
1/18

January 11, 2019

Threat Actor “Cold River”: Network Traffic Analysis and a
Deep Dive on Agent Drable

lastline.com/labsblog/threat-actor-cold-river-network-traffic-analysis-and-a-deep-dive-on-agent-drable/

Posted by Quentin Fois and Labs Team ON JAN 11, 2019

Executive Summary

While reviewing some network anomalies, we recently uncovered Cold River, a sophisticated
threat actor making malicious use of DNS tunneling for command and control activities. We
have been able to decode the raw traffic in command and control, find sophisticated lure
documents used in the campaign, connect other previously unknown samples, and associate
a number of legitimate organizations whose infrastructure is referenced and used in the
campaign.

The campaign targets Middle Eastern organizations largely from the Lebanon and United
Arab Emirates, though, Indian and Canadian companies with interests in those Middle
Eastern countries are also targeted. There are new TTPs used in this attack – for example
Agent_Drable is leveraging the Django python framework for command and control
infrastructure, the technical details of which are outlined later in the blog.

We are not sure which threat actor or proxy of a threat actor is behind the campaign. This
campaign is using previously undiscovered toolcraft and we speculate that right-to-left
languages used has influenced the hardcoded string “Agent_Drable” name into the implant

https://www.lastline.com/labsblog/threat-actor-cold-river-network-traffic-analysis-and-a-deep-dive-on-agent-drable/
https://www.lastline.com/author/quentinf/
https://www.lastline.com/author/labs-team/

2/18

used in the campaign. It references a 2007 conflict of the Lebanese army at the “Nahr
Elbard” Palestinian Refugee camp, which is a transliteration of Nahr el bared. The English
translation of Nahr Elbard is “Cold River.”

In short, “Cold River” is a sophisticated threat that utilizes DNS subdomain hijacking,
certificate spoofing, and covert tunneled command and control traffic in combination with
complex and convincing lure documents and custom implants.

Note: the campaign described in this blog post has been also covered by Talos and CERT-
OPMD, whereas the underpinning DNS hijacking attacks have been recently described in
detail by FireEye in this article.

MalDoc Droppers

Two malicious word documents were found, differing only in the decoy content (same VBA
macro, same payload). The first sample is an empty document but is weaponized (Figure 1).

Figure 1: Screenshot of the weaponized empty document, sha1:
1f007ab17b62cca88a5681f02089ab33adc10eec

The second one is a legitimate HR document from the SUNCOR company to which they
added the malicious payload and VBA macro (Figure 2).

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjnjP7b9-3fAhWVtXEKHZDfBGEQFjAAegQIABAB&url=https%3A%2F%2Fblog.talosintelligence.com%2F2018%2F11%2Fdnspionage-campaign-targets-middle-east.html&usg=AOvVaw2GjQrr4nr6dAWET006zhBF
https://blog-cert.opmd.fr/dnspionage-weird-apt32-stuff/
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html

3/18

Figure 2: Screenshot of the HR document from Suncor, sha1:
9ea865e000e3e15cec15efc466801bb181ba40a1

While gathering open intelligence about the callback domain 0ffice36o[.]com we found a
reference to a potential linked document from Twitter (see Figure 3); although that document
did not contain the same payload. The person behind this Twitter account may have attached
the wrong document.

4/18

Figure 3: Tweet referencing a third document:
https://twitter.com/KorbenD_Intel/status/1053037793012781061

The timestamps listed in Table 1 tend to confirm the hypothesis that the Suncor document is
a legitimate document which was weaponized: the creation date is old enough, and the last
save matches the timeframe of the campaign. The empty document is most likely the one
used to test the macro or to deliver the payload in an environment not related to Suncor.

SHA1 Description Creation
Time

Last
Saved
Time

1f007ab17b62cca88a5681f02089ab33adc10eec Empty doc 2018-10-
05
07:10:00

2018-10-
15
02:59:00

https://twitter.com/KorbenD_Intel/status/1053037793012781061

5/18

9ea865e000e3e15cec15efc466801bb181ba40a1 Suncor
decoy

2012-06-
07
18:25:00

2018-10-
15
22:22:00

Table 1: Malicious documents and related metadata.

For a more global timeline of the document and their payload, please refer to Figure 4.

Behavior Analysis

Regarding the VBA macro, it stays basic but efficient. The macro is split into two
components, one executing when the document is opened and the other at document close.
The actual payload is not stored directly into the VBA code, but instead hidden in a form
within the document.

When opening the Suncor document, macro execution must be enabled by the user to
actually see its content. This makes the macro activation part appear legitimate to an
average user. The only additional obfuscation taking place is the use of string concatenation,
such as “ t ” & “ mp “, “ Microsoft.XML ” & “ DOM “, “ userp ” & “ rofile “, etc.

