Threat Bulletin: Dissecting GuLoader's Evasion Techniques

XX vmray.com/cyber-security-blog/guloader-evasion-techniques-threat-bulletin/

Editor's Note: This blog post was updated on August 10, 2020.

Over the last couple of months, we observed a new downloader called GuLoader (also known as CloudEyE) that has been <u>actively distributed in 2020</u>. In contrast to prototypical downloaders, GuLoader is known to use popular cloud services such as Google Drive, OneDrive and Dropbox to host its encrypted payloads. So far we have seen that GuLoader is being used to deliver Formbook, NanoCore, LokiBot and Remcos among others. We've observed that GuLoader uses a combination of evasion techniques that evade sandboxes and slow down (manual) analysis.

On June 6th, 2020 the developers of GuLoader informed the public that they have shut down their service (Figure 1). Despite the suspension of service, we anticipate other malware families will evolve and adapt some of these techniques in the near future. In this post, we will highlight GuLoader's techniques with a focus on sandbox evasion and anti-analysis.

View the VMRay Analyzer Report for GuLoader

06/10/2020 : SERVICE SUSPENSION

We learned from the press that unsuspecting users would use our platform to perpetrate abuses of all kinds. Our protection software was created and developed to protect intellectual works from the abuse of hackers and their affiliates, not to sow malware around the network. Although we are not sure that what is reported by the media is true, we believe it appropriate to suspend our service indefinitely. We are two young entrepreneurs, passionate about IT security and our goal is to enrich the scientific community with our services, not to allow a distorted use of our intellectual work. We thank all our customers, who have legally used our services since 2015. Customers will be reimbursed for purchased and unused license days. For more information contact us by e-mail info@securitycode.eu, you will receive an answer within 24 hours.

> Sebastiano Dragna Ivano Mancini

10/06/2020 : SOSPENSIONE DEL SERVIZIO

Abbiamo appreso dagli organi di stampa che ignari utenti si sarebbero serviti della nostra piattaforma per perpetrare abusi di ogni tipo. Il nostro software di protezione nasce e si sviluppa per proteggere le opere intellettuali dagli abusi degli hacker e loro affiliati, non per seminare malware in giro per la rete. Pur non avendo la certezza che quanto riferito dai media , corrisponda a verità , riteniamo opportuno sospendere a tempo indeterminato il nostro servizio. Siamo due giovani imprenditori, appassionati di sicurezza informatica ed il nostro obiettivo e' quello di arricchire la comunità scientifica con i nostri servizi, non quello di permettere un uso distorto della nostra opera intellettuale. Ringraziamo tutti i nostri clienti , che dal 2015 hanno usato legalmente i nostri servizi. I clienti saranno rimborsati per i giorni di licenza acquistati e non goduti. Per maggiori informazioni contattateci per e-mail info@securitycode.eu, riceverete una risposta entro 24 ore.

Figure 1: Shut down announcement claiming that the service has been misused by criminals.

Overview and Shellcode

In our analysis, we can see that GuLoader creates another instance (in the following referenced as the second instance) of itself and modifies its execution (Figure 2 and Figure 3).

Figure 2: VMRay Analyzer – Process overview of the GuLoader sample.

Injection Type	Source Process	Source Os Thread ID	Information	Success	Count	Logfile
Modify Memory	#1: c:\users\fd1hvy\desktop\xeuovifzzc.exe	0x10c0	address = 0x400000, size = 1388544	×	1	FN
Modify Memory	#1: c:\users\fd1hvy\desktop\xeuovifzzc.exe	0x10c0	address = 0x560000, size = 16384	\checkmark	1	FN DATA
Modify Control Flow	#1: c:\users\fd1hvy\desktop\xeuovifzzc.exe	0x10c0	os_tid = 0x13b4, address = 0x560000	\checkmark	1	FN

Figure 3: VMRay Analyzer – Process injection into the second instance.

The second instance then performs further malicious activities, which includes network activity to download the payload and the memory modification of other processes (Figure 4).

Other <u>reports</u> about GuLoader revealed the main functionality is implemented as shellcode, whereby the sample is a 32-bit executable written in VB6 that contains the shellcode in encrypted form.

During execution, the embedded shellcode is decrypted, executed and even injected as seen before (Figure 2).

