[RE018-1] Analyzing new malware of China Panda hacker group used to attack supply chain against Vietnam Government Certification Authority - Part 1

blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chainagainst-vietnam-government-certification-authority.html

I. Introduction

In process of monitoring and analyzing malware samples, we discovered an interesting blog post of NTT <u>here</u>. Following the sample <u>hash</u> in this report, we noticed a hash on VirusTotal:

History 🕕	
Creation Time	2020-04-26 15:12:58
First Seen In The Wild	2020-04-26 22:12:58
First Submission	2020-07-22 04:46:44
Last Submission	2020-07-22 04:46:44
Last Analysis	2020-12-15 01:56:18
Names ①	
VVSup	
EXE	
eToken.exe	
830DD354A31EF40856	978616F35BD6B7_etoken.exe

Figure 1. Hash's information in the NTT blog

On the event that a hacker group believed to be from Russia attacked and exploited the software supply chain to target a series of major US agencies, along with discovery that the keyword **eToken.exe** belongs to the software that is quite popularly used in agencies, organizations and businesses in Vietnam, we have used **eToken.exe** and **SafeNet** as keywords for searching on VirusTotal and Google. As a result, we uncovered information about two remarkable installation files (<u>1</u>, <u>2</u>) that have been uploaded to VirusTotal since **August 2020**:

Magic TRID TRID File size	Windows Installer CDF V2 Document, Little Endien, Os: Windows, Version 6.1, Code page: 1255, Name of Creating Application: Windows Installer Editor Standalone, Last Saved Time/Date: Wed Jul 02 Time/Date: Wed Jul 02 13:15:10 2014, Last Printed: Wed Jul 02 13:15:10 2014, Title: SafeNet Authentication Client 8.3, Subject: SafeNet Authentication Client 8.3, Author: SafeNet, Inc MSI Installer Database, Comments: 8.3.73.0, Template: Intel Windows Installer Patch (61.8%) Kingsoft WPS Office document (alt.) (27%) Generic OLE2 / Multistream Compound (11:1%) 26.75 M8 (28049920 bytes)	
History		
Creation Til Signature D First Submi Last Submi Last Analys	Date 2020-08-2110:17:00 mission 2020-08-13 00:44:17 mission 2020-08-20 14:24:01	
Names (
gca01-clier	ent-v2-x32-8.3.msi	
gca01-cier File type Magic TRID TRID TRID File size		13:25:54 2014,
File type Magic TRID TRID TRID File size History	Windows Installer CDF V2 Document, Little Endian, Os: Windows, Version 6.1, Code page: 1255, Name of Creating Application: Windows Installer Editor Standalone, Last Saved Time/Date: Wed Jul 02 Create Time/Date: Wed Jul 02 13:25:54 2014, Last Printed: Wed Jul 02 13:25:54 2014, Title: SafeNet Authentication Client 8.3, Subject: SafeNet Authentication Client 8.3, Author: SafeNet eToken MSI Installer Database, Comments: 8.3, 23:0, Template: x64 Microsoft Windows Installer (86:3%) Windows Installer (86:3%) Windows Installer Patch (8:4%) Kingsoft WPS Office document (alt.) (3.7%) Generic CLE2 / Multistream Compound (1.5%) 39:94 MB (418/28016 bytes)	13:25:54 2014,
File type Magic TRID TRID TRID File size	Windows Installer CDF V2 Document, Little Endian, Os: Windows, Version 6.1. Code page: 1255, Name of Creating Application: Windows Installer Editor Standalone, Last Saved Time/Date: Wed Jul 02 Create Time/Date: Wed Jul 02 13:25:54 2014, Last Printed: Wed Jul 02 13:25:54 2014, Title: SafeNet Authentication Client 8.3, Subject: SafeNet Authentication Client 8.3, Author: SafeI eToken MSI Installer Database, Comments: 8.3.73.0, Template: x64 Microsoft Windows Installer Patch (8.4%) Kingsoft WPS Office document (alt) (3.7%) Generic CLE2 / Multistream Compound (1.5%) 39:94 MB (418/8016 bytes)	13:25:54 2014,
File type Magic TRID TRID TRID TRID File size History Creation T Signature First Subm	Windows Installer CDF V2 Document, Little Endian, Os: Windows, Version 6.1, Code page: 1255, Name of Creating Application: Windows Installer Editor Standalone, Last Saved Time/Date: Wed Jul 02 13:25:54 2014, Last Printed: Wed Jul 02 13:25:54 2014, Title: SafeNet Authentication Client 8.3, Subject: SafeNet Authentication Client 8.3, Author: Safe eToken MSI Installer Database, Comments: 8.3, 73.0, Template: x64 Microsoft Windows Installer Patch (8.4%) Kingsoft WPS Office document (alt.) (3.7%) Generic OLE2 / Multistream Compound (1.5%) 39:94 MB (418/78016 bytes)	13:25:54 2014,

Figure 2. Information look up on VirusTotal

The name of the installation files are quite familiar: **gca01-client-v2-x32-8.3.msi** and **gca01-client-v2-x64-8.3.msi**, We have tried to download these two files from the website and they have the same hash value. However, at the present time, all files on the VGCA homepage have been removed and replaced with the official clean version. According to the initial assessment, we consider this could be an attack campaign aimed at the software supply chain that can be leveraged to target important agencies, organizations and businesses in Vietnam.

On December 17th, ESET announced a discovery of an attack on APT they called "<u>Operation</u> <u>SignSight</u>" against the Vietnam Government Certification Authority (VGCA). In that report, ESET said they have also notified VNCERT and VGCA and VGCA has confirmed that they were aware of the attack before and notified the users who downloaded the trojanized software. At the time of analysis, we have obtained two setup files that have been tampered by hackers. This blog post series will focus on analyzing the signatures and techniques that hackers have applied to malicious samples in these two installation files.

II. Analyze installation file

This application is named as **"SafeNet Authentication Clients**" from **SafeNet .Inc** company. Portable Executable (PE) files are mostly signed with SafeNet certificates.

neral Digital Sig	natures Security Details Previous Versions	General	Digital Signatu	es Security Details	Previous Versions	General Advanced			
Property	Value	Sg	ature list				gnature Information signature is OK.	C.	
Description File description Type File version	e Token Base Cyptographic Provider Application extension 8.3.73.0		ame of signer: afeNet, Inc.	Digest algorithm sha1	Timestamp Thursday, July 3, 201	Signer information Name:	SafeNet, Inc.		
Product name Product version	SefeNet Authentication Client 8.3.73.0					E-mail:	Not available		
Copyright Size	© SafeNet, Inc. All tights reserved. 10.3 KB				Details	Signing time:	Thursday, July 3, 2	0147:57:04PM	
Date modified Language	03/07/2014 3:57 PM English (United States)							Wew Cerb	ficate
Original filename	eTCAPI.DLL					Countersignatures		A Cash and Cash	
						Name of signer: Symantec Time	E-mail address: Not available	Timestamp Thursday, July 3	, 20

Figure 3. PE files signed with SafeNet certificate

By using **UniExtract** tool, we extracted the entire file from an installer (x64 setup file). The total number of files is **218** files, **68** subfolders, the total size is **75.1 MB** (*78,778,368 bytes*). To find out which file has been implanted by hackers, we only focus on analyzing and identifying unsigned PE files.