The malicious macro contains some basic anti-sandboxing code, checking to see if a mouse
is available on the computer using the API Application.MouseAvailable . Overall, the
logic of the macro is the following:

At document opening:

Check if Environ("userprofile")\.oracleServices\svshost_serv.exe exists.
If yes, stop. If no, continue.
Create the directory Environ("userprofile")\.oracleServices if it does not exist.
Fetch the base64 encoded payload stored in UserForm1.Label1.Caption .
Decode and write it into
Environ("userprofile")\.oracleServices\svshost_serv.doc .

Reveal the document content.

At document close:

Rename the dropped “ svshost_serv.doc ” file as “ svshost_serv.exe ”.
Create a scheduled task that runs the EXE file every minute, named “ chrome
updater ”.

A last interesting thing to note is that the part of the code setting up the scheduled task is
copied from an online resource .

Payloads and CnC Communication

1

6/18

We found two related payloads, shown in Table 2. The main difference between the two
payloads is that one of them has some event logging capabilities, making it easier to
determine the actual intention of the implant; most likely it was an early development or
debug version. The sample actually packaged inside the Suncor documents was stripped of
this functionality.

SHA1 Description Compilation
Timestamp

1c1fbda6ffc4d19be63a630bd2483f3d2f7aa1f5 Payload with logs
information

2018-09-03
16:57:26 UTC

1022620da25db2497dc237adedb53755e6b859e3 Payload without
logs information

2018-09-15
02:31:15 UTC

Table 2: the Agent_Drable payloads.

One interesting string found inside the binary is “ AgentDrable.exe “. This name is written
in the DLL Name entry of the Export directory inside the PE header. It will reappear in
different parts of this campaign, such as the infrastructure configuration. We can assume
with confidence that this is the name given to this implant by the threat actor. There is very
little evidence referencing AgentDrable outside of recent submissions to a few analysis
portals. One hypothesis is that it would be the name “Elbard” reversed.

Compilation timestamps of the two samples are interesting as well. One has to be fully aware
that timestamps can easily be falsified, however, these can be found in multiple places
across the binaries (Debug directory, File header) and are coherent with the other events of
the campaign. We placed all the dropper and payloads timestamps in Figure 4.

Figure 4: Note that the creation timestamp of WORD_1 is omitted, being way further back in time
(2012).

7/18

One interesting fact is the compilation timestamp of the dropped sample without logs, which
matches the last save time of the two word documents in which the dropped file was
embedded. Meaning that they likely compiled the last version of their implant and directly
weaponized the document for delivery.

Both malicious documents were submitted to VirusTotal from Lebanon just a few days
later. Overall this timeline provides a coherent story and suggests that none of the
timestamps were altered by the attackers. This completes the overview of the campaign
deployment; we will provide additional insight as we compare this with the evolution of the
attackers command and control infrastructure.

Dropped Executable – Behavior Analysis

The primary function of the dropped payload is to operate as a reconnaissance tool. There
are no advanced functionalities implemented inside the binary (no screen capture or
keylogger, for example). This file’s main functions are:

Running commands from CnC and returning the output
File download and execution
File exfiltration

One IP and one domain name are hardcoded inside the binary, as well as a user agent:

0ffice36o[.]com (clearly mimicking the legitimate office360[.]com)
185.161.211[.]72

Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv :11.0) like Gecko

The implant has two main ways of communicating with a CnC: (1) DNS requests, and (2)
HTTP(S) GET/POST. The first execution defaults to DNS communication then, based on the
commands received, it may switch to HTTP.

The binary is executed every minute thanks to a scheduled task created by the malicious
document. At the beginning of every run, it creates the following subdirectories if they do not
exist:

.\Apps

.\Uploads

.\Downloads

Directories “ Uploads ” and “ Downloads ” act exactly according to their name. Any
executable located in the “ Apps ” directory will run each time the dropper implant is
executed.

All the configuration data is handled using JSON and the cJSON library. Key names are
generic, using one or two letters (‘a’, ‘m’, ‘ul’, …) but we managed to get a comprehensive
listing as shown in Table 3. The configuration is stored in the file “ Configure.txt ” and

8/18

retrieved at the beginning of every execution.

Parameter
Name

Comment

a Execution mode (DNS/HTTP)

m Max query length, used to split long DNS queries into
multiple shorter ones

f Phase

c DNS counter

h Home path, where the subdirectories and config file are
created

u HTTP CnC resource path

s HTTP CnC IP address

d DNS CnC domain

p HTTP CnC port number

l Connection type, HTTP or HTTPS

i Victim ID (2 chars)

k Custom base64 alphabet

Table 3: JSON configuration parameters (list not exhaustive).