Behavior Information - Grouped by Category							
>> Process #1: xeuovifzzc.exe	🖵 179 🌐 O						
>> Process #2: xeuovifzzc.exe	🖵 2564 🌐 1						
>> Process #3: explorer.exe	🖵 79 🌐 0						
>> Process #4: cmstp.exe	🖵 485 🌐 O						

Figure 4: VMRay Analyzer – Behavior Information showing the first instance with a host activity of 179 and the second instance with a host activity of 2564 and network activity.

By loading the shellcode in IDA Pro (we loaded the shellcode at offset 0x001A0000) or a similar disassembler, we can see that the code is heavily obfuscated. The code is split into smaller code parts containing additional junk code (Figure 6) that are connected with control-flow changing instructions such as call, return and (indirect) jump. In contrast to compiler-generated code, the shellcode combines code instructions and data such as strings, which is typical for position-independent code.

This makes the static control-flow analysis more difficult and causes the automatic analysis of IDA Pro to fail.

For example, the addresses of library names are pushed on the stack by using the call instruction (Figure 5). In compiler-generated code, this instruction is used to transfer the control flow to another function, and the return instruction transfers it back to the caller.

seg000:001A1B56	loc_1BA1B56:			;	CODE	XREF:	seg000:001A00CE↑j
seg000:001A1B56		call	sub_1BA00D3				
seg000:001A1B56	;						
seg000:001A1B5B	aNtdll	db 'ntd]	11',0				
seg000:001A1B61		db 0F8h					
seg000:001A1B62		db 0E8h					
seg000:001A1B63		db ØBAh					
seg000:001A1B64		db 0E5h					
seg000:001A1B65		db ØFFh					
seg000:001A1B66		db ØFFh					
seg000:001A1B67	aKernel32	db 'kerr	nel32',0				
seg000:001A1B70	;						
seg000:001A1B70	; START OF FUNCT	TION CHU	NK FOR sub_1BA19	FB			
seg000:001A1B70							
seg000:001A1B70	loc_1BA1B70:			;	CODE	XREF:	sub_1BA19FB+31↑j
seg000:001A1B70		call	sub_1BA1A31				
seg000:001A1B70	;						
seg000:001A1B75	aAdvapi32	db 'adva	api32',0				
seg000:001A1B7E	;						
seg000:001A1B7E		call	sub_1BA015A	;	CODE	XREF:	sub_1BA0121+34↑j
seg000:001A1B7E	;						
seg000:001A1B83	aUser32	db 'user	r32',0				

Figure 5: Call instructions that push the addresses of the strings "ntdll, "advapi32" and "user32" on the stack.

GuLoader resolves the required functions during runtime and uses the hash algorithm djb2 to find the desired functions.

Anti-Analysis and Evasion Techniques

Expanding on the techniques mentioned above, the shellcode contains more techniques to obstruct automatic analysis. One of these techniques is the search for virtual machine artifacts, which are embedded as djb2 hash values. In Figure 6, we can see that these hash values are pushed on top of the stack and the successive call to the function tries to find the corresponding artifacts in memory.

	and the second second second		and an and a failed
seg000:001A00D4	IIW_EVASIONHASH	enap	; sp-analysis Talleo
seg000:001A00D4			5 J
seg000:001A00D5		mov	[ebp+1Ch], ecx
seg000:001A00D8		cld	
seg000:001A00D9		push	ØFFFFFFFh
seg000:001A00DB		clc	
seg000:001A00DC		push	0B314751Dh
seg000:001A00E1		push	0A7C53F01h
seg000:001A00E6		push	7F21185Bh
seg000:001A00EB		push	3E17ADE6h
seg000:001A00F0		push	0F21FD920h
seg000:001A00F5		nop	
seg000:001A00F6		push	27AA3188h
seg000:001A00FB		push	0DFCB8F12h
seg000:001A0100		push	2D9CC76Ch
seg000:001A0105		fnop	
seg000:001A0107		call	near ptr mw_LookupHashValues
seg000:001A010C		cld	
seg000:001A010D		add	esp, 24h
seg000:001A0110		fnop	
seg000:001A0112		call	sub 1BA2526
seg000:001A0117		clc	-
seg000:001A0118		clc	
seg000:001A0119		fnop	
seg000:001A011B		clc	
seg000:001A011C		imp	loc 1BA1B62
268000001001U011C		JP	TOT TOTADOL

Figure 6: Hash values of virtual machine artifacts pushed on the stack.

