microsoft.com/en-us/windows/win32/sysinfo/ms-dos-date-and-time
https://1.bp.blogspot.com/-g2nRRStuFeM/X92Z6huMPlI/AAAAAAAABh0/0zv3nlc2UFcG_PUy9_ZGW0B19RrFBSC0wCNcBGAsYHQ/s907/image11.jpg

» Link with a special library: dbghelp.dll. Use the MakeSureDirectoryPathExist API
function. See more here.

Checking the resource section of the file, we determined that this is a Dialog application,
created by MFC Wizard of Visual Studio 6. The project name is VVSup, which means the
.exe file when built out would be VVSup.exe.

; Joon (] Disleq - 100 x| BH Dealag - 102 X
& 100 : 1033
' 102 : 1033) |
& b
¢ 129 : 2052 o fego e IATITT At -
WS Vsian 1.0 o i "W bl il i e b bt LT R e e it e o -“
. Ion Group oy :pu:ﬁ:'.m[EEep : B ; b gL Eattis
, Version Info o Copsngre 0] 2013 : Eutferl . il [
............ Heio

1[129 p1aLoG 0, 0, 187, 96
2 || STYLE DS_SETFONT | DS_MODALFRAME | WS_POPUP | WS_CAPT
3 | CAPTION "Dialog”
4'WEM|
S5TFONT I0, System
61
7| CONTROL "OK", 1, BUTTON, BS DEFPUSHBUTTON | WS_CHID |
8 _ CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS _CHILD |
93

[BH Dialog o X

Figure 10. File's resource information

2. Static code analysis

eToken.exe (VVSup.exe) is built with dynamic link DLL mode with MFC42.dll, so the .exe
file will be small and the functions of the MFC42 libirary will be easily identified via the name
import of the DLL. The name mangling rule of Microsoft VC ++ compiler reflects the class
name, function name, parameter name, call type... of functions. IDA helps us to define the
functions import by ordinal of MFC42.dll using the file mfc42.ids and mfc42.idt included
with IDA.

7/27

https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-makesuredirectorypathexists
https://1.bp.blogspot.com/-wKQSdoc02_I/X92aorZE84I/AAAAAAAABh8/03rksL8PJi4p6AvXfS3B17SxnVhlVpXTwCNcBGAsYHQ/s797/image12.jpg
https://1.bp.blogspot.com/-qYNk7TvBobs/X92asrEkFgI/AAAAAAAABiA/Ec1uLPn0mMocAGeA5L_XJWaJtr2LKst9wCNcBGAsYHQ/s414/image13.jpg

However, VVSup is built with the RTTI (Runtime Type Information) option is disabled, so
there is no information about the RTTI and Virtual Method Table of all classes in the file. We
only have RTTI of class type_info, the root class of RTTI.

: class Eype_infa: {#classinformer)
dd offset const Eypeld 1 RTTI Con
const E¥peElinifo: : "vfrable' dd of

SCOPETABLE_ENTRY <8FFFFFFFFh,

: @t
Eype_info:: RTTI

Base Class Descriptor at (, B8, 8 Fset Eypelinfo "RTTI T

e dnfa:: RTTI Base Cl:z

Figure 11. RTTI Info of type_info class

The analysis will show how to define classes, recreate the code of this malware, and share
experience in applying when analyzing malwares/files using MFC.

Plugins used:

e Simabus’s Classinformer

e Matrosov’'s HexRaysCodeXplorer
e MFC_Helper

The MFC C++ source code can be found in the src\mfc directory of the Visual Studio
installer. Since MFC4.2 (MFC of VS6) is very old, it can be found on Github. We refer here.
About the relationship chart of the classes of MFC (Hierarchy Chart), you can see at this link.

Three important dlls file to diffing/compare with MFC malware, for example in this sample
eToken, are mfc42.dll, mfc42d.dll, mfco42d.dll. You can find and download the correct
debug symbol file (.pdb) of the dlls you have. The most important one is mfc42d.dll (debug
build), since its .pdb will contain full information about the types, enumes, classes, and
vtables of the MFC classes. We export local types from mfc42d.dll to .h file, then import into
our idb database. IDA's Parse C ++ has an error, unable to parse the "<>" template syntax,
so we find and replace pairs of "<" and ">"to"_" in .h files.