With the help of **sigcheck** tool in *Micorsoft's SysInternals Suite*, with the test parameters is signed, hash, scan all PE files, scan the hash on VirusTotal, the output is csv file. Then sorting by unsigned file, resulting from VirusTotal, we discovered that **eToken.exe** is the file was implanted by the hacker.

Figure 4. Discovered file was implanted by hacker

The hash of this **eToken.exe** matches with the one in NTTSecurity's report. Another strange point is that it's a 32bit PE but located in the x64 directory, the version information such as *"Company, Description, Product..."* are not valid for such a large company application. Here is the scan result of the eToken file on <u>VirusTotal</u>.

Since this application is built with **Visual C ++** of Visual Studio 2005 which is old version, and uses the Qt4 library, some of the dll files of this installer are also unsigned. We checked each file and determined that the files were clean, leaving only three suspicious files: **RegistereToken.exe**, **eTOKCSP.dll** and **eTOKCSP64.dll**.

So **eToken.exe** file is a malware that hackers have added to the installation of the software suite. To find out how **eToken.exe** is executed, we analyze the installation file: msi file (*Microsoft Windows Installer file*): **gca01-client-v2-x64-8.3.msi**

Extracting the msi file to raw format before installing, we obtained two **.cab** files (*Microsoft Cabinet file*): **Data1.cab** and **Cabs.w1.cab**. This is anomaly because a normal msi file has only one main .cab file. Check the **Data1.cab** file and the MSI log text file, **eToken.exe** and **RegistereToken.exe** are in **Data1.cab** file. And both .exe files have no **GUID ID** info:

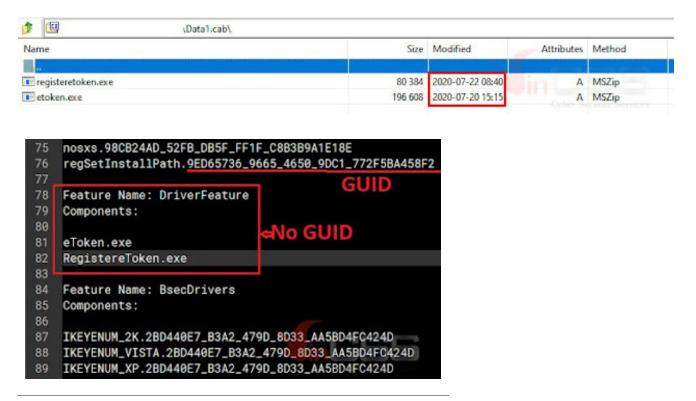


Figure 5. Exe files do not have a GUID ID info

Continue checking the features: **DriverFeature**, and two files **eToken.exe** and **RegistereToken.exe** msi file with Microsoft's **Orca** tool (*a specialized tool for analyze and modify msi files*). Through a search, the hacker has added a custom action: **RegisterToken** (without "e" before Token) to the msi file and added that **CustomAction** at the end of **InstallExecuteSequence**. **RegistereToken.exe** will be called with the parameter is **eToken.exe**:

Action	Type	Source	Target	^	Tables	^	Action	Condition	Sequence
RegisterToken	18	registeretoken.exe	eToken.exe		InstallExecuteSequence		RegisterToken		6604
				Y	InstallUISequence	~		2	in
<			;	>	Tables: 94		InstallExecuteSequ	ence - 176 rows	Coher Security Services

Figure 6. Hacker implanted a custom action

Analyzing the **RegistereToken.exe** file, we see that this file was built on **"Wednesday**, **22.07.2020 07:40:31 UTC"**, ie **07/22/2020, 2h40m31s PM GMT +7, PE64**, using VC ++ **2013**:

Structure Field	Value	Description	@comp.id	Using	Description	Visual Studio
Machine	0x865/4	AMD x64	0x000E520D	1	Linker 12.0.21005, Link	VS 12.0 2013
Number Of Sections	0x0006		0x00085200	1	CVIRES 12.0.21005, RES to COFF	VS 12.0 2013
TimeDate Stamp	0x5F17ED6F	22/07/2020 - 2:40:31 PM	0x00E5520D	1	UTC CL 18.0.21005, C++ OBJ (LTOG)	VS 12.0 2013
Pointer To Symbol Table	0x00000000		0x00010000		IAT Entry	CONTRACTOR OF THE
Number Of Symbols	0x00000000		0x00CBFFDD		Linker 11.0.65501, Import Library	VS 11.0 2012
Size Of Optional Header	0x00F0	240 B	0x000F5146		MASM 12.0.20806, ASM COFF -	VS 12.0 2013
Characteristics	0x0022	Executable image, Large address aware	0x00E05146		UTC CL 18.0.20805, C COFF	VS 12.0 2013
			0x00E15146		UTC CL 18.0.20805, C++ COFF	O VS 12.0 2013

Figure 7. Information of the RegistereToken.exe file

RegistereToken.exe's pseudo code only calls the **WinExec** API to execute the passed in argument:

Figure 8. Tasks of RegistereToken.exe

With all the information above and based on the timestamp in the **Data1.cab** and **RegistereToken.exe** files, we can conclude:

• Hacker has created and modified the **.msi** file and created the **Data1.cab** file at timestamp: **07/20/2020 - 15:15 UTC time**, added the **eToken.exe** file at this time.

- Build RegistereToken.exe file at timestamp: 22/07/2020 07:40 UTC
- Add RegistereToken.exe file to Data1.cab at timestamp: 22/07/2020 08:40 UTC

Note: According to Cab file format, the two **Date** and **Time** fields of a file in the cab file are **DOS Datetime format**, each of which is a Word 2 bytes which reflect the time when the file was added according to DOS time. Cab file processing programs will convert and display in UTC time. That is, the above UTC times are the current time on the hacker machine. See more <u>here</u>.

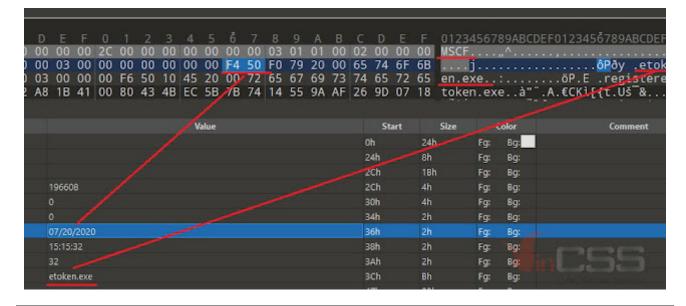


Figure 9. MS DOS Datetime Information

III. Analyze eToken.exe

1. Analyze PE Structure

File eToken.exe:

- Size: 192 KB (196,608 bytes)
- MD5: 830DD354A31EF40856978616F35BD6B7
- SHA256: 97A5FE1D2174E9D34CEE8C1D6751BF01F99D8F40B1AE0BCE205B8F2F0483225C

Information about compiler, RichID and build timestamp:

- Build with VC ++ 6 of Microsoft Visual Studio, Service Pack 6.
- Build at: 26/04/2020 15:12:58 UTC
- Checksum is correct, file has not been modified PE Header.
- Linking with MFC42.dll library, Microsoft Foundation Class v4.2 library of Microsoft, is a library supporting GUI programming on Windows, always included in Visual Studio suite.