Since these values are calculated by a one-way function (djb2), their preimages are unknown. So far, the strings in Table 1 have been found to be possible preimages.

Hash	Preimages	Notes
7F21185B	"HookLibraryx86.dll"	ScyllaHide Plugin for x64dbg
A7C53F01	"VBoxTrayToolWndClass"	VirtualBox Guest Additions
B314751D	"vmtoolsdControlWndClass"	VMWare, see [<u>1]</u>

If one of these hashes is found in memory, the sample displays an error message (Figure 7) and terminates the process. Therefore, the sample shows no further malicious behavior, and it does not download the payload.

Figure 7: Message displayed to the user if a virtual environment was detected.

In addition to the virtual machine artifacts, GuLoader verifies the number of top-level Windows displayed on the current screen to exclude running in a sandbox (Figure 8.).

For each top-level Window, the callback function (Figure 9) increases a counter by one, which leads to the overall number of top-level Windows. This counter is used in the check at 0x1A01A6 that validates if at least 12 top-level Windows are present.

seg000:001A01A2	loc_1BA01A2:	; CODE XREF: sub_1B	A016B+9↑j
seg000:001A01A2	nop		
seg000:001A01A3	call	eax ; call to EnumWindo	WS
seg000:001A01A5	рор	eax	
seg000:001A01A6	cmp	eax, 12	
seg000:001A01A9	jge	short loc_1BA01CD	
seg000:001A01AB	push	0	
seg000:001A01AD	push	ØFFFFFFFh	
seg000:001A01AF	call	<pre>dword ptr [ebp+98h] ; call to Termi</pre>	nateProcess

seg000:001A01BA	mov	<pre>ecx, [esp-4+arg_8] ; callback function for EnumWindows</pre>
seg000:001A01BE	mov	eax, [ecx]
seg000:001A01C0	cld	
seg000:001A01C1	inc	eax
seg000:001A01C2	mov	[ecx], eax
seg000:001A01C4	clc	
seg000:001A01C5	mov	eax, 1
seg000:001A01CA	retn	8

Figure 9: Callback function that counts the top-level windows.

If the number is lower, the process terminates in which case no error message is displayed.

To further prevent the manual analysis with a debugger, GuLoader modifies functions related to debugging (Figure 10).

GuLoader modifies the two functions *DbgBreakPoint* and *DbgUiRemoteBreakin*. For the first function, the first byte is replaced by a NOP instruction, and for the second function, the code is replaced by a call to *ExitProcess* (Figure 11).