Parallel opening mfc42d.dll in new IDA together with IDA is parsing malware, copy names,
types of classes, functions from mfc42d.dll. As mentioned, this malware is an MFC Dialog
application, so we will definitely have the following classes in the malware: CObject,
CCmdTarget, CWinThread, CWnd, CDialog. According to the MFC Wizard's auto-naming
rule, we have classes with the following names: CVVSupApp (inherited from CWinApp),
CAboutDlIg (dialog About, resID = 100), CVVSupDIg (main dialog, resID = 102).

Scan results of vtables, classes of two plugins Classinformer and HexRaysCodeXplorer.

8/27

https://1.bp.blogspot.com/-IkLAXB8hn4k/X92bG-O8IZI/AAAAAAAABiM/cTdEa-a5ev4rdL1JmXxKrWbzpmPAsDrUgCNcBGAsYHQ/s993/image14.jpg
https://github.com/dblock/msiext/tree/master/externals/WinDDK/7600.16385.1/inc/mfc42
https://docs.microsoft.com/en-us/cpp/mfc/hierarchy-chart?view=msvc-160

Pl ade - 1] Dibject Explorer X

ofT_464378

of f_4043E8 method ount: b
Ff methods count: 4

Bx404378
8

B:

w: M

methods count: 5¢

rra - ﬁx4m494$; methods count: be

r.‘ [Clszs Informer]
Vitable Methads Flags Type Higrarchy
JF opapasac 1 type_info type_info

Figure 12. Scanning vtables, classes result

Use MFC_Helper scan CRuntimeClass, as expected, CVVSupDIlg has CRuntimeClass
and add another class: CVVSupDIgAutoProxy. It shows that the hacker when running the
MFC Wizard, clicked to select support OLE Control.

public: static -.;:r:;-:'l l.‘l-:|'|.||'|ll'.|.||u|‘..l.-|--. onst

public: s struct CRUREimeClass

Figure 13. Detect classe after run MFC_Helper

Based on the import function CWinApp::GetRuntimeClass, we can determine CVVSupApp
vtable, and based on CDialog::GetRuntimeClass we can define two vtables of the other
two dialogs. But which dialog is About, which dialog is a malware dialog? Identify all the
internal structures of MFX such as AFX_MSGMAP, AFX_DISPMAP,
AFX_INTERFACEMAP...

Using the Xref to feature call the CDialog constructor: void __thiscall CDialog::CDialog
(CDialog *this, unsigned int nIDTemplate, CWnd *pParentWnd), nIDTemplate is the
reslD of the dialog, we define the vtable of CAboutDIlg and CMalwareDIg. Because
CMalwareDIg does not have CRuntimeClass and RTTI, so it is temporarily named like that.
The hacker deleted the DECLARE_DYNAMIC_CREATE line of these two classes and the
CVVSupApp class when build.

9/27

https://1.bp.blogspot.com/-_i_97eh669A/X92cBuL4J2I/AAAAAAAABiY/YTQxDoVyed057pvlz5MhuzaEle4msDKbwCNcBGAsYHQ/s563/image15.jpg
https://1.bp.blogspot.com/-vmULcHNBMB8/X92cQWysMiI/AAAAAAAABic/ucMDPAKTG8Ep2OjfNz0qByNVtitZvUK9ACNcBGAsYHQ/s1055/image16.jpg

4]

188

dword ptr [esi], offset const CAboutDlg:: vftable’

[+58h]

48h

dword ptr [1. offset const CMalwareDlg:: 'vftable'

[ebx+CMalwareDlg.m_pfnmemcpy],
<+CMalwareDlg.m_pfnmemset],
<+CMalwareDlg.m_pfnShellExecuteExA],

Figure 14. Identify vtable of CAboutDIlg and CMalwareDlg

Relational Classes table of this malware:

COpject
CWin Thread » CCOmdTarget
CWinApp CWind
¢ A
CVV Suphpp Chalog

CAboutDig CVVSupDlg u

10/27

https://1.bp.blogspot.com/-0brQX9cLrWg/X92cqI-dUmI/AAAAAAAABio/SdNUwngt8zgQ7flmoejyTXY0f-CJIGhigCNcBGAsYHQ/s872/image17.png
https://1.bp.blogspot.com/-k806zNYhk3A/X92cyvT3vtI/AAAAAAAABis/vEKVZO5bqcssgl3Q6wGN35Mcmx2lCoGYACNcBGAsYHQ/s509/image18.jpg

_.ﬁ Object Explorer

const CVVSupDlgAutoProxy:: vftable' methods count: 22
const CMalwareDlg:: vftable' methods count: 54
st CVVSupaApp:: vftable' methods countg 41

:) CAboutDlg:: 'vftable' methods count: 54
Ox484848: const CWWSupDlg:: 'vftable' methods count: 54

Figure 15. Relational classes table of this malware

Copy the names of functions, types, function types, parameters ... from the respective parent
classes of the above classes, in the correct order in the vtable, identify the generated MFC
Wizard functions and the functions the hacker wrote.

