
BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

319VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

BOOTKITS: PAST, PRESENT &
FUTURE

Eugene Rodionov
ESET, Canada

Alexander Matrosov
Intel, USA

David Harley
ESET North America, UK

Email rodionov@eset.com; alexander.matrosov@
intel.com; david.harley.ic@eset.com

ABSTRACT

Bootkit threats have always been a powerful weapon in the
hands of cybercriminals, allowing them to establish a persistent
and stealthy presence in their victims’ systems. The most recent
notable spike in bootkit infections was associated with attacks on
64-bit versions of the Microsoft Windows platform, which
restrict the loading of unsigned kernel-mode drivers. However,
these bootkits are not effective against UEFI-based platforms.
So, are UEFI-based machines immune against bootkit threats (or
would they be)?

The aim of this presentation is to show how bootkit threats have
evolved over time and what we should expect in the near future.
First, we will summarize what we have learned about the
bootkits seen in the wild targeting the Microsoft Windows
platform: from TDL4 and Rovnix (the one used by the Carberp
banking trojan) up to Gapz (which employs one of the stealthiest
bootkit infection techniques seen so far). We will review their
infection approaches and the methods they have employed to
evade detection and removal from the system.

Secondly, we will look at the security of the increasingly
popular UEFI platform from the point of view of the bootkit
author as UEFI becomes a target of choice for researchers in
offensive security. Proof-of-concept bootkits targeting
Windows 8 using UEFI have already been released. We will
focus on various attack vectors against UEFI and discuss
available tools and what measures should be taken to mitigate
against them.

INTRODUCTION

The fi rst bootkits started to emerge on the malware scene as
cybercriminals realized that bootkit development was a way in
which they could increase the profi tability of a kernel-mode
rootkit by widening the range of its targets to include users of
64-bit machines. This resulted in a trend whereby rootkit
developers began to focus on bootkits.

The main obstacle to 64-bit development was the need to bypass
the Microsoft kernel-mode code signing policy for system
drivers, and this is the rationale behind modern bootkit
development. However, the history of the bootkit begins much
earlier than that.

BOOTKIT EVOLUTION
The fi rst IBM-PC-compatible boot sector viruses from 1987 used
the same concepts and approaches as modern threats, infecting
boot loaders so that the malicious code was launched even
before the operating system was booted.

In fact, attacks on the PC boot sector were already known from
(and even before) the days of MS-DOS, and these have a part to
play in our understanding of the development of approaches to
taking over a system by compromising and hijacking the boot
process.

The fi rst microcomputer to have been affected by viral software
seems to have been the Apple II. At that time, Apple II diskettes
usually contained the disk operating system. Around 1981 [1],
there were already versions of a ‘viral’ DOS reported at Texas
A&M. In general, though, the ‘credit’ for the ‘fi rst’ Apple II virus
is given to Rich Skrenta’s Elk Cloner (1982–3) [2, 3].

Although Elk Cloner preceded PC boot sector viruses by several
years, its method of boot sector infection was very similar. It
modifi ed the loaded OS by hooking itself, and stayed resident in
RAM in order to infect other fl oppies, intercepting disk accesses
and overwriting their system boot sectors with its own code. The
later Load Runner (1989), affecting Apple IIGS and ProDOS [2],
rarely gets a mention nowadays, but its speciality was to trap the
reset command triggered by the key combination
CONTROL+COMMAND+RESET and take it as a cue to write
itself to the current diskette, so that it would survive a reset. This
may not be the earliest example of ‘persistence’ as a
characteristic of malware that refused to go away after a reboot,
but it’s certainly a precursor to more sophisticated attempts to
maintain a malicious program’s presence.

© Brain damage
The fi rst PC virus is usually considered to be Brain, a fairly
bulky Boot Sector Infector (BSI), which misappropriated the fi rst
two sectors for its own code and moved the original boot code
up to the third sector, marking the sectors it used as ‘bad’ so that
they wouldn’t be overwritten.