Hex I	Dump																		×
Before	e																		
0	0x77A1A502	08	FF	75	FC	E 8	D5	78	FC	FF	8B	C6	5E	8B	E5	5D	C2	ux^].	^
0	0x77A1A512	04	00	CC	CC	CC	CC	CC	СС	CC	CC	СС	CC	CC	CC	6A	80	j <mark>.</mark>	
0	0x77A1A522	68	EO	04	A7	77	E8	18	B0	FD	FF	64	A1	30	00	00	00	hwd.0	
0	0x77A1A532	80	78	02	00	75	09	F6	05	D4	02	FE	7F	02	74	28	64	.xut(d	
0	0x77A1A542	A1	18	00	00	00	F6	80	CA	OF	00								
																			~
After																			
	077515500	0.0	FF	76	FC	FO	DE	70	FC		0.0	<i>C</i> .6	EF	0.0	E.E.	5.0	C 2		^
0	0x77A1A502	08	FF	75	FC	E8	D5	78	FC	FF	8B	C6	5E	8B	E5	5D	C2	ux^].	^
0	0x77A1A502 0x77A1A512	08 04	FF 00	75 CC	FC CC	E8 CC	D5 CC	78 CC	FC CC	FF CC	8B CC	C6 CC	5E CC	8B CC	E5 CC	5D 6A	C2 00	ux^].	^
	0x77A1A502 0x77A1A512 0x77A1A522 0x77A1A522	08 04 88	FF 00 B0 78	75 CC 3C	FC CC 2E	E8 CC 77	D5 CC FF	78 CC D0	FC CC C2	FF CC 04	8B CC 00	C6 CC 64 FF	5E CC A1 7F	8B CC 30	E5 CC 00 74	5D 6A 00	C2 00 00	ux^].	^
	0x77A1A502 0x77A1A512 0x77A1A522 0x77A1A532 0x77A1A532	08 04 88 80 21	FF 00 B0 78 18	75 CC 3C 02	FC CC 2E 00	E8 CC 77 75	D5 CC FF 09 F6	78 CC D0 F6	FC CC C2 05 CA	FF CC 04 D4 0F	8B CC 00 02	C6 CC 64 FE	5E CC A1 7F	8B CC 30 02	E5 CC 00 74	5D 6A 00 28	C2 00 00 64	ux^]. j. j. 	^
	0x77A1A502 0x77A1A512 0x77A1A522 0x77A1A532 0x77A1A532	08 04 88 80 A1	FF 00 B0 78 18	75 CC 3C 02 00	FC CC 2E 00 00	E8 CC 77 75 00	D5 CC FF 09 F6	78 CC D0 F6 80	FC CC C2 05 CA	FF CC 04 D4 0F	8B CC 00 02 00	C6 CC 64 FE	5E CC A1 7F	8B CC 30 02	E5 CC 00 74	5D 6A 00 28	C2 00 00 64	uxj. j. j. 	^
	0x77A1A502 0x77A1A512 0x77A1A522 0x77A1A532 0x77A1A532 0x77A1A542	08 04 88 80 A1	FF 00 B0 78 18	75 CC 3C 02 00	FC CC 2E 00 00	E8 CC 77 75 00	D5 CC FF 09 F6	78 CC D0 F6 80	FC CC C2 05 CA	FF CC 04 D4 0F	8B CC 00 02 00	C6 CC 64 FE	5E CC A1 7F	8B CC 30 02	E5 CC 00 74	5D 6A 00 28	C2 00 64	ux^]. j. j. 	^

Figure 10: VMRay Analyzer – Code modifications of the function DbgUiRemoteBreakin

				-			
773CF7EA		6A 08	push 8	773CF7EA		6A 00	push 0
773CF7EC		68 30BA3577	push ntdll.7735BA30	773CF7EC		B8 107AB475	<pre>mov eax,<kernel32.exitprocess></kernel32.exitprocess></pre>
773CF7F1		E8 BEE6F8FF	call ntdll.7735DEB4	773CF7F1		FFDO	call eax
773CF7F6		64:A1 18000000	mov eax, dword ptr [18]	773CF7F3		C2 0400	ret 4
773CF7FC		8B40 30	mov eax, dword ptr ds: [eax+30]	773CF7F6		64:A1 18000000	mov eax,dword ptr 🚺:[18]
773CF7FF		8078 02 00	cmp byte ptr ds:[eax+2].0	773CF7FC		8840 30	mov eax,dword ptr ds:[eax+30]
773CF803	×	75 09	ine ntdll.773CF80E	773CF7FF		8078 02 00	<pre>cmp byte ptr ds:[eax+2],0</pre>
773CF805		F605 D402FE7F 02	test byte ptr ds:[7FFE02D4].2	773CF803	× 1	75 09	jne ntdll.773CF80E
773CF80C	~	74 28	ie ntdl1.773CF836	773CF805		F605 D402FE7F 02	test byte ptr ds: [7FFE02D4],2
773CF80E		64:A1 18000000	mov eax.dword ptr 5:[18]	773CF80C	× 1	74 28	je ntd11.773CF836
773CF814		F680 CA0F0000 20	test byte ptr ds: [eax+FCA].20	773CF80E		64:A1 18000000	mov eax, dword ptr ms:[18]
773CF81B	~	75 19	ine ntdll.773CF836	773CF814		F680 CA0F0000 20	test byte ptr ds:[eax+FCA],20
773CE81D		8365 FC 00	and dword ptr ss:[ebp-4].0	773CF818	1 ×	75 19	jne ntdil.773CF836
773CE821		E8 E607E7EE	call <ntdll.dbobreakpoint></ntdll.dbobreakpoint>	773CF81D		8365 FC 00	and dword ptr ss: ebp-4,0
773CE826	~	EB 07	imp_ntdl1.773CE82E	773CF821		E8 E60/F/FF	call <ntoll.dbgbreakpoint></ntoll.dbgbreakpoint>
773CE828		3300	xor eax.eax	773CF826	I Ť.	2200	Jmp rituit.773CF82F
773CE82A		40	inc eax	77305828		40	Aur eax, eax
77205828		C2	rat	773CF82A			Inc eax
77507020		0		775CF026		C5	rec .