:ge404418 dd offset
:004044AC

.rdata
.rdat

Figure 16. Result after copy name of functions, types, function types, parameters

Every MFC application has a global variable called theApp, belonging to the main class
CXXXApp inheriting from CWinApp. In the case of this malware are: CVVSupApp theApp;
This global variable is initialized by C RTL in the start function, called before main/WinMain,
in table __xc_a. The functions in this table call after the C RTL constructors in __xi_a. These
tables are the parameters passed to the internal _initterm function of C RTL.

11/27

https://1.bp.blogspot.com/-9glMbONw0Kw/X92c2r8T1PI/AAAAAAAABiw/gI1HLJnBF-4aXs2zZznSgTbqNd3yOkVIgCNcBGAsYHQ/s816/image19.png
https://1.bp.blogspot.com/-1JtSv_ezr3Y/X92dAs5Z7kI/AAAAAAAABi4/r689R_Vk8OYzHKtJhkvTJa1S7VlpRxj6QCNcBGAsYHQ/s698/image20.png

proc near

DATA XREF:

proe

et | cheApp

endp

Figure 17. TheApp global variable in the MFC application

The flowchart of creating and executing an MFC application is as follows:

heAgg

niaie oA
e g — " Inehpplctoncaled | Intinstance caobed

| bk e e 13
EheApp i gy Sun Crad

| indaize
rl-ﬁ-n'ruar{ = »>

Figure 18. Flowchart of creating and executing an MFC application

The CVVSupApp :: Initinstance function is also a common code generated by MFC wizard

12/27

https://1.bp.blogspot.com/-50NZP4L4EU8/X92dSIDpggI/AAAAAAAABjE/OTn-iOLW3OI8MLID01SPtthNxgSvtl05wCNcBGAsYHQ/s795/image21.jpg
https://1.bp.blogspot.com/-kJ82R4sBCDE/X92dolzkUwI/AAAAAAAABjM/LMK26DprFQMGHh4pjqIwotRs-Z-IVNGyQCNcBGAsYHQ/s800/image22_2.png

Figure 19. CVVSupApp::Initinstance function

Constructor of CVVSupDlg: void CVVSupDIg::CVVSupDlg() is also common code
generated by MFC Wizard. But in CVVSupDlIg::OnlnitDialog, which is called from
CVVSupDlg::DoModal(), we can see immediately, at the end of the code that the MFC
Wizard generated, CMalwareDIg is initialized and shown, then the malware exits forcibly
exit (0).

13/27

https://1.bp.blogspot.com/-XwjGjOtCna4/X92dy9-iDrI/AAAAAAAABjQ/HNhzVv2KYFUGuVK38WW3NK5-prqw4jkzACNcBGAsYHQ/s844/image23.jpg

pCMalwareDlg = (CMalwareDlg *)
S_pMalwareDlg = pCMalwareDlg;

tryLevel = 15
if (pCMalwareDlg)

pMalwareDlg (pCMalwareDlg, 0);

pMalwareDlg o
.-I-
tryLevel = @xFFFFFFFF;
hDesktopwnd OF
pDesktopwnd (hDesktopwnd);
(&pMalwareDlg-=ba 35, 129u, pDesktopwnd);
(&pMalwareDlg-=baseclass, SW_SHOW);
(9);

CMalwareDlg pDlg = new CMalwareDlg():

pDlg->Create(129, CWnd::FromHandle(GetDesktopWindow()));
pDlg->ShowWindow(SW_SHOW) ;

exit(e);

Figure 20. CMalwareDlg was created and shown

The value 129 is the resID of the CMalwareDIg dialog, and sizeof(CMalwareDlg) = 0x290,
which is larger than the size of the parent CDialog. It proves that CMalwareDIlg was added

by hackers to some data members. Through analysis, we recreated the data members of
CMalwareDlg:

Offset|Size|struct declspec{align{4)) CMalwareDlg
I
: Chialog baseclass;
char m_szBase6d4Table[256] ;
char m_szServiceName[268];
char m_szMask[32];
vold *m_pftnmemcpy;
vold *m_pfnmemset
void *m_pfnShellExecuteExA;

Figure 21. Recreate data members of CMalwareDlg

The CMalwareDlg::CMalwareDIlg Constructor does the following initialization jobs. Note the
copy string "192.168" into the field m_szMask

14/27

https://1.bp.blogspot.com/-qalfPW0DLPg/X92eTXbhQdI/AAAAAAAABjY/bzX-qp0ds-omrkbEwvV_fPH4EUfyuvNNACNcBGAsYHQ/s694/image24_2.png
https://1.bp.blogspot.com/-Q9Eu4Zmoj3M/X92ehYXm2yI/AAAAAAAABjc/iOfA_Y1kn2EqSlgnR5WVliOKmuarS2YFACNcBGAsYHQ/s853/image25.jpg

rentWnd) ;

-
-=m_prnshell ;
(this-=m 57Bases4Table));

recurn this;

Figure 22. Copy "192.168" string to m_szMask field

When shown, CMalwareDIg::OnlnitDialog will be called, and the main function that is
important for doing the malware's task is called here:

g(CMz

raseclass):

s->Infect();

return 1;

3

Figure 23. The Infect main function will do the malware's job

The Infect (we named) function is relatively long, so it should be presented via the flowchart
below:

15/27

https://1.bp.blogspot.com/-VZF-n2W-JOs/X92evxJ3GVI/AAAAAAAABjk/dt8IqbELogI-Heb3sPXtUJVAvWKKJ9vxQCNcBGAsYHQ/s907/image26.jpg
https://1.bp.blogspot.com/-EtzOJKNKeGA/X92e5B-oBXI/AAAAAAAABjo/0kKY1e1_Y94VIhTrIxT6kUM90Y5w994TQCNcBGAsYHQ/s638/image27.jpg

Call Get3omeaPlAddns

Basetd Decode Senncelame: Update file extracted from Tz.cab
TelBios Messager Register” wilh CEG and proxy info

¥

¥
Base 64 Decode SernceDescnpbon: 6x6_ Yo Toud Al il erfrocicd
M0 SR Create 1 ngmuwmmm Taskiindows
Fysiem components™ hame U emd. RIS exe “paim diF E

!

Extract CAB fike in data secbon oo
% USERPROMALE% MNesilTz cab User s Admin
O

o v
Crese Service DU fir netapai2 ol with
User Bt SendceMame and SenAcelhesl Apion above
v YES YES
E'E“:,;’:Y“‘“ Run exiracaz exe fie T2 cab, create fie nelapaz dil a
e ino reciorn S WIS apppalch Retum
LN Calrae 32 end M ?l_tﬂi
to the randoen file % Imp
in above direcioey 3
Read ProxyConhig rom Registng,
ar from prel s of Firefo: If not exist

Figure 24. Infect function flowchart

We'll go into detail each of the important child functions called by the Infect function of the
CMalwareDlg class. The UserlsAdmin function, using the IsUserAdmin() API of
shell32.dll:

16/27

https://1.bp.blogspot.com/-qBETTnyflHk/X92fNoQj02I/AAAAAAAABj4/5Fv3iyqDpBYM2SyYGPlH-6tCYcbAyh8jwCNcBGAsYHQ/s800/image28_2.jpg

hModule
1
T

L

hModule =

= hModule;
if (!'hModule)

return 1;

Admln = (hModule, "ITSUSErARAdmin");
serAnAdmin)

IsUserfAnAdmin();

esult Q;

return result;

Figure 25. UserlsAdmin fuction

GetSomeAPIAddrs function is a redundant function, function pointers are taken but
completely unused. We guess this could be an old code.