Brain had some features that signifi cantly prefi gured some of the
characterizing features of modern bootkits. First, the use of a
hidden storage area in which to keep its own code (though in a
much more basic form than TDSS and its successors). Secondly,
the use of ‘bad’ sectors to protect that code from legitimate
housekeeping by the operating system. Thirdly, the stealthy
hooking of the disk interrupt handler to ensure that the original,
legitimate boot sector stored in sector three was displayed when
the virus was active [2].

The volume of boot sector infectors and infection fi rst began to
decline when it became possible to change the boot order in setup
so that the system would boot from the hard disk and ignore any
left-over fl oppy. However, it was the increasing take-up of
modern Windows versions and the virtual disappearance of the
fl oppy drive that fi nally killed off the old-school BSI.

BOOT INFECTION REBOOTED
Windows – and hardware and fi rmware technology – has moved
on since Brain and its immediate successors, and boot infection

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

320 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

has evolved into new types of attack on operating system boot
loaders, especially since Microsoft started to use a kernel-mode
code signing policy in its 64-bit operating systems.

All bootkits aim to modify and subvert operating system
components before the OS can be loaded. The most interesting
target components (Figure 1) are as follows: BIOS/UEFI, MBR
(Master Boot Record) and the operating system boot loader.

The harbinger of modern bootkits is generally considered to be
eEye’s proof of concept (PoC) BootRoot [4], which was
presented at BlackHat 2005. BootRoot was an NDIS (Network
Driver Interface) backdoor demonstrating the use of an old
vector as a model for modern OS attacks.

At BlackHat 2007, Vbootkit [5] was released. This PoC code
demonstrated possible attacks on the Windows Vista kernel by
modifying the boot sector. The authors of Vbootkit released its
code as an open-source project, and that release coincided with
the initial detection of the fi rst malicious bootkit, Mebroot.

This unusually sophisticated malware offered a real challenge
for anti-virus companies because it used new stealth techniques
for surviving after a reboot. The Stoned bootkit [6] was also
released at BlackHat, apparently so named in homage to the
much earlier, but very successful Stoned BSI.

These proof-of-concept bootkits are not the direct cause for the
coinciding release of unequivocally malicious bootkits such as
Mebroot [7]. Malware developers were already searching for
new and stealthy ways to extend the window of active infection
before security software detected an infection. In addition, in
2007 Microsoft Windows Vista enforced a kernel-mode code
signing policy on 64-bit operating systems, regulating the
distribution of system drivers. This triggered the resurrection of
stealth implementation by subversion of the boot process, in the
form of modern bootkits.

All known bootkits conform to one of two categories. The fi rst
group consists of proof-of-concept demonstrations developed by
security researchers, and the second consists of the real and
unequivocally malicious threats developed by cybercriminals
(see Table 1).

Bootkit classifi cation
The main idea behind bootkits is to abuse and subvert the
operating system in the course of the initial boot process. At the

Evolution of proof-of-
concept bootkits

Evolution of bootkit
threats

eEye BootRoot – 2005

The fi rst MBR-based
bootkit for MS Windows
operating systems.

Mebroot – 2007

The fi rst MBR-based bootkit in
the wild.

Vbootkit – 2007

The fi rst bootkit to target
Microsoft Windows Vista.

Mebratix – 2008

The other malware family based
on MBR infection.

Vbootkit x64 – 2009 [8]

The fi rst bootkit to bypass
the digital signature checks
on MS Windows 7.

Mebroot v2 – 2009

The evolved version of the
Mebroot malware.

Stoned Bootkit – 2009

Another example of MBR-
based bootkit infection.

Olmarik (TDL4) – 2010/11

The fi rst 64-bit bootkit in the
wild.

Stoned Bootkit x64 – 2011

MBR-based bootkit
supporting the infection of
64-bit operating systems.

Olmasco (TDL4 modifi cation) –
2011

The fi rst VBR-based bootkit
infection.