Figure 11: [Left] Before code modification of the function DbgUiRemoteBreakin.

[Right] After code modification of the function DbgUiRemoteBreakin.

After the code modifications of DbgUiRemoteBreakin, the attaching of a debugger to the running process results in its termination.

In addition to the modifications of the two functions mentioned above, GuLoader modifies further functions exported by Ntdll.dll (Figure 12). These functions are well-known candidates for function hooking which allows intercepting function calls by redirecting the control flow. Some Antivirus Software and Sandboxes use function hooking to monitor the behavior of a given program.

Hook Information

Туре	Installer	Target	Size	Information	Actions
Code	private_0x0000000001c0000:+0x27a2	ntdll.dll:DbgBreakPoint+0x0	1 bytes	-	•••
Code	private_0x0000000001c0000:+0x27ae	ntdll.dll:DbgUiRemoteBreakin+0x1	11 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtWorkerFactoryWorkerReady+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtMapUserPhysicalPagesScatter+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtWaitForSingleObject+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtReadFile+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtDeviceIoControlFile+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtWriteFile+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtRemoveIoCompletion+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtReleaseSemaphore+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtSetEvent+0x1	4 bytes	-	•••
Code	private_0x0000000001c0000:+0x2859	ntdll.dll:NtClose+0x1	4 bytes	-	•••

Figure 12: VMRay Analyzer – Hook Information about modifications of Ntdll.dll functions.

Verifying this suspicion in IDA Pro, GuLoader iterates through the code section of Ntdll.dll. While iterating GuLoader tries to undo modifications introduced through function hooking as mentioned in <u>Crowdstrike's analysis</u> and disables *Turbo Thunks*, see <u>WoW64 Internals</u>.

To find candidates for modification, GuLoader uses various byte patterns including "B8 00 00 00 BA" (Figure 13).

```
var_EndOfSection = var_SectionSize + var_Iter;
while ( ++var Iter != var EndOfSection )
ł
  if ( *(_BYTE *)var_Iter == 0xB8 && !*(_DWORD *)(var_Iter + 1) && *(_BYTE *)(var_Iter + 5) == 0xBA )
  {
    v17 = *( DWORD *)(var Iter + 6);
    v18 = var_Iter + 10;
    v19 = 0;
    var_SystemCallNumber = 1;
    do
    {
      ++v19;
      if ( *(_DWORD *)++v18 == 0x9090C350 )
      ł
        *(_BYTE *)v18 = -70;
        *(_DWORD *)(v18 + 1) = v17;
        *(_DWORD *)(v18 - 4) = var_SystemCallNumber;
*(_BYTE *)(v18 - 5) = 0xB8;
++war_SystemCallNumber;
        ++v19;
        ++v18;
      }
      else if ( v17 == *(_DWORD *)v18 )
      ł
        *( DWORD *)(v18 - 5) = var SystemCallNumber;
        *( BYTE *)(v18 - 6) = 0xB8;
        ++var_SystemCallNumber;
      3
      if ( *( BYTE *)v18 == 0xE8 && !*( DWORD *)(v18 + 1) )
      ł
        *(_DWORD *)(v18 - 4) = var SystemCallNumber;
        *(_BYTE *)(v18 - 5) = 0xB8;
        ++var SystemCallNumber;
        v31 = v19;
        v21 = 0;
```

Figure 13: Part of the decompiled function that modifies Ntdll.dll functions based on bytepattern search.

Disabling of *Turbo Thunks* is reported (Figure 12) and calls to these functions are still monitored because <u>VMRay Analyzer</u> does not rely on hooking.