• Link with a special library: **dbghelp.dll**. Use the **MakeSureDirectoryPathExist** API function. See more <u>here</u>.

Checking the resource section of the file, we determined that this is a Dialog application, created by *MFC Wizard* of Visual Studio 6. The project name is **VVSup**, which means the **.exe** file when built out would be **VVSup.exe**.

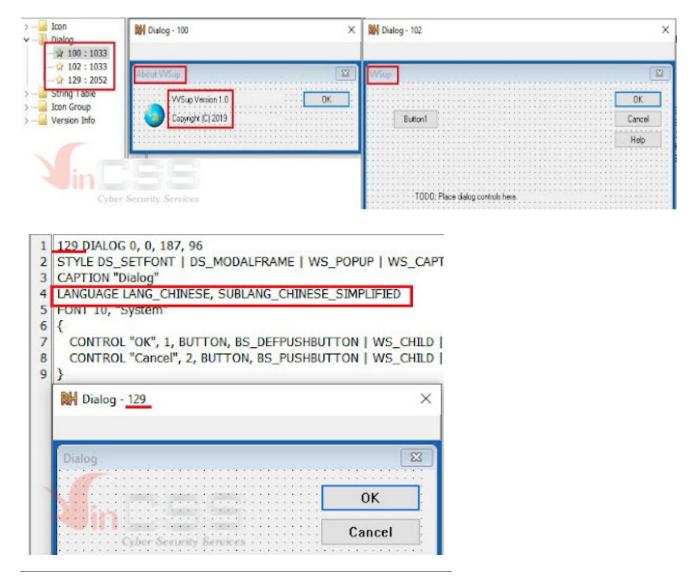


Figure 10. File's resource information

2. Static code analysis

eToken.exe (**VVSup.exe**) is built with dynamic link DLL mode with **MFC42.dll**, so the .exe file will be small and the functions of the MFC42 libirary will be easily identified via the name import of the DLL. The name mangling rule of Microsoft VC ++ compiler reflects the class name, function name, parameter name, call type... of functions. IDA helps us to define the functions import by ordinal of **MFC42.dll** using the file **mfc42.ids** and **mfc42.idt** included with IDA.

However, **VVSup** is built with the **RTTI** (*Runtime Type Information*) option is disabled, so there is no information about the **RTTI** and **Virtual Method Table** of all classes in the file. We only have **RTTI** of class **type_info**, the **root** class of RTTI.

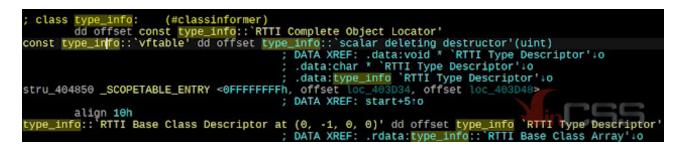


Figure 11. RTTI Info of type_info class

The analysis will show how to define classes, recreate the code of this malware, and share experience in applying when analyzing malwares/files using MFC.

Plugins used:

- Simabus's ClassInformer
- Matrosov's HexRaysCodeXplorer
- MFC_Helper

The MFC C++ source code can be found in the src\mfc directory of the Visual Studio installer. Since MFC4.2 (MFC of VS6) is very old, it can be found on Github. We refer <u>here</u>. About the relationship chart of the classes of MFC (Hierarchy Chart), you can see at this <u>link</u>.

Three important dlls file to diffing/compare with MFC malware, for example in this sample **eToken**, are **mfc42.dll**, **mfc42d.dll**, **mfco42d.dll**. You can find and download the correct debug symbol file (.pdb) of the dlls you have. The most important one is **mfc42d.dll** (*debug build*), since its **.pdb** will contain full information about the types, enumes, classes, and vtables of the MFC classes. We export local types from **mfc42d.dll** to **.h** file, then import into our idb database. IDA's Parse C ++ has an error, unable to parse the "<>" template syntax, so we find and replace pairs of "<" and ">" to "_" in .h files.

Parallel opening **mfc42d.dll** in new IDA together with IDA is parsing malware, copy names, types of classes, functions from **mfc42d.dll**. As mentioned, this malware is an MFC Dialog application, so we will definitely have the following classes in the malware: **CObject**, **CCmdTarget**, **CWinThread**, **CWnd**, **CDialog**. According to the MFC Wizard's auto-naming rule, we have classes with the following names: **CVVSupApp** (inherited from **CWinApp**), **CAboutDlg** (dialog About, **resID = 100**), **CVVSupDlg** (main dialog, **resID = 102**).

Scan results of vtables, classes of two plugins **ClassInformer** and **HexRaysCodeXplorer**.

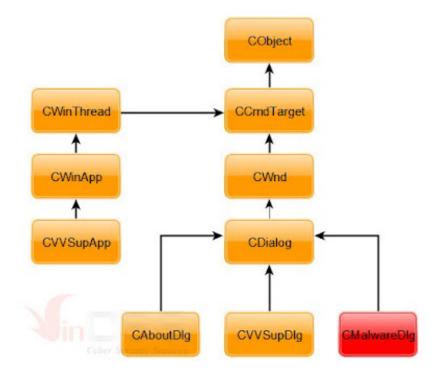
12	Pseudocod	e-A		Object Explorer	×	
0x4043		x4043c8: x4044c0:	off_4043 off_4043			
2 0x4045	08 - 0	x4045ac:	off_4045	08 methods	count:	41
3 0x4046 4 0x4047		x404770: x404848:	off_4046 off_4047			
Class Informe	a]			-		
Vftable	Methods	Flags	Туре	Hierarchy		
* 0040484C	1		type_info	type_info:		

Figure 12. Scanning vtables, classes result

Use **MFC_Helper** scan **CRuntimeClass**, as expected, **CVVSupDIg** has **CRuntimeClass** and add another class: **CVVSupDIgAutoProxy**. It shows that the hacker when running the MFC Wizard, clicked to select support OLE Control.