DeepBoot – 2011 [9]

Used interesting tricks to
switch from real-mode to
protected mode.

Rovnix – 2011

The evolution of VBR-based
infection with polymorphic
code.

Evil Core – 2011 [10]

This concept bootkit used
SMP (symmetric
multiprocessing) for
booting into protected-mode

Mebromi – 2011

The fi rst exploration of the
concept of BIOSkits seen in the
wild.

VGA Bootkit – 2012 [11]

VGA-based bootkit
concept.

Gapz – 2012 [12]

The next evolution of VBR
infection

DreamBoot – 2013 [13]

The fi rst public concept of
UEFI bootkit.

OldBoot - 2014 [14]

The fi rst bootkit for the Android
operating system in the wild.

Table 1: The chronological evolution of PoC bootkits versus
real-world bootkit threats.

Figure 1: The system booting fl ow.

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

321VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

very beginning of the bootup process, the BIOS code reads the
Master Boot Record at the fi rst sector of the bootable hard drive,
to which it transfers control. The MBR consists of the boot code
and a partition table that describes the hard drive’s partitioning
scheme. Modern bootkits can be classifi ed into two groups,
according to the type of boot sector infection employed: MBR
and VBR (Volume Boot Record) bootkits (see Figure 2). The
more sophisticated and stealthier bootkits we see are based on
VBR infection techniques.

TDL4 and Olmasco

TDL4 [15] and Olmasco [16] bootkits both target the MBR of
the bootable hard drive – however, they differ in that TDL4
overwrites MBR code, whereas Olmasco modifi es the MBR’s
partition table. Both infection approaches have the same result.
Malicious components are initialized at boot time in order to
load the malicious kernel-mode driver from the hidden storage
area, and thus bypass the Microsoft kernel-mode code signing
policy enforced on x64 platforms. In Table 2, we show the
modules stored in the hidden fi le system of the TDL4 and used
in the boot chain.

File name Description

mbr Original contents of the infected hard drive
boot sector

ldr16 16-bit real-mode loader code

ldr32 Fake kdcom.dll for x86 systems

ldr64 Fake kdcom.dll for x64 systems

drv32 The main bootkit driver for x86 systems

drv64 The main bootkit driver for x64 systems

Table 2: TDL4 boot components.

Figure 3 summarizes the boot process followed by the TDL4
bootkit on Windows Vista and Windows 7 operating systems.

Rovnix
Win32/Rovnix is the fi rst known bootkit to target the VBR. Its
infection routine reads the 15 sectors following the VBR, which
contain the Initial Program Loader (IPL) code. These sectors are

compressed and appended to the malicious bootstrap code. The
resulting code is then written to the 15 sectors that follow the
VBR, as shown in Figure 4. Consequently, on the next system
start-up, the malicious bootstrap code receives control.

MBR VBR Bootstrap Code File System Data

VBR Malicious
Code File System DataBootstrap

CodeMBR

NTFS bootstrap code
(15 sectors)

Before Infecting

After Infecting

Malicious
Unsigned

Driver

Compressed
Data

Figure 4: Win32/Rovnix approach to infection.

When the malicious bootstrap code is executed it hooks the
Int 13h handler in order to patch ntldr/bootmgr system
components so as to gain control after the boot loader

Bootkits

MBR VBR/IPL

MBR Code
modification

Partition Table
modification

IPL Code
modification

BIOS Parameter
Block modification

TDL4 Olmasco Rovnix Gapz

Figure 2: Bootkit classifi cation by type of boot sector infection.

Load Infected MBR

InfectedMBR is loaded
and executed

Load ldr16 from hidden file
system

Read BCD

ldr16 is loaded
and executed

Load winload.exe

Substitute EmsEnabled option
with WinPE

Load ntoskrnl.exe,
hal.dll,kdcom.dll,bootvid.dll

ant etc.