Furthermore, GuLoader hides threads by calling the function *NtSetInformationThread* with the value *HideFromDebugger* (0x11) for the parameter *ThreadInformationClass*(Figure 14).

Function Lognie	× د
<pre>1459. [0155.493] LoadLibraryA (lpLibFileName="user32") returned 0x750c0000 1460. [0155.493] EnumKindows (lpEnumFunc=%xtCdDa, lParam=%x197756) returned 1 1461. [0155.505] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1462. [0155.505] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1463. [0155.506] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1464. [0155.506] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1464. [0155.506] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1464. [0155.506] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1466. [0155.506] LoadLibraryA (lpLibFileName="ntdll") returned 0x77570000 1466. [0155.506] NtProtectVintualNemory (in: ProcessMandLe=0xffffffff, BaseAddress=0x19774#=0x77571000, NumberOfBytesToProtect=0x197744, NewAccessProtection=0x40, OldAccessProte 1466. [0155.507] LoadLibraryA (lpLibFileName="ntdll") returned 0x77770000 1470. [0155.508] NtPortectVintualNemory (in: ProcessMandLe=0xffffffff, BaseAddress=0x19774#=0x77971000, NumberOfBytesToProtect=0x197744, NewAccessProtection=0x40, OldAccessProte 1466. [0155.507] LoadLibraryA (lpLibFileName="ntdll") returned 0x77770000 1470. [0155.508] LoadLibraryA (lpLibFileName="ntdll") returned 0x777720000 1469. [0155.708] CreateFileA (lpFileName="ntern12") returned 0x777720000 1469. [0155.708] CreateFileA (lpFileName="ntern12") returned 0x77770000 1470. [0155.708] CreateFileA (lpFileName="ntern12") returned 0x77770000 1471. [0202.762] LoadLibraryA (lpLibFileName="ntdll") returned 0x77770000 1472. [0202.772] NtAllocateVirtualNemory (in: ProcessMandLe=0xffffffff, BaseAddress=0x19776*00x, ZeroBits=0x0, RegionSize=0x19760*=0x126200000, AuShareMode=0x1, lpScurif 1471. [0202.762] LoadLibraryA (lpLibFileName="ntdll") returned 0x77770000 1472. [0202.772] NtAllocateVirtualNemory (in: ProcessMandLe=0xffffffff, BaseAddress=0x19764*=0x0, ZeroBits=0x0, RegionSize=0x19760*=0x126200000, AuShareMode=0x1, lpScurif 1472. [0202.772] NtAllocateVirtualNemory (in: ProcessMandLe=0xffffffff, BaseAddress=0</pre>	<pre>ction=0x19f748 ction=0x19f748 le=0x1, 1pSecur yAttributes=0x v4 out: Base ></pre>
Function Name	Line Number

Figure 14: VMRay function log that shows the hiding of threads with NtSetInformationThread and the ThreadInformationClass HideFromDebugger parameter.

In addition to the previously mentioned hash values of virtual machine artifacts, GuLoader checks the presence of the Qemu Guest Agent on the filesystem. Both filesystem strings are visible in the shellcode (Figure 15) and in the function log (Figure 14).

seg000:001A158F	call sub_1BA1543
seg000:001A158F	;
seg000:001A1594	aCProgramFilesQ db 'C:\Program Files\Qemu-ga\qemu-ga.exe',0
seg000:001A15B9	3
seg000:001A15B9	
seg000:001A15B9	loc_1BA15B9: ; CODE XREF: sub_1BA1543+13^j
seg000:001A15B9	call sub_1BA1558
seg000:001A15B9	;
seg000:001A15BE	<pre>aCProgramFilesQ_0 db 'C:\Program Files\qga\qga.exe',0</pre>

Figure 15: Strings related to the Qemu Guest Agent.

Before the second instance is created, or, in case of the second instance, before the payload is downloaded, it delays its execution by using the instructions *cpuid* and *rdtsc* frequently in a loop (Figure 16).

The instruction *cpuid* provides information about the processor and available features and can be used to detect the presence of a hypervisor. In addition, *rdtsc* provides the number of CPU cycles since the last reset.

Figure 16: Usage of instructions cpuid and rdtsc.