17/27

https://1.bp.blogspot.com/-FkJysVQiLt0/X92fd-cmIKI/AAAAAAAABkA/6WqMQjZ52jwlpgUtv3f1OnpjdClqvuK0ACNcBGAsYHQ/s618/image29.jpg

(
vold *

hNtD11l = ("ntdll.d11"):

this-=m_pfnmemcpy (hANtD11,

hNtdll = ("ntdll.d11");

this-=m_pTnmemset {hNtd11

hShelliz = ("shell32.d11");

ShellExecuteExA = (hShell32,

pfnmemset = this-=>m_pfnmemset;

this-=m_pfTnShell CUteExA = ShellExecuteExA;

return pfnmemset && is-=m_pfnmemcpy && ShellExecuteExA;

Figure 26. GetSomeAPIAddrs function

The Base64Decode function is like other Base64 decode functions, except that the Base64
code table is copied by the hacker to a char arrary m_szBase64Table and accessed from
here. After being decoded Base64, the original ServiceName
"TmV0QmIvcyBNZXNzYWdIciBSZWdpc3RIcg==" will be "NetBios Messager Register".
The original ServiceDescription
"TmV0QmIivcyBjb21tdW5pY2F0aW9ulGJidHdIZW4gc3lzdGVtIGNvbXBvbmVudHMu"
would be "NetBios communication between system components."

The ExtractCabFile function is a global function, not part of the CMalwareDIg class. Note
that the file is created with the attribute hidden.

18/27

https://1.bp.blogspot.com/-mubdz1UcgoM/X92fnXwTTvI/AAAAAAAABkE/k8CgV3hhiH4HmdZWXgVJJRhD3uJbgzyngCNcBGAsYHQ/s727/image30.jpg

HANDLE hFile; // esi

psZCabFile = 1lpDst;
LpDst, MAX_PATH);

hFile = (
pszZCabFile,
FILE_WRITE_DATA,
FILE_SHARE_WRITE,
&,
CREATE ALWAYS,
FILE_ATTRIBUTE_HIDDEN,
oy
if [hFile == INVALID _HANDLE_VALUE && ()] == ERROR_ACCESS_DEMIED)
I
) return @;
1
LpDst g,
(hFile, , 94B74u,| &lpDst, @);
(hFile]?
return 1;

Figure 27. ExtractCabFile function

The .cab file is completely embedded in the .data section, size = 94874 (0x1729A). Hackers
declared the following equivalent: "static BYTE g_abCabFile[] = {0xXXXX, 0xYYYY};" (no
const, so it will be located in .data section). Extracting that area, we have a .cab file
containing a file, named smanager_ssl.dll, the date added to the cab is 04/26/2020 - 23:11
UTC, build date 26.04.2020 15:11:24 UTC.

.data:00466198 g_abcABFile db| 'MSEE'|e : DATA XREF: EXtractCabFile+54to

db G
7 8
d 4]
d S4h

=yl

3 Fa 1) i
Mlame Size Modified Attribites Miethad Bloch

Figure 28. The embedded .cab file contains the file smanager_ssl.dll

The smanager_ssl.dll file (netapi32.dll) will be analyzed in the next post because it is
relatively complex.

19/27

https://1.bp.blogspot.com/-2nmqEmmI4J0/X92f9-3wttI/AAAAAAAABkQ/RMrNDWzwkPMV0Zpvv9wk5dNXtlSRPr4cQCNcBGAsYHQ/s858/image31.jpg
https://1.bp.blogspot.com/-_bie72h48Ew/X92gQhVJEEI/AAAAAAAABkY/LXbpkkSJPaom4cbjWQpZHxrY8hFPJcNpwCNcBGAsYHQ/s934/image32.jpg

Y Sl Zdestinacion dirs®

Figure 29. RunExtrac32Exe function

The ExecuteAndWait function is also a global function, using the ShellExecuteExA API to
call and wait until the execution completes.

F Y ':| f im EYiE F Enh .| : /
cInfo; // [esp+4h] [ebp-3Ch] BYREF

0, sizeof(ExecInfo));

ExecInfo.

ExecInfo. Ze = 6@;

ExecInfo.fMask E_MASK_NOCLOSEPROCESS;

ExecInfo. lpvel Cpen™:

ExecInfo. r

ExecInfo. 1p

hShell3z =

ShellExecuteEx =

ShellExecuteEx(&ExecInto);

(ExecInfo.hProces:
FeturimT 1,

Figure 30. ExecuteAndWait function

The Config of the Proxy on the victim machine is defined by the hacker through a struct as
shown, PROXY_TYPE is an enum:

20/27

https://1.bp.blogspot.com/-pXA7HFck07U/X92gcLlJHSI/AAAAAAAABkc/y0Tnws0SfNMwCHbEAIsqy6-Vpab8R8XEQCNcBGAsYHQ/s1144/image33.png
https://1.bp.blogspot.com/-Wg1EkKl5Wxw/X92gmKqA-jI/AAAAAAAABkk/fTJvCDqi564U_8F7Q5cjCaOVJZxWn8ygQCNcBGAsYHQ/s704/image34.jpg