Distort /MININT option

Call KdDebuggerInitialize1
from kdcom.dll

Spoof kdcom .dll with
ld32 or ldr64

Load drv32 or drv64

Continue kernel initialization

Hook BIOS int 13h handler and
restore original MBR

Original MBR code is
loaded and executed

Load VBR

VBR is loaded and executed

Load bootmgr
Bootmgr is loaded

and receives control

Figure 3: TDL4 bootkit workfl ow.

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

322 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

components are loaded. After that it decompresses and returns
control to the original bootstrap code.

In order to load its malicious unsigned driver into kernel-mode
address space and bypass the kernel-mode code signing policy,
Win32/Rovnix employs the following technique. First, in order
to propagate itself through processor execution mode switching
(from real mode into protected mode), it uses the IDT (Interrupt
Descriptor Table). This is a special system structure which is
used in protected mode and consists of interrupt handler
descriptors. The malware copies itself over the second half of
the IDT, which is not used by the system. Secondly, it hooks the
int 1h protected mode handler and sets hardware breakpoints so
as to be able to receive control at specifi c points of the OS
kernel loading process. By using debugging registers dr0–dr7,
which are an essential part of the x86 and x64 architectures, the
malware gets control at some point during the kernel
initialization and loads its own malicious driver manually, thus
bypassing the kernel-mode code integrity check.

Gapz

Historically, there are two modifi cations of the bootkit
Win32/Gapz implementing different infection methods. The
fi rst version of the malware acted like a traditional MBR
infector, while the other version employed a rather sophisticated
stealth approach to infecting the VBR. For this reason, in this
section we will focus on the latter, more interesting approach.
What is remarkable about this technique is that only a few bytes
of the original VBR are affected. The essence of this approach is
that Win32/Gapz modifi es the ‘Hidden Sectors’ fi eld of the
VBR, while all the other data and code of the VBR and IPL
remain untouched.

The fi eld that is targeted by the malware is located in the
Volume Parameter Block (VPB), which is a special data
structure located in the VBR and describing the attributes of the
NTFS volume. The purpose of the ‘Hidden Sectors’ fi elds is to
provide an offset in sectors to the Initial Program Loader (IPL)
from the beginning of the volume, as illustrated in Figure 5.

MBR NTFS File SystemIPLVBR

NTFS Volume
0x200 0x1E00

Number of
“Hidden Sectors”

Number of
“Hidden Sectors”

Figure 5: ‘Hidden Sectors’ fi eld of BPB.

The IPL code is loaded and executed by the VBR: thus, by
modifying value of the ‘Hidden Sectors’ fi eld, the malware is
able to intercept execution fl ow at boot time, as shown in Figure
6. The next time the VBR code is executed, it loads and
executes the bootkit code instead of the legitimate IPL. The
bootkit image is written either before the very fi rst partition or
after the last partition of the hard drive.

MBR NTFS File SystemIPLInfected
VBR

NTFS Volume

0x200 0x1E00

Hard Drive

Modified value of number of “Hidden Sectors”Modified value of number of “Hidden Sectors”

Bootkit

Figure 6: Layout of a hard drive infected by Win32/Gapz.

The main purpose of the bootkits considered above is to load
and pass control to the malware’s kernel-mode module without
being noticed by security software. The kernel-mode module of
Win32/Gapz isn’t a conventional PE image, but is composed of
a set of blocks with position-independent code, each block
serving a specifi c purpose as described in Table 3.

Block # Implemented functionality

1 General API, gathering information on the hard
drives, CRT string routines, etc.

2 Cryptographic library: RC4, MD5, SHA1, AES,
BASE64, etc.

3 Hooking engine, disassembler engine.

4 Hidden storage implementation.

5 Hard disk driver hooks, self-defence.

6 Payload manager.

7 Payload injector into processes’ user-mode
address space.

8 Network communication: data link layer.

9 Network communication: transport layer.

10 Network communication: protocol layer.

11 Payload communication interface.

12 Main routine.

Table 3: Win32/Gapz blocks description.