If *cpuid* is executed in a virtual machine, the instruction causes the control flow to be transferred to the hypervisor which resolves the request. Switching from the virtual machine to the hypervisor and back again introduces an overhead that can be used to detect a virtual machine.

In case that a sandbox patches the *rdtsc* instruction to return a fixed value, the loop in Figure 16 is an infinite loop since the register edx at 0x001A2506 has always the value 0 and the subsequent conditional jump is always taken.

Next, the sample performs the actions related to its stage. In the first stage, it creates a new process of itself, tries to unmap its base image, maps msvbvm60.dll instead, followed by the previously mentioned code injection.

In the second stage, it downloads the payload using WinINet's functions *InternetOpenURLA* and *InternetReadFile*. We inspected the behavior of both stages in the VMRay function log (Figure 17). We highlighted the fuction calls to NtGetContextThread in both figure because calls to some specific functions including *CreateProcessInternalW*,

NTAllocateVirtualMemory, NTWriteVirtualMemory and NTResumeThread are preceded by a call to NtGetContextThreat.

Figure 17: [Left] VMRay function log that shows function calls with preceded debug checks to prepare the second instance.

[Right] VMRay function log that shows function calls with debug checks to download the payload from 5[.]206[.]227[.]100].

These functions are well-known candidates for breakpoints during manual dynamic analysis, and GuLoader tries to detect the presence of these breakpoints (Figure 18). After a call to *NtGetContextThread*, the values of the debug registers DR0, DR1, DR3, DR6, DR7 are investigated to detect hardware breakpoints (see the structure <u>CONTEXT</u>). Next, the code of the desired function is checked against interrupts/software breakpoints (0xCC, 0x3CD, 0x0B0F), which are typically set by debuggers, before the function is finally called (offset 0x1A2E66).

seg000:001A2E03	push	dword ptr [edi+5000h]
seg000:001A2E09	push	OFFFFFFEn
seg000:001A2E0B	CIG	
seg000:001A2E0C	call	dword ptr [ebp+28h] ; call to NtGetContextThread
seg000:001A2E0F	tnop	
seg000:001A2E11	cmp	eax, 0
seg000:001A2E14	jnz	short loc_1BA2E7D
seg000:001A2E16	clc	
seg000:001A2E17	clc	
seg000:001A2E18	mov	eax, [edi+5000h]
seg000:001A2E1E	cmp	dword ptr [eax+4], 0
seg000:001A2E22	jnz	short loc_1BA2E7D
seg000:001A2E24	cmp	dword ptr [eax+8], 0
seg000:001A2E28	jnz	short loc_1BA2E7D
seg000:001A2E2A	nop	
seg000:001A2E2B	cmp	dword ptr [eax+0Ch], 0
seg000:001A2E2F	jnz	short loc_1BA2E7D
seg000:001A2E31	cld	
seg000:001A2E32	cmp	dword ptr [eax+10h], 0
seg000:001A2E36	jnz	short loc_1BA2E7D
seg000:001A2E38	cmp	dword ptr [eax+14h], 0
seg000:001A2E3C	jnz	short loc_1BA2E7D
seg000:001A2E3E	cmp	dword ptr [eax+18h], 0
seg000:001A2E42	jnz	short loc 1BA2E7D
seg000:001A2E44	clc	
seg000:001A2E45	рор	eax
seg000:001A2E46	mov	bl, [eax]
seg000:001A2E48	cld	
seg000:001A2E49	cmp	b1, 0CCh
seg000:001A2E4C	iz	short loc 1BA2E7D
seg000:001A2E4E	fnop	-
seg000:001A2E50	mov	bx, [eax]
seg000:001A2E53	clc	
seg000:001A2E54	cmp	bx, 3CDh
seg000:001A2E59	iz	short loc 1BA2E7D
seg000:001A2E5B	clc	
seg000:001A2E5C	mov	bx, [eax]
seg000:001A2E5F	cmp	bx, 0B0Fh
seg000:001A2E64	iz	short loc 1BA2E7D
seg000:001A2E66	call	eax : dynamic call to the function
seg000:001A2E68	nop	

Figure 18: Detection of hardware and software breakpoints before the dynamic function call.

After all of these evasion and anti-analysis attempts, the second instance decrypts the received payload, maps it into memory, and transfers execution.