public: static struct CRuntin	<pre>meClass const CVVSupDlgAutoProxy::classCVVSupDlgAutoProxy dd offset szCVVSupDlgAutoProxy::GetRuntimeClass(void):o</pre>
	; CreateOleObjFactory+7+0
dd 24h	; m n0bjectSize ; "CVVSuDlgAutoProxy"
dd OFFFFh	m wschema
	<pre>itoProxy::CreateObject(void); m_pfnCreateObject</pre>
dd offset CCmdTarget:	::GetRuntimeClass(void): m_pfnGetBaseClass
dd 0	: m_pNextClass
public: static struct CRunti	meClass const CVVSupDlg::classCVVSupDlg dd offset szCVVSupDlg :
public: static struct CRunti dd 68h	<pre>meClass const CVVSupDlg::classCVVSupDlg dd offset szCVVSupDlg ; DATA XREF: CVVSupDlg::GetRuntimeClass(void):o ; m nObjectSize : "CVVSupDlg"</pre>
dd 68h	<pre>; DATA XREF: CVVSupDlg::GetRuntimeClass(void):o ; m_nObjectSize ; "CVVSupDlg"</pre>
dd 68h dd 0FFFFh dd 0 dd offset CDialog::G	<pre>; DATA XREF: CVVSupDlg::GetRuntimeClass(void):o ; m_nObjectSize ; "CVVSupDlg" ; m_wSchema ; m_pfnCreateObject etRuntimeClass(void): m_pfnGetBaseClass</pre>
dd 68h dd 0FFFFh dd 0 dd offset CDialog::G dd 0	<pre>; DATA XREF: CVVSupDlg::GetRuntimeClass(void):o ; m_nObjectSize ; "CVVSupDlg" ; m_wSchema ; m_pfnCreateObject etRuntimeClass(void); m_pfnGetBaseClass ; m_pNextClass</pre>
dd 68h dd 0FFFFh dd 0 dd offset CDialog::G dd 6	<pre>; DATA XREF: CVVSupDlg::GetRuntimeClass(void):o ; m_nObjectSize ; "CVVSupDlg" ; m_wSchema ; m_pfnCreateObject etRuntimeClass(void): m_pfnGetBaseClass</pre>

Figure 13. Detect classe after run MFC_Helper


Based on the import function **CWinApp::GetRuntimeClass**, we can determine **CVVSupApp** vtable, and based on **CDialog::GetRuntimeClass** we can define two vtables of the other two dialogs. But which dialog is About, which dialog is a malware dialog? Identify all the internal structures of MFX such as **AFX_MSGMAP**, **AFX_DISPMAP**, **AFX_INTERFACEMAP**...

Using the Xref to feature call the CDialog constructor: void __thiscall CDialog::CDialog (CDialog *this, unsigned int nIDTemplate, CWnd *pParentWnd), nIDTemplate is the resID of the dialog, we define the vtable of CAboutDlg and CMalwareDlg. Because CMalwareDlg does not have CRuntimeClass and RTTI, so it is temporarily named like that. The hacker deleted the DECLARE_DYNAMIC_CREATE line of these two classes and the CVVSupApp class when build.

.text:004034A0 .text:004034A0 .text:004034A0 .text:004034A0	public:thi	scall CAboutDlg:	lg::CAboutDlg(CAboutDlg *this) :CAboutDlg(void) proc near ; CODE XREF: CVVSupDlg::On
.text:004034A0 000		esi	 Demonstitled
.text:004034A1 004		0	; pParentWnd
.text:004034A3 008		esi, ecx	
.text:004034A5 008		100	; nIDTemplate
.text:004034A7 00C .text:004034A7	call	CDIALOG::CDIA	log(uint,CWnd *)
.text:004034A7	mov	duard atr for	<pre>i], offset const CAboutDlg::`vftable'</pre>
.text:004034B2 004	mov	eax, esi	ij, offset const caboutbit vrtable
.text:004034B4 004	qoq	esi	
.text:004034B5 000		COT	
.text:004034B5	1001		
.text:004034B5	public: thi	scall CAboutDlg:	:CAboutDlg(void) endp
.text:004034B5	public:thi	scall CAboutDlg:	:CAboutDlg(void) endp
A	public:thi	129	; nIDTemplate
. text:00401125 010	IIIOV	129	
text:00401E2A 010	push	129	; nIDTemplate
.text:00401E2A 010 .text:00401E2A 010 .text:00401E2F 014	push	129 CDialog::CDia	; nIDTemplate log(uint,CWnd *)
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E2F text:00401E34 00C text:00401E37 00C	push call	129 CDialog::CDia edx, [ebx+60h eax, eax	; nIDTemplate log(uint,CWnd *)
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E2F text:00401E34 00C text:00401E37 00C	push call lea	129 CDialog::CDia edx, [ebx+60h eax, eax ecx, 40h ; '@	; nIDTemplate log(uint,CWnd *)
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E2F text:00401E34 00C text:00401E37 00C text:00401E39 00C	push call lea xor mov mov	129 CDialog::CDia edx, [ebx+60h eax, eax ecx, 40h ; '@ edi, edx	; nIDTemplate log(uint,CWnd *)
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E34 00C text:00401E37 00C text:00401E39 00C text:00401E38 00C text:00401E3E 00C	push call lea xor mov mov mov	129 CDialog::CDia edx, [ebx+60h eax, eax ecx, 40h ; '@ edi, edx dword ptr [eb	; nIDTemplate log(uint,CWnd *)] * x], offset <u>const CMalwareDlg::`vftable'</u>
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E34 00C text:00401E37 00C text:00401E39 00C text:00401E38 00C text:00401E40 00C	push call lea xor mov mov mov mov	129 CDialog::CDia edx, [ebx+60h eax, eax ecx, 40h ; '@ edi, edx dword ptr [eb [ebx+CMalware	; nIDTemplate log(uint,CWnd *)] x], offset <u>const CMalwareDlg::`vftable'</u> Dlg.m_pfnmemcpy], eax
text:00401E25 010 text:00401E2A 010 text:00401E2F 014 text:00401E34 00C text:00401E37 00C text:00401E39 00C text:00401E38 00C text:00401E3E 00C	push call lea xor mov mov mov	129 CDialog::CDia edx, [ebx+60h eax, eax ecx, 40h ; '@ edi, edx dword ptr [eb [ebx+CMalware [ebx+CMalware	; nIDTemplate log(uint,CWnd *)] * x], offset <u>const CMalwareDlg::`vftable'</u>

Figure 14. Identify vtable of CAboutDlg and CMalwareDlg

Relational Classes table of this malware:

	Object Explorer					5	×
1 2 3	0x4043e8 0x404508 0x404698	0x4044c0: 0x4045ac: 0x404770:	const const const	CVVSupDlgAutoProxy::`vftable' methods count: 5 CMalwareDlg::`vftable' methods count: 5 CVVSupApp::`vftable' methods count: 41 CAboutDlg::`vftable' methods count: 54 CVVSupDlg::`vftable' methods count: 54	54	22	2

Figure 15. Relational classes table of this malware

Copy the names of functions, types, function types, parameters ... from the respective parent classes of the above classes, in the correct order in the vtable, identify the generated MFC Wizard functions and the functions the hacker wrote.

.rdata:00404418	dd offset CMalwareDlg::GetMessageMap(void)
.rdata:004044AC	dd offset CMalwareDlg::OnInitDialog(void)
.rdata:00404538	<pre>dd offset CVVSupApp::GetMessageMap(void)</pre>
.rdata:00404560	dd offset CVVSupApp::InitInstance(void)
.rdata:004047A0	<pre>dd offset CVVSupDlg::GetMessageMap(void)</pre>
.rdata:00404834 .rdata:00404838 .rdata:0040483C .rdata:00404840	<pre>dd offset CVVSupDlg::OnInitDialog(void) dd offset CDialog::OnSetFont(CFont *) dd offset CVVSupDlg::OnOK(void) dd offset CVVSupDlg::OnCancel(void)</pre>

Figure 16. Result after copy name of functions, types, function types, parameters

Every MFC application has a global variable called **theApp**, belonging to the main class **CXXXApp** inheriting from **CWinApp**. In the case of this malware are: **CVVSupApp theApp**; This global variable is initialized by C RTL in the **start** function, called before **main/WinMain**, in table **__xc_a**. The functions in this table call after the C RTL constructors in **__xi_a**. These tables are the parameters passed to the internal **_initterm** function of C RTL.