Win32/Gapz: hidden storage implementation

So as to store payload and confi guration information secretly
Win32/Gapz implements hidden storage. The image is located
in a fi le named

‘\??\C:\System Volume Information\{XXXXXXXX-XXXX-
XXXX-XXXX-XXXXXXXXXXXX}’

where X signifi es hexadecimal numbers generated based on
confi guration information. The fi le is formatted as a FAT32
volume.

To keep the information stored within the hidden storage secret,
its content is encrypted. The malware utilizes AES with key
length 256 bits in CBC (Cipher Block Chaining) mode to
encrypt/decrypt each sector of the hidden storage. As IV
(Initialization Value) for CBC mode, Win32/Gapz utilizes the
number of the fi rst sector being encrypted/decrypted. Thus, even
though the same key is used to encrypt every sector of the hard

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

323VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

drive, using different IVs for different sectors results in different
ciphertexts each time.

Win32/Gapz: network communication

In order to communicate with C&C servers, Win32/Gapz
employs a rather sophisticated network implementation. The
network subsystem is designed in such a way as to bypass
personal fi rewalls and network-traffi c-monitoring software
running on the infected machine. These features are achieved
due to customized implementation of TCP/IP stack protocols in
kernel mode, the implementation being based on the miniport
adapter driver. According to the NDIS specifi cation, the
miniport driver is the lowest driver in the network driver stack
– thus, using its interface makes it possible to bypass
network-traffi c-monitoring software, as shown in Figure 7.

Miniport adapter driver

Intermediate driver

Protocol driver
(tcpip.sys)

Filter 1 driver

Filter N driver

...
...

...

Security software usually
operates at the level of

protocol or intermediate drivers

Win32/Gapz communicates
directly to miniport adapter

Win32/Gapz
Network
packet

Figure 7: Win32/Gapz custom network implementation.

The malware obtains a pointer to the structure describing the
miniport adapter by inspecting the NDIS library (ndis.sys) code
manually. The routine responsible for handling NDIS miniport
adapters is implemented in block #8 of the kernel-mode module.
The architecture of the Win32/Gapz network subsystem is
presented in Figure 8.

Win32/Gapz implementation OSI Model

HTTP protocol
(block #10)

TCP/IP protocol
(block #9)

NDIS miniport wrapper
(block #8)

Application/Presentation
Layer

Network/Transport Layer

Data Link Layer

Figure 8: Win32/Gapz network architecture.

This approach allows the malware to use the socket interface to
communicate with the C&C server without being noticed.

Communication with C&C servers is performed over HTTP.
The malware enforces encryption to protect the confi dentiality
of the messages being exchanged between the bot and C&C
server and to check the authenticity of the message source (to
prevent subversion by commands from C&C servers that are not
‘authentic’ – a technique often used by security researchers to
disrupt a malicious botnet). The main purpose of the protocol is
to request and download the payload and report the bot status to
the C&C server.

UEFI SECURITY
UEFI stands for Unifi ed Extensible Firmware Interface: the
specifi cation was originally developed to replace legacy BIOS
boot software. The boot process in UEFI is substantially
different from that in the legacy BIOS environment: there is no
longer any MBR and VBR code, which on older systems
eventually load bootmgr and winload; these components are
replaced with the UEFI boot code. Instead of an MBR-based
partitioning scheme, the GPT (GUID Partition Table)
partitioning scheme is used as the layout of the hard drive. The
UEFI bootloader is loaded from the special partition, referred to
as the EFI System Partition, formatted using the FAT32 fi le
system (FAT12 and FAT16 are also possible). The path to the
bootloader is specifi ed in a dedicated NVRAM variable. For
instance, for Microsoft Windows 8, the path to the bootloader
looks like this: ‘\EFI\Microsoft\Boot\bootmgfw.efi ’. The
purpose of this module is to locate the OS’s kernel loader
(winload.efi for Microsoft Windows 8) and transfer control to it.
The functionality of winload.efi is essentially the same as that of
winload.exe – that is, to load the OS kernel image.