In order to communicate with the DNS CnC, the sample performs DNS queries of specially
crafted subdomains. For example, here are some DNS queries from different victims:

crzugfdhsmrqgq4hy000.0ffice36o[.]com

gyc3gfmhomrqgq4hy.0ffice36o[.]com

svg4gf2ugmrqgq4hy.0ffice36o[.]com

Hnahgfmg4mrqgq4hy.0ffice36o[.]com

6ghzGF2UGMD4JI2VOR2TGVKEUTKF.0ffice36o[.]com

The subdomains follow a specific schema: they are made of 4 random alphadecimal chars
and a base32 encoded payload. When applied to the domains listed above we get:

Subdomain Plain text

crzugfdhsmrqgq4hy000 1Fy2048|

gyc3gfmhomrqgq4hy 1Xw2048|

9/18

svg4gf2ugmrqgq4hy 1uC2048|

6ghzGF2UGMD4JI2VOR2TGVKEUTKF 1uC0|J5WGS5TJME

These three first plain texts differ only by two letters: Fy / Xw / uC. It is an ID generated by
the sample, that allows the CnC to identify the source of a request. It is generated from the
username and/or hostname, and thus stays consistent between implant executions. The
same ID is used during HTTP communications.

While in DNS mode, the implant communicates with the CnC exclusively through these
crafted subdomains and gets its command by interpreting the IP addresses returned. The
HTTP communication mode is a bit more advanced: requests and answers from the implant
respectively use GET and POST methods. By default, the sample builds the URL
http ://[CNC_IP]/[RESOURCE_PATH]?id=[ID] where:

Parameter Default Value Note

CNC_IP 185.161.211[.]72 This IP can be updated

RESOURCE_PATH /index.html This path can be updated

ID Fy This ID is constant for a given infection

The hardcoded CnC IP stored in the binaries was offline at the time of the analysis. We were
able to find another active CnC hosted at 185.20.184[.]138 . Figure 5 shows what the
page looks like when accessed through a web browser.

Figure 5: The fake Wikipedia page.

10/18

The CnC commands are hidden inside HTML comments or within specific tags and encoded
using a custom base64 alphabet. Below is an excerpt of the source code of the page,
showing the encoded data.

Once decoded, they give the following JSON object from which the commands are extracted:

These commands show the typical steps that an attacker would take to perform host
reconnaissance before proceeding with the intrusion. The full list of tags containing
instructions or commands is in Table 4.

Tag Description

<!--[DATA]--> Base64 encoded JSON content

<link href="[DATA]"> Resource path from which a download must occur

<form action="[DATA]" Resource path on which the POST answers should be
performed

<style>/*
[DATA]*/</style>

<script>/*
[DATA]*/</script>

Table 4: List of the tags that are extracted from the page.

The HTTP CnC is powered by a Django framework with debug mode activated. Thanks to
that misconfiguration, it is possible to gather some additional pieces of information that can
be used to map their whole infrastructure. Table 5 lists all the endpoints available.

Path Description

/index.html (GET) Retrieves commands and generic conf
params

11/18

/Client/Login (GET) Retrieves the custom b64 alphabet used to
encode data

/Client/Upload (POST) Upload exfiltrated data or command results

/Client/Download/<str:url>

/DnsClient/Register

/DnsClient/GetCommand

/DnsClient/SendResult

/DnsClient/SendNotification

/static/

^\.well\-known\/acme\-challenge\/(?
P<path>.*)$

Used to generate let’s encrypt certificates

Table 5: List of all available endpoints.

Besides all the resource paths, the debug mode leaked all of the environment variables and
some Django internal settings. The most interesting values are listed in Tables 6 and 7 (the
full list is available upon request):

Var Name Value Comment

PWD /root/relayHttps Interesting directory name

PATH_INFO /static/backup.zip Password protected backup of the
database

SERVER_NAME debian

SERVER_SOFTWARE WSGIServer/0.2

SHELL /usr/bin/zsh

SSH_CLIENT 194.9.177[.]22 53190
22

Leaked IP of their VPN server

Table 6: Environment variables leaked due to a misconfigured Django instance.

Var Name Value Comment

LOGIN_URL /accounts/login/

MAGIC_WORD microsoft Unknown

PANEL_PATH /Th!sIsP@NeL

12/18

PANEL_PORT :7070

PANEL_USER_NAME admin

DATABASES /root/relayHttps/ db .sqlite3

SERVER_PORT :8083

SERVER_URL https://185.20.184[.]157 Leaked IP, unknown usage

Table 7: Settings leaked due to a misconfigured Django instance.