Offset|Size|lstruct PROXY_CONFIG
) i
00000000 8 char szAddress[64];
char szPort[36];
PROXY_TYPE proxyType;

Figure 31. struct PROXY_CONFIG

The ReadProxyConfig function will read from the victim's registry first, otherwise it will read
from the Firefox pref.js file. We are still not clear why hackers tried to read from Firefox,
maybe they did a reconnaisance to learn about the commonly used web browsers at the
target.

result = {(pConfig);
if (lresult)
r

result = (pConfig)

return result;

Figure 32. ReadProxyConfig function

The ReadProxyConfigFromRegistry function is a bit long so there are only important parts:

21/27

https://1.bp.blogspot.com/-6g1IJWQIdSY/X92gv8npY9I/AAAAAAAABks/p57qHBjjbMozhwt6kVVUUjU6D8qZOeP7ACNcBGAsYHQ/s785/image35.jpg
https://1.bp.blogspot.com/-soOZWmMSnlU/X92g6G26RvI/AAAAAAAABk0/fqblNBdSS1glSeil1Qwz4QaG8VJoJ9kfwCNcBGAsYHQ/s643/image36.jpg

gy \Microsoft\ \windows\\Currentversion\\Internet Settings®

(
HKEY_CURRENT_USER,

|NKResult, 52

pconfig, pConfig-=>szPort);

pCconfig, pConfig-=s

PROXY_HTTPS:
— p[‘_" i =

(szData, SZFmE, pszaddr, pszPort);

Figure 33. The main job of the ReadProxyConfigFromRegistry function

The ReadProxyConfigFromFireFox function is very long so we won't cover it in detail here.
The UpdateFile function uses the memsearh equivalent function to find a string in the file's

content, and C&C Info will be written at the found location. In the case of this malware, the
mask string is "192.168".

22/27

https://1.bp.blogspot.com/-OZmYojYNXVk/X92hESx6KVI/AAAAAAAABk4/zBfQp1qg7MMjR8lFrIOzh-Y9dqesdj3EwCNcBGAsYHQ/s910/image37.jpg

(hFile,
dwFileSize;

ElpFileName, @);

{pMem, s_dwFileSize, Mask):

Struct
{s_hFile, pbNewContent, i1, &NumberOfBytesWritten,

hFile);

Figure 34: The UpdateFile function uses the memsearh equivalent function to find a string

We recreated the C&C Info struct as follows:

CCUINFO struc
re|struct _ declspec(align(4)) CC_INFO

{
szAddr_1 db &) BEER| B char szaddr_1[64];
szPort_1 db - 16 char szPort_1[16];
szAddr_2 db 7) 34 char szaddr_2[64];
sZPort_2 db 7 HOS0|0E char szPort_2[16];
sZAddr_3 db 64 d 7) BEADBE char szAddr_3[€4];
szPort_3 db 1 BAER(BE char szPort_3[16];

char szKey|32];
intlé wAalive;
¢ G I char Padding_1[1®@];
proxyConfig P . NFIG 7 B11C|BE PROXY CONFIG proxyConfTig;
318406 char Padding_2[48];
84 Padding_z d i k;
AC CC_INFO ends

Figure 35. struct of C&C info

And C&C info has been hardcoded by hackers in the code:

23/27

https://1.bp.blogspot.com/-Vfd7ApP3IhA/X92hSxI07rI/AAAAAAAABlA/_Q6yGlvwoT8_W4c41DJIm316odhAmKU9QCNcBGAsYHQ/s963/image38.jpg
https://1.bp.blogspot.com/-57hmaR59hR4/X92hbuGu8kI/AAAAAAAABlI/rVSPiOG_qPMSRgff3rB85wUZNhDyyBBMACNcBGAsYHQ/s873/image39.jpg

g_CCInfo db |

Figure 36. C&C information is hardcoded in the malicious code

The content of smanager_ssl.dIlI* (netapi32.dllI**) is original and after being updated from
g_CClinfo structure via:

s a o FATS2THC00001 FF5.