UEFI bootkit: Dreamboot

As noted in Table 1, Dreamboot is the fi rst public
proof-of-concept bootkit targeting UEFI and Windows
8. The bootkit infection results in the replacement of the
original UEFI bootloader with a malicious substitute.
When this is executed by UEFI boot code, it looks for the
original bootloader (bootmgfw.efi), loads it and hooks the
Archpx64TransferTo64BitApplicationAsm routine. The hook
allows it to receive control at the time when the OS kernel
loader – winload.efi – is in memory, but before the loader is
executed. At this point the malware sets up another hook in
winload.efi on the OslArchTransferToKernel routine: the name
is self-explanatory. The latter hook is triggered when the OS
kernel image has been mapped into system address space and
Dreamboot patches it in order to disable kernel-mode security
checks (PatchGuard and so on). Figure 9 summarizes the
Dreamboot boot process.

FUTURE THREATS AND FUTURE TOOLS
Implementing forensics procedures for the UEFI platform is a
problem because popular forensic software is not covered.
However, proof-of-concept UEFI bootkits have already been
presented at many security conferences in the last few years,
some of them with source code. In the previous case of bootkits
targeting legacy bootstrap code in the MBR, it was two years
from the release of the fi rst publicly known PoC code to

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

324 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

malware samples being seen in the wild. The motivation for
attacks on UEFI is growing every year because the number of
PCs and laptops with a legacy BIOS is decreasing year on year.
The number of people using Microsoft Windows 8 is also
growing, which means that the number of users with active
Secure Boot is increasing.

UEFI malware infection can attack by way of a number of
different vectors:

• The fi rst type uses the same approach as the Dreamboot
bootkit, based on replacing the original Windows Boot
Manager and adding a new boot loader (Figure 10).

• The second approach is by directly abusing the UEFI DXE
(Driver execution Environment) driver [17] (Figure 11).

• The third method is to patch the UEFI ‘Option ROM’: for
example, the DXE Driver in Add-On Card (Network,
Storage …), which isn’t embedded in the fi rmware volume
in ROM [18, 19] (Figure 12).

The Secure Boot implementation in the latest version of
Microsoft Windows protects the booting process from malware

UEFI boot code

UEFI boot loader
(bootmgfw.efi)

Load kernel and boot
start drivers

winload.efi

Load UEFI boot loader
(\EFI\Microsoft\Boot\bootmgfw.efi)

Hook
OslArchTransferToKernel

Hook
Archpx64TransferTo64BitApplicationAsm

Patch kernel image

Figure 9: Dreamboot boot process.

Figure 11: UEFI infection by abusing DXE driver.

Figure 12: Types of UEFI bootkit infection.Figure 10: UEFI infection by replaced boot loader.

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

325VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

modifi cations. However, researchers are trying to understand the
methods attackers could use to bypass Secure Boot exploiting
vulnerabilities in BIOS/UEFI implementations in order to infect
the machine, and to mitigate against them [20, 21].

CHIPSEC
Intel has developed a CHIPSEC framework especially for BIOS/
UEFI security assessment. This is an open-source framework for
analysing the security of PC platforms covering hardware,
system fi rmware including BIOS/UEFI, and the confi guration of
platform components. It allows the creation of a security test
suite, security assessment tools for various low-level components
and interfaces, as well as forensic capabilities for fi rmware.
CHIPSEC is a framework developed in Python but with some
parts coded in C++ for deeper integration with the hardware at
operating system level. Besides Microsoft Windows and Linux
operating systems, CHIPSEC can also run from a UEFI shell.
The framework architecture is presented in Figure 13.

Figure 13: CHIPSEC framework architecture.