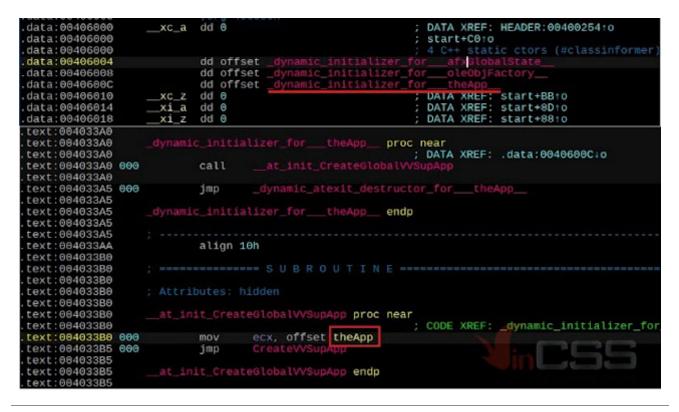


Figure 17. TheApp global variable in the MFC application

The flowchart of creating and executing an MFC application is as follows:

start -> initterm	→ Initialize → WinMain	AtxWinMain -> Inflatize	theApp:: IntApplication called	meApp:: Initinstance called	→ theApp::Run → End
					Vin C55 Cyber Security Services

Figure 18. Flowchart of creating and executing an MFC application

The CVVSupApp :: InitInstance function is also a common code generated by MFC wizard

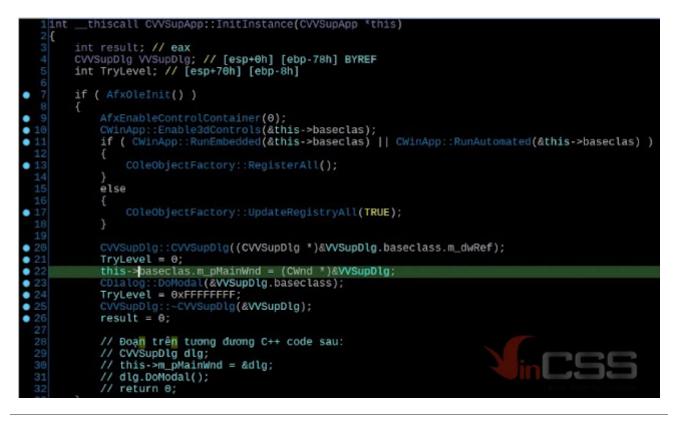


Figure 19. CVVSupApp::InitInstance function

Constructor of **CVVSupDIg: void CVVSupDIg::CVVSupDIg()** is also common code generated by MFC Wizard. But in **CVVSupDIg::OnInitDialog**, which is called from **CVVSupDIg::DoModal()**, we can see immediately, at the end of the code that the MFC Wizard generated, **CMalwareDIg** is initialized and shown, then the malware exits forcibly **exit (0)**.

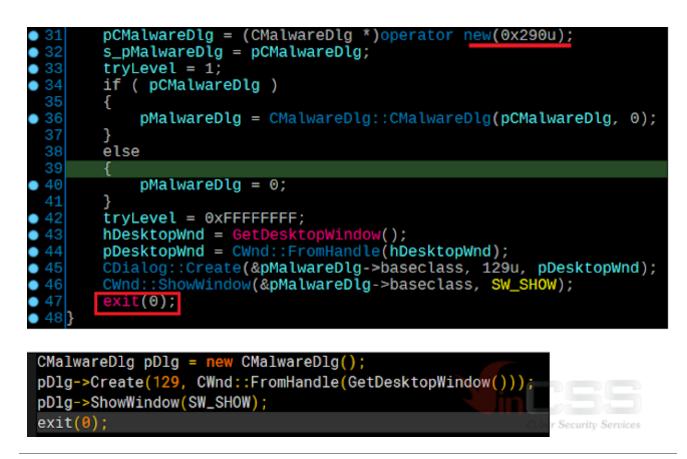


Figure 20. CMalwareDlg was created and shown

The value **129** is the **resID** of the **CMalwareDIg** dialog, and **sizeof(CMalwareDIg) = 0x290**, which is larger than the size of the parent CDialog. It proves that **CMalwareDIg** was added by hackers to some data members. Through analysis, we recreated the data members of **CMalwareDIg**:

baseclass CDialog ?	Offset	Size	<pre>structdeclspec(align(4)) CMalwareDlg</pre>
m_szBase64Table db 256 dup(?) m_szServiceName db 260 dup(?) m_szMask db 32 dup(?) m_pfnmemcpy dd ? m_pfnmemset dd ? m_pfnShellExecuteExA dd ? CMalwareDlg ends	0060 0160 0264 0284 0288	0060 0100 0104 0020 0004 0004 0004 0004	<pre>char m_szBase64Table[256]; char m_szServiceName[260]; char m_szMask[32]; void *m_pfnmemcpy; void *m_pfnmemset; void *m_pfnShellExecuteExA;</pre>

Figure 21. Recreate data members of CMalwareDlg

The **CMalwareDlg::CMalwareDlg** Constructor does the following initialization jobs. Note the copy string **"192.168"** into the field **m_szMask**:

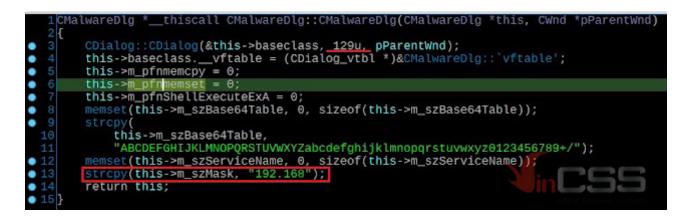


Figure 22. Copy "192.168" string to m_szMask field

When shown, **CMalwareDig::OnInitDialog** will be called, and the main function that is important for doing the malware's task is called here:

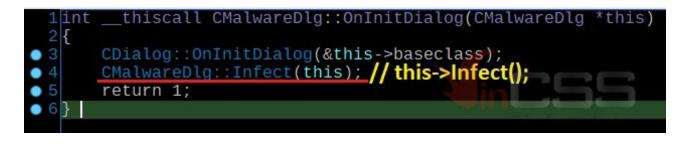


Figure 23. The Infect main function will do the malware's job

The **Infect** (we named) function is relatively long, so it should be presented via the flowchart below:

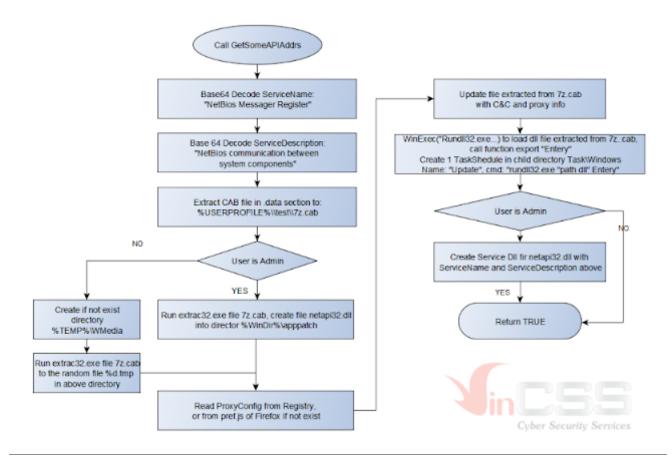


Figure 24. Infect function flowchart

We'll go into detail each of the important child functions called by the **Infect** function of the **CMalwareDig** class. The **UserIsAdmin** function, using the **IsUserAdmin()** API of **shell32.dll**:

Figure 25. UserIsAdmin fuction

GetSomeAPIAddrs function is a redundant function, function pointers are taken but completely unused. We guess this could be an old code.

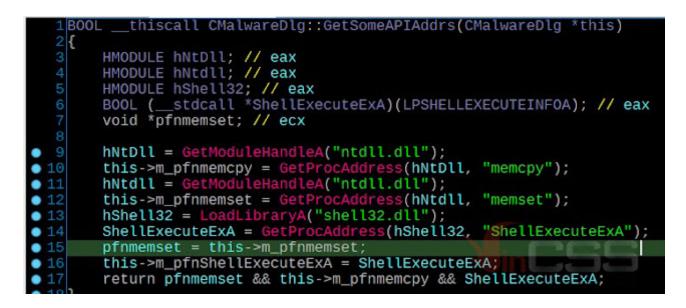


Figure 26. GetSomeAPIAddrs function

The **Base64Decode** function is like other Base64 decode functions, except that the Base64 code table is copied by the hacker to a char arrary **m_szBase64Table** and accessed from here. After being decoded Base64, the original ServiceName

"TmV0QmIvcyBNZXNzYWdIciBSZWdpc3RIcg==" will be "NetBios Messager Register". The original ServiceDescription

"TmV0QmlvcyBjb21tdW5pY2F0aW9ulGJldHdlZW4gc3lzdGVtlGNvbXBvbmVudHMu" would be "NetBios communication between system components."

The **ExtractCabFile** function is a global function, not part of the **CMalwareDig** class. Note that the file is created with the attribute hidden.

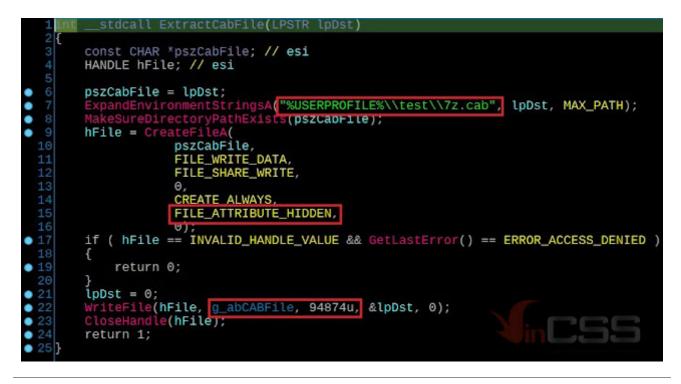


Figure 27. ExtractCabFile function

The .cab file is completely embedded in the .data section, size = 94874 (0x1729A). Hackers declared the following equivalent: "static BYTE g_abCabFile[] = {0xXXXX, 0xYYYY};" (no const, so it will be located in .data section). Extracting that area, we have a .cab file containing a file, named smanager_ssl.dll, the date added to the cab is 04/26/2020 - 23:11 UTC, build date 26.04.2020 15:11:24 UTC.

action					
g_abCABFile db 'MSCF' 0)	; DA1	A XREF: E	xtractCabFile+54↑	0
db db					
db 0					
db 0					
db 9Ah					
dh 72h ' r					
	Size	Modified	Attributes	Method	Block
1	175 616	2020-04-26 23:11	A	MSZipCyber Security Services	(
	g_abCABFile_db_'MSCF'6 db db 0 db 0 db 0 db 9Ah	g_abCABFile db 'MSCF' 0 db 0 db 0 db 0 db 9Ah db 72h r Size	g_abCABFile db 'MSCF' 0 ; DAT db db 0 db 0 db 0 db 9Ah	g_abCABFile db 'MSCF' 0 ; DATA XREF: E db db 0 db 0 db 9Ah db 72b r Size Modified Attributes	g_abCABFile db 'MSCF' 0 ; DATA XREF: ExtractCabFile+54↑ db 0 db 0 db 0 db 9Ah db 72b r Size Modified Attributes Method E

Figure 28. The embedded .cab file contains the file smanager_ssl.dll

The **smanager_ssl.dll** file (**netapi32.dll**) will be analyzed in the next post because it is relatively complex.

2[3] char szFile[16]; // [esp+10h] [ebp-218h] BYREF 4] char szParams[520]; // [esp+20h] [ebp-208h] BYREF	
citat aziatama[ozo], // [capizon] [copizon] biter	
memset(szParams, 0, sizeof(szParams));	
• 7 strcat(szParams, "\"");	
8 strcat(szParams, szCabPath);	
9 strcat(szParams, "\");	
10 strcat(szParams, "");	
<pre>11 strcat(szParams, szDestFile);</pre>	
● 12 strcat(szParams, " /Y /L ");	
● 13 strcat(szParams, "\"");	
<pre>14 strcat(szParams, szDestDir);</pre>	
● 15 streat(szParams, "\"");	
16 strcpy(szFile, "extrac32.exe");	
17 // SZFile = "extrac32.exe"	
18 // szParams = "\"path of 7z.cab\" /Y /L \"destination dir\"	
<pre>17 // sZFite = "extrac32.exe" 18 // sZParams = "\"path of 7z.cab\" /Y /L \"destination dir\" 19 ExecuteAndWait(szParams, szFile); 20 memset(szParams, 0, 2600);</pre>	
20 memset(szparams, 0, 260u);	
<pre>e1 strcat(szParams, szDestDir);</pre>	
• 22 streat(szParams, "\\");	
<pre>23 strcat(szParams, szDestFile); 24 return 1;</pre>	PB
• 24 return 1;	لے بے ا
• 20}	

Figure 29. RunExtrac32Exe function

The **ExecuteAndWait** function is also a global function, using the **ShellExecuteExA** API to call and wait until the execution completes.