St T

I3 70 b5

Figure 37. Contents of smanager_ssl.dll file (netapi32.dll) before and after being updated

The function to load the extracted file and create the Scheduler Task:

24/27

https://1.bp.blogspot.com/-eyVCPqDAh60/X92hkLC6p3I/AAAAAAAABlQ/FzUn9HNkyP4htKqAKLMg5ENimJNGetrXQCNcBGAsYHQ/s1100/image40.jpg
https://1.bp.blogspot.com/-NDmEEJn3OLk/X92h2uKR7sI/AAAAAAAABlc/e1Nup6DqJhoZFb_IQ2bUWT-SBQok3x-pwCNcBGAsYHQ/s1143/image41.jpg

) == INVALID FILE_ATTRIBUTES)

L
L]
L
L
L]
L
L
L]
L
L
L
L
»

Ftr ; sCoHOURLY™ buszCmdl) ;

ftr "netapi32.dll path" fsc HOURLY

Figure 38. Function LoadDIIAndCreateSchedulerTask to load the extracted file and create a Scheduler
Task

Then, if the malware is run with admin, it will register as a ServiceDII, with the name
mentioned above, the Service registry key chosen at random from a table of ten elements,
and appended "Ex". These series include: "Winmads", "Winrs", "Vsssvr", "PlugSvr",
"WaRpc", "GuiSvr", "WlanSvr", "DisSvr", "MediaSvr", "NvdiaSvr".

After appending Ex by the sprintf function, the registry key on the victim machine is created
under the branch HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost will
be one of the following strings: “WinmadsEx”, “WinrsEx”, “VsssvrEx”, “PlugSvrEx”,
‘“WaRpcEx”, “GuiSvrEx”, “WlanSvrEx”, “DisSvrEx”, “MediaSvrEx”, “NvdiaSvrEx”.

Since the function is also a bit long, only the main points are covered here:

25/27

https://1.bp.blogspot.com/-jWZvSq-d-gM/X92h-v_xtmI/AAAAAAAABlg/9gcasqsokBkWRT7JnTlJaZWv7vagXJOLACNcBGAsYHQ/s1084/image42.jpg

REG_MULTI
this-=r

pThis -=m_x

L1Path, DllPath)

Figure 40. Create service on victim machine

26/27

https://1.bp.blogspot.com/-n_klekVe1dw/X92iUWzDPHI/AAAAAAAABlw/hkO3gVGM3ZAkcVigVihTrkmy1ei7XSAGQCNcBGAsYHQ/s1132/image43.jpg
https://1.bp.blogspot.com/-G6H1skAwpTk/X92ibPIpicI/AAAAAAAABl0/FW5EuqybJtc80MtGTk-3uVNP7j9TUFP9ACNcBGAsYHQ/s1120/image44.jpg

The RegistryCall function is a self-written function by hacker, it is a global function, also only
doing tasks with the Registry. From our point of view, hackers' programming styles are
extremely messy and inconsistent (maybe this is how they intentionally confusing), which
made it difficult for us to analyze. After registering as a DIl service, the Infect function
completes and returns. Malware will exit because of the above call to exit(0) on
OnlInitDialog

We will provide .xml file containing analysis information on IDA so anyone interested in this
malware can use it to re-import IDA and Ghidra using Ghidra's plugin xml_importer.py.

The 10Cs of the malicious code have been noted in the article. You can write your own .bat
file or script using PowerShell, VBS ... to find and remove this malware on the victim's
computers.

Note:
Original smanager_ssl.dll

» MD5: C11E25278417F985CC968C1E361A0FBO
o SHA256:
F659B269FBE4128588F7A2FA4D6022CC74E508D28EEE05C5AFF26CC23B7BD1A5

netapi32.dll (ie smanager_ssl.dll has updated CClinfo):

» MD5: 43CE409C21CAD2EF41C9E1725CA12CEA
o SHA256:
6C1DB6C3D32C921858A4272E8CC7D78280B46BAD20A1DE23833CBE2956EEBF75

Click here for Viethamese version: Part 1, Part 2

Trwong Quéc Ngan (aka HTC)

Malware Analysis Expert - VinCSS (a member of Vingroup)

27/27

https://blog.vincss.net/2020/12/phan-tich-ky-thuat-dong-ma-doc-moi-co-nhieu-dau-hieu-lien-quan-toi-nhom-tin-tac-Panda.html
https://blog.vincss.net/2020/12/re017-2-phan-tich-ky-thuat-dong-ma-doc-moi-co-nhieu-dau-hieu-lien-quan-toi-nhom-tin-tac-Panda.html