The CHIPSEC framework can be used as a security testing tool
for searching for BIOS and UEFI fi rmware vulnerabilities. Also,
the functionality of this tool covers forensic approaches for live/
offl ine fi rmware analysis from CHIPSEC modules [22]. This
tool includes modules for hidden fi le system forensics directly
from the UEFI shell without the need to boot the operating
system. In addition, CHIPSEC has basic heuristics for detecting
BIOS/UEFI bootkit infection.

HIDDEN FILE SYSTEM READER TOOL
Implementing hidden storage makes forensic analysis more
diffi cult because:

• Malicious fi les are not stored in the fi le system (diffi cult to
extract)

• Hidden storage cannot be decrypted without malware
analysis

• Typical forensic tools do not work out of the box.

To tackle the problem of retrieving the contents of the hidden
storage areas, one needs to perform malware analysis and
reconstruct the algorithms used to handle the stored data. In the

course of our research into complex threats, we developed a tool
some time ago [23] which is intended to recover the contents of
hidden storage used by such complex threats as:

• TDL3 and its modifi cations

• TDL4 and its modifi cations

• Olmasco

• Rovnix.A

• Rovnix.B

• Sirefef (ZeroAccess)

• Goblin (XPAJ)

• Flame (dump decrypted resource section)

The tool is very useful in incident response, threat analysis and
monitoring. It is able to dump the malware’s hidden storage, as
well as to dump any desired range of sectors of the hard drive.
A screenshot of the tool’s output is shown in Figure 14.

Figure 14: Hidden fi le system reader.

CONCLUSION

Microsoft claimed that the release of the Secure Boot technology
heralded the end of the bootkit era. In practice, Secure Boot just
switched the focus of the attackers towards a change in infection
strategy. There are still many active machines in the world with
old operating systems where Secure Boot is not supported. For
non-targeted attacks, just intended to build botnets,
cybercriminals will continue to use old bootkits and bootkit
techniques for MBR/VBR infection until a critical mass of users
have switched to modern hardware and operating systems.

In targeted attacks on Microsoft Windows 8, however, attackers
will use vulnerabilities in the most common BIOS/UEFI
fi rmware. The security life cycle for BIOS/UEFI is totally
different from that in operating systems or popular software.
This presents a problem because the BIOS/UEFI fi rmware on
end-users’ machines has sometimes never been updated since
the fi rst day they were used. We do not see a unifi ed updating
process embedded in the operating system because different
fi rmware vendors use different schemes for the delivery of
updates. Modern security software does not yet operate at the

BOOTKITS: PAST, PRESENT & FUTURE RODIONOV ET AL.

326 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

level of BIOS/UEFI fi rmware protection. In the opinion of the
authors of this paper [24], an interesting future lies ahead,
possibly starting with targeted attacks: who’s to say that they
haven’t already started?

REFERENCES
[1] Slade, R. Robert Slade’s Guide to Computer Viruses.

2nd Edition, Springer, 1996. http://www.amazon.com/
Robert-Slades-Guide-Computer-Viruses/
dp/0387946632.

[2] Harley, D.; Slade, R.; Gattiker, U. Viruses Revealed.
Osborne, 2007. http://www.amazon.com/Viruses-
Revealed-David-Harley/dp/B007PMOWTQ.

[3] Ször, P. The Art of Computer Virus Research and
Defense. Addison Wesley, 2005. http://books.google.
co.uk/books/about/The_Art_of_Computer_Virus_
Research_and_D.html?id=XE-ddYF6uhYC&redir_
esc=y.

[4] Soeder, D.; Permeh, R. eEye BootRoot. BlackHat,
2005. http://www.blackhat.com/presentations/bh-usa-
05/bh-us-05-soeder.pdf.

[5] Kumar, N.; Kumar V. Vbootkit. BlackHat 2007.
https://www.blackhat.com/presentations/bh-europe-07/
Kumar/Whitepaper/bh-eu-07-Kumar-WP-apr19.pdf.