Conclusion

With the help of VMRay Analyzer, we can observe the complete behavior GuLoader, which automates and accelerates the identification of important behavior for further analysis (Figures 19 & 20). This analysis is a good example of how malware evolves and adapts very technical sandbox evasion and anti-analysis techniques. The quick and widespread adoption of GuLoader confirms a growing demand for evasive malware loaders in the criminal underground.

Information	Value			
User Agent	Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko			
Server Name	5.206.227.100			
Server Port	80			
Total Data Sent	164 bytes			
Total Data Received	179.31 KB			
Operation	Information	Success	Count	Logfile
Open Session	user_agent = Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko, access_type = INTERNET_OPEN_TYPE_PRECONFIG	\checkmark	1	FN
Open Connection	protocol = http, server_name = 5.206.227.100, server_port = 80	\checkmark	1	FN
Open HTTP Request	http_verb = GET, http_version = HTTP 1.1, target_resource = /private/smarty.bin, flags = INTERNET_FLAG_PRAGMA_NOCACHE, INTERNET_FLAG_NO_CACHE_WRITE, INTERNET_FLAG_RELOAD	~	1	FN
Send HTTP Request	headers = WINHTTP_NO_ADDITIONAL_HEADERS, url = http://5.206.227.100/private/smarty.bin	\checkmark	1	FN
Read Response	size = 65536, size_out = 65536	\checkmark	2	FN DATA
Read Response	size = 65536, size_out = 52288	\checkmark	1	FN DATA
Read Response	size = 65536, size_out = 0	\checkmark	1	FN
Close Session		\checkmark	1	FN

Figure 19: VMRay Analyzer – Network behavior that downloads the encrypted payload from *5[.]206[.]227[.]100.*

Name	Start VA	End VA	Dump Reason	PE Rebuild	Bitness	Entry Point	AV	YARA	Actions
buffer	0x001C0000	0x001ECFFF	Marked Executable	×	32-Bit	-	×	×	•••
msvbvm60.dll	0x00400000	0x00552FFF	First Execution	\checkmark	32-Bit	0x0041E310	×	×	•••
msvbvm60.dll	0x00400000	0x00552FFF	Content Changed	\checkmark	32-Bit	0x0041AFF0	×	×	•••
buffer	0x00560000	0x0065FFFF	First Execution	×	32-Bit	0x00560000	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00561448	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x0056148E	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00562526	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00562526	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00561448	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00562526	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x0056148E	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00561514	×	×	•••
buffer	0x00560000	0x0065FFFF	Content Changed	×	32-Bit	0x00561448	×	×	•••
buffer	0x1ECD0000	0x1ECFCFFF	Marked Executable	×	32-Bit	-	×	×	•••
buffer	0x1ED00000	0x1EE13FFF	Marked Executable	×	32-Bit	-	×	×	•••
buffer	0x1EE20000	0x1EE33FFF	Marked Executable	×	32-Bit	-	×	×	•••
buffer	0x1EE40000	0x1EE53FFF	First Execution	×	32-Bit	0x1EE40000	×	×	•••
buffer	0x1EE60000	0x1EE75FFF	Image In Buffer	\checkmark	32-Bit	-	×	×	•••
buffer	0x1EED0000	Ox1F1EFFFF	First Execution	\checkmark	32-Bit	0x1EF42070	×	×	•••
ntdll.dll	0x77970000	0x77AFDFFF	First Execution	\checkmark	32-Bit	0x779E2210	×	×	•••

Figure 20: VMRay Analyzer – Memory dumps including the injected shellcode and the mapped decrypted payload.

References

https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye

https://research.checkpoint.com/2020/guloader-cloudeye/

https://www.crowdstrike.com/blog/guloader-malware-analysis/

https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html

https://wbenny.github.io/2018/11/04/wow64-internals.html

IOCs

Sample

b 240 e 52 e a 8a 55a 50760 d e 6017 d 644 d 2 d 0 f c c 43 f d 8918 a b d f 99964 e f b 464 c 37 b 6 d c 400 f c 40

Server

5[.]206[.]227[.]100

Encrypted Payload

5399f144876e276e8ee1ea206bb4599ca912d8ff42327bdbf08f588a0a836b4e