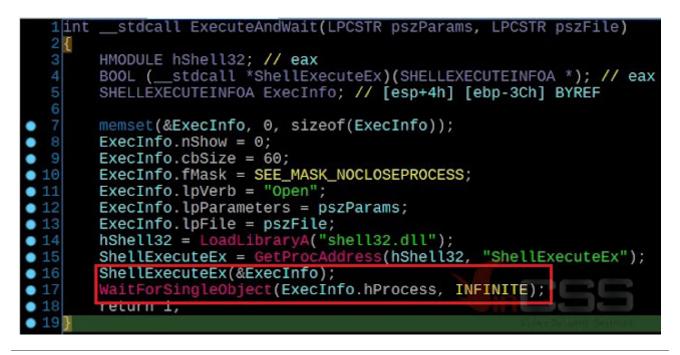


Figure 30. ExecuteAndWait function

The Config of the Proxy on the victim machine is defined by the hacker through a struct as shown, **PROXY_TYPE** is an enum:

00000000 PROXY_CONFIG struc ; (sizeof=0x68	Offset Size struct PROXY_CONFIG
00000000	0000 0040 ¹ char szAddress[64];
00000000 szAddress db 64 dup(?)	0040 0024 char szPort[36];
00000000 00000040 szPort db 36 dup(?)	0064 0004 PROXY_TYPE proxyType
00000040	FFFFFFFF ; enum PROXY_TYPE,
00000064 proxyType dd ?	FFFFFFF PROXY_HTTP = 1
00000064 00000068 PROXY_CONFIG ends	FFFFFFFF PROXY_SOCKS = 2

Figure 31. struct PROXY_CONFIG

The **ReadProxyConfig** function will read from the victim's registry first, otherwise it will read from the Firefox **pref.js** file. We are still not clear why hackers tried to read from Firefox, maybe they did a reconnaisance to learn about the commonly used web browsers at the target.

Figure 32. ReadProxyConfig function

The **ReadProxyConfigFromRegistry** function is a bit long so there are only important parts:

	Reference)
34	// szSubKey = "Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings"
• 35	if (RegOpenKeyExA(
36	HKEY_CURRENT_USER,
37	szSubKey,
38	, 0,
• 44	<pre>szProxyEnable[0xC] = 0;</pre>
• 45	<pre>strcpy(szProxyEnable, "ProxyEnable");</pre>
• 53	<pre>if (RegQueryValueExA(hkResult, szProxyEnable, 0, 0, szData, &cbData))</pre>
54	{
• 55	return 0;
56	}
• 72	if (strstr(szData, "http="))
73	
• 74	<pre>pos = &pConfig->proxyType; pConfig >provyType = PROXY UTTP;</pre>
 75 76 	<pre>pConfig->proxyType = PROXY_HTTP; sscanf(szData, "http=%[^:]:%d", pConfig, pConfig->szPort);</pre>
77	i
• 78	else if (strstr(szData, "socks="))
79	{
• 80	<pre>pos = &pConfig->proxyType;</pre>
• 81	<pre>pConfig->proxyType = PROXY_SOCKS;</pre>
• 82	<pre>sscanf(szData, "socks=%[^:]:%d", pConfig, pConfig->szPort);</pre>
83	}
84	else
85	{
• 86	<pre>pos = &pConfig->proxyType; if (category (category))</pre>
87 88	if (strstr(szData, "https="))
• 89	{ *pos = PROXY_HTTPS;
. 90	<pre>pszPort = pConfig->szPort;</pre>
• 91	pszAddr = pConfig;
• 92	<pre>szFmt = "https=%[^:]:%d";</pre>
93	}
94	else
95	
• 96	<pre>pszPort = pConfig->szPort;</pre>
• 97	<pre>pszAddr = pConfig;</pre>
98	<pre>szFmt = "%[^:]:%d"; *noc = DDOXX HTTD:</pre>
• 99 100	*pos = PROXY_HTTP; }
• 101	sscanf(szData, szFmt, pszAddr, pszPort);
102	}
• 103	return *pos I= 0;
• 104 }	

Figure 33. The main job of the ReadProxyConfigFromRegistry function

The **ReadProxyConfigFromFireFox** function is very long so we won't cover it in detail here. The **UpdateFile** function uses the **memsearh** equivalent function to find a string in the file's content, and C&C Info will be written at the found location. In the case of this malware, the mask string is "**192.168**".

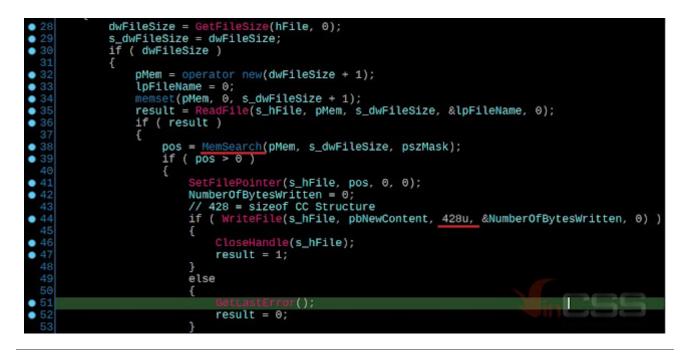


Figure 34: The UpdateFile function uses the memsearh equivalent function to find a string

We recreated the C&C Info struct as follows:

00000000 CC_INFO struc ; (sizeof=0x1AC,			
00000000	Offset Size	struct	declspec(align(4)) CC_INFO
0000000		{	
00000000 szAddr_1 db 64 dup(?)	0000 0040		szAddr_1[64];
00000040 szPort_1 db 16 dup(?)	0040 0010	char	szPort_1[16];
00000050 szAddr_2 db 64 dup(?)	0050 0040	char	szAddr_2[64];
00000090 szPort_2 db 16 dup(?)	0090 0010	char	szPort_2[16];
000000A0 szAddr_3 db 64 dup(?)	00A0 0040	char	szAddr_3[64];
000000E0 szPort_3 db 16 dup(?)	00E0 0010	char	szPort_3[16];
000000F0 szKey db 32 dup(?)	00F0 0020	char	szKey[32];
00000110 wAlive dw ?	0110 0002	in	t16 wAlive;
00000112 Padding_1 db 10 dup(?)	0112 000A	char	Padding_1[10];
0000011C proxyConfig PROXY_CONFIG ?	0110 0068	PROX	Y_CONFIG proxyConfig;
0000011C	0184 0028	char	Padding_2[40];
00000184 Padding_2 db 40 dup(?)	01AC	};	
000001AC CC INFO ends			Cyber Security Services

Figure 35. struct of C&C info

And C&C info has been hardcoded by hackers in the code:

.data:0041D608	; CC_INFO g_CCInfo	
.data:0041D608	<pre>g_CCInfo db 'vgca.homeunix.org'.0</pre>	,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
.data:0041D608		; DATA XREF: CMalwareDlg::Infect+406+0
.data:0041D608	db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,0,0,0,0; szAddr_1
.data:0041D608	db 443,0,0,0,0,0,0,0,0,0,0,0,0	0,0,0,0,0; szPort_1
.data:0041D608	db office365.blogdns.com	,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
.data:0041D608	db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,0,0; szAddr_2
.data:0041D608	db 443,0,0,0,0,0,0,0,0,0,0,0,0	0,0,0,0; szPort_2
.data:0041D608	db 10.0.14.196',0,0,0,0,	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
.data:0041D608	db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; szAddr_3
.data:0041D608	db 53',0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	,0,0,0,0,0; szPort_3
.data:0041D608	db 'f4f5276c00001ff5',0,0,	,0,0,0,0,0,0,0,0,0,0,0,0,0,0; szKey
.data:0041D608	dw 3600	; wAlive
.data:0041D608	db 0Ah dup(0)	; Padding_1
.data:0041D608	db 40h dup(⊖)	proxyConfig.szAddress
.data:0041D608	db 24h dup(0)	proxyConfig.szPort
.data:0041D608	dd 🙂	proxyConfig.proxyType
.data:0041D608	db 28h dup(0)	; Padding_2