[6] Kleissner, P. Stoned Bootkit. BlackHat 2009.
http://www.blackhat.com/presentations/bh-usa-09/
KLEISSNER/BHUSA09-Kleissner-StonedBootkit-
PAPER.pdf.

[7] Florio, E.; Kasslin, K. Your Computer is Now Stoned
(...Again!): The Rise of MBR Rootkits. Symantec,
2013. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/your_
computer_is_now_stoned.pdf.

[8] Kumar, N.; Kumar V. VBootkit 2.0: Attacking Windows
7 via Boot Sectors. HiTB 2009.
http://conference.hitb.org/hitbsecconf2009dubai/
materials/D2T2%20-%20Vipin%20and%20Nitin%20K
umar%20-%20vbootkit%202.0.pdf.

[9] Economou, N.; Luksenberg A. Deep Boot. Ekoparty
2011. http://www.ekoparty.org//archive/2011/
ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf.

[10] Ettlinger, W.; Vieböck, S. Evil Core Bootkit: Pwning
Multiprocessor Systems. NinjaCon, 2011.
http://downloads.ninjacon.net/downloads/
proceedings/2011/Ettlinger_Viehboeck-Evil_Core_
Bootkit.pdf.

[11] Diego, J.; Economou, N.A. VGA Persistent Rootkit.
Ekoparty 2012. http://corelabs.coresecurity.com/index.
php?module=Wiki&action=view&type=publication&n
ame=vga_persistent_rootkit.

[12] Rodionov, E.; Matrosov, A. Mind the Gapz: The most
complex bootkit ever analyzed? ESET, 2013.
http://www.welivesecurity.com/wp-content/
uploads/2013/05/gapz-bootkit-whitepaper.pdf.

[13] Kaczmarek, S. UEFI and Dreamboot. HiTB 2013.
http://www.quarkslab.com/dl/13-04-hitb-uefi -
dreamboot.pdf.

[14] Zihang, X. Oldboot: the fi rst bootkit on Android. 360,
2014. http://blogs.360.cn/360mobile/2014/01/17/
oldboot-the-fi rst-bootkit-on-android/.

[15] Rodionov, E.; Matrosov, A. The Evolution of TDL:
Conquering x64. ESET, 2011. http://www.eset.com/us/
resources/white-papers/The_Evolution_of_TDL.pdf.

[16] Matrosov, A. Olmasco bootkit: next circle of TDL4
evolution (or not?). ESET, 2012.
http://www.welivesecurity.com/2012/10/18/olmasco-
bootkit-next-circle-of-tdl4-evolution-or-not-2/.

[17] Intel® Platform Innovation Framework for UEFI
Specifi cation. http://www.intel.com/content/www/us/
en/architecture-and-technology/unifi ed-extensible-
fi rmware-interface/efi -specifi cations-general-
technology.html.

[18] UEFI Validation Option ROM Validation Guidance.
Microsoft, 2014. http://technet.microsoft.com/en-us/
library/dn747882.aspx.

[19] Loukas, K. Mac EFI Rootkits. Black Hat 2012.
http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_
Paper.pdf.

[20] Bulygin, Y.; Furtak, A.; Bazhaniuk, O. A tale of one
software bypass of Windows 8 Secure Boot. Black Hat
2013. https://media.blackhat.com/us-13/us-13-Bulygin-
A-Tale-of-One-Software-Bypass-of-Windows-8-
Secure-Boot-Slides.pdf.

[21] Kallenberg, C.; Bulygin, Y. All Your Boot Are Belong
To Us Intel, MITRE. CanSecWest 2014.
https://cansecwest.com/slides/2014/AllYourBoot_
csw14-intel-fi nal.pdf.

[22] Intel CHIPSEC. https://github.com/chipsec/chipsec.

[23] ESET Hidden File System Reader.
http://www.eset.com/int/download//utilities/detail/
family/173/.

[24] Matrosov, A.; Rodionov, E.; Harley, D. Rootkits and
Bootkits: Advanced Malware Analysis. No Starch,
2015 (in preparation).