Figure 36. C&C information is hardcoded in the malicious code

The content of **smanager_ssl.dll*** (**netapi32.dll****) is original and after being updated from **g_CCInfo structure** via:

B1	39	32	2E	31	36	38	2E	192 168 76 67 63 61 2E 68 6F 6D u"
00	00	00	00	00	00	00	00	0.107
38	38	38	38	00	00	00	00	
00	00	00	00	00	00	00	00	73 2E 63 6F 6D 00 00 00office365.blogdns.com.
00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	31 30 2E 30 2E 31 34 2E
00	00	00	00	00	~~	00	~~	00 00 00 00 00 00 00 196
00		100	00					35 33 00 00 00 00 00 00
00	00	00					00	
00	00		00			00		
00	00			00				Trước Update
00	00	111			~~	~~	00	
00	00	00	00			00		00 00 00 00 00 00 00 00 00 00 00 00 00
00	00			00				
ZE	3F	41	56	74	79	70	65	Ä?AVtype 2E 3F 41 56 74 79 70 65ÄÄÄ

Figure 37. Contents of smanager_ssl.dll file (netapi32.dll) before and after being updated

The function to load the extracted file and create the Scheduler Task:

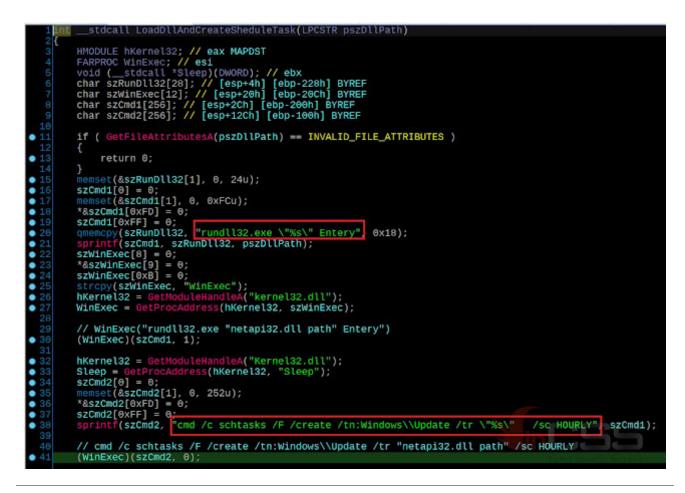


Figure 38. Function LoadDllAndCreateSchedulerTask to load the extracted file and create a Scheduler Task

Then, if the malware is run with admin, it will register as a **ServiceDII**, with the name mentioned above, the Service registry key chosen at random from a table of ten elements, and appended "**Ex**". These series include: "**Winmads**", "**Winrs**", "**Vsssvr**", "**PlugSvr**", "**WaRpc**", "**GuiSvr**", "**WlanSvr**", "**DisSvr**", "**MediaSvr**", "**NvdiaSvr**".

After appending **Ex** by the **sprintf** function, the registry key on the victim machine is created under the branch **HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost** will be one of the following strings: "**WinmadsEx**", "**WinrsEx**", "**VsssvrEx**", "**PlugSvrEx**", "**WaRpcEx**", "**GuiSvrEx**", "**WlanSvrEx**", "**DisSvrEx**", "**MediaSvrEx**", "**NvdiaSvrEx**".

Since the function is also a bit long, only the main points are covered here:

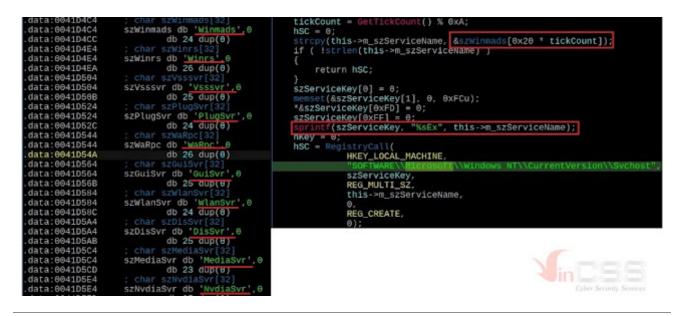


Figure 39. Create a registry key on a victim machine

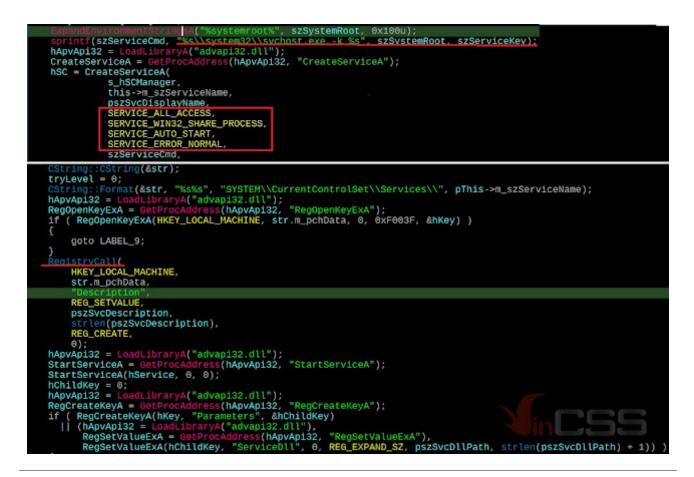


Figure 40. Create service on victim machine

The **RegistryCall** function is a self-written function by hacker, it is a global function, also only doing tasks with the Registry. From our point of view, hackers' programming styles are extremely messy and inconsistent (*maybe this is how they intentionally confusing*), which made it difficult for us to analyze. After registering as a DII service, the Infect function completes and returns. Malware will exit because of the above call to **exit(0)** on **OnInitDialog**

We will provide **.xml** file containing analysis information on IDA so anyone interested in this malware can use it to re-import IDA and Ghidra using Ghidra's **plugin xml_importer.py**.

The IOCs of the malicious code have been noted in the article. You can write your own **.bat** file or script using *PowerShell, VBS* ... to find and remove this malware on the victim's computers.

Note:

Original smanager_ssl.dll

- MD5: C11E25278417F985CC968C1E361A0FB0
- SHA256: F659B269FBE4128588F7A2FA4D6022CC74E508D28EEE05C5AFF26CC23B7BD1A5

netapi32.dll (ie smanager_ssl.dll has updated CCInfo):

- MD5: 43CE409C21CAD2EF41C9E1725CA12CEA
- SHA256: 6C1DB6C3D32C921858A4272E8CC7D78280B46BAD20A1DE23833CBE2956EEBF75

Click here for Vietnamese version: Part 1, Part 2

Trương Quốc Ngân (aka HTC)

Malware Analysis Expert - VinCSS (a member of Vingroup)