Once again we can find a mention to the “drable” monicker, this time as part of one of the
queries used to fetch data from the underlying database:

SELECT COUNT(*) AS "__count" FROM "Client_drable"
 WHERE "Client_drable"."relay_id" = %s

Infrastructure

Thanks to the data leaked by the CnC and additional passive DNS data, we were able to
identify with high confidence, multiple hosts which belong to the campaign infrastructure.
One interesting fact is they are all part of the same autonomous system, Serverius N (AS
50673), and hosted by Deltahost. Furthermore, all the domain names were registered
through NameSilo.

IP Description

185.161.211[.]72 Hardcoded HTTP CnC, not used at the time of the analysis.

185.20.187[.]8 Mostly used to generate Let’s Encrypt certificates. Port 443 still
answers with memail.mea.com[.]lb. Port 444 has a “GlobalSign”
certificate of memail.mea.com[.]lb.

185.20.184[.]138 Live HTTP CnC. Ports 80 and 443 return interesting Django debug
info.

185.20.184[.]157 Unknown usage. Basic authentication protected page on port 7070
with https, cert CN is ” kerteros “. Port 8083 hosts a webserver ,
but only returns a blank page.

185.161.211[.]79 Hosted the HR phishing domains hr-suncor[.]com and hr-
wipro[.]com, now redirect to the legitimate website.

194.9.177[.]22 Openconnect VPN used to reach the HTTP CnC.

By correlating these IP addresses with DNS resolutions (See timeline in Appendix A), we
identified three domains that were most likely used to deliver the weaponized first stage
documents:

13/18

hr-suncor[.]com

hr-wipro[.]com

files-sender[.]com

These similar looking domains names match well with the Suncor document template used
in the attack. We have not found any specific document linked to Wipro yet. We also found
suspicious DNS resolution from government AE and LB domain names pointing towards
185.20.187[.]8 for a short amount of time (~ 1 day each).

By cross-referencing this data with certificate generation records available on https://crt.sh,
we conclude that the attackers managed to take over the DNS entries of these domains and
generated multiple “Let’s encrypt” certificates allowing them to transparently intercept any
TLS exchange.

Domain Certificate Redirection
Dates

memail.mea.com[.]lb https://crt.sh/?
id=923463758

2018-11-06

webmail.finance.gov[.]lb https://crt.sh/?
id=922787406

2018-11-06

mail.apc.gov[.]ae https://crt.sh/?id=782678542 2018-09-23

mail.mgov[.]ae https://crt.sh/?
id=750443611

2018-09-15

adpvpn.adpolice.gov[.]ae https://crt.sh/?
id=741047630

2018-09-12

Conclusion

In summary, Cold River is a sophisticated threat actor making malicious use of DNS
tunneling for command and control activities, compelling lure documents, and previously
unknown implants. The campaign targets Middle Eastern organizations largely from the
Lebanon and United Arab Emirates, though, Indian and Canadian companies with interests
in those Middle Eastern countries may have also been targeted.

Cold River highlights the importance of detection diversity and contextualized threat
intelligence. Without correlating Behavioral Intelligence and Network Traffic Analysis, the full
scope of Cold River’s capabilities would go unseen, exposing victims to additional risk.

Indicators of Compromise

Droppers (maldocs)
 9ea865e000e3e15cec15efc466801bb181ba40a1 (Suncor document)

 678ea06ebf058f33fffa1237d40b89b47f0e45e1

https://crt.sh/
https://crt.sh/?id=923463758
https://crt.sh/?id=922787406
https://crt.sh/?id=782678542
https://crt.sh/?id=750443611
https://crt.sh/?id=741047630

14/18

Payloads
1022620da25db2497dc237adedb53755e6b859e3 (Document Payload)
1c1fbda6ffc4d19be63a630bd2483f3d2f7aa1f5 (Writes logs)

IP addresses
185.161.211[.]72
185.20.184[.]138
185.20.187[.]8
185.20.184[.]15
185.161.211[.]79
194.9.177[.]22
104.148.109[.]193

Domain names
0ffice36o[.]com
hr-suncor[.]com
hr-wipro[.]com
files-sender[.]com
microsoftonedrive[.]org

Certificates domain names
memail.mea.com[.]lb
webmail.finance.gov[.]lb
mail.mgov[.]ae
adpvpn.adpolice.gov[.]ae
Mail.apc.gov[.]ae

Generated certificates
https://crt.sh/?id=923463758
https://crt.sh/?id=922787406
https://crt.sh/?id=782678542
https://crt.sh/?id=750443611
https://crt.sh/?id=741047630

User agent
Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko

Filesystem artifacts
%userprofile%\.oracleServices\Apps\
%userprofile%\.oracleServices\Configure.txt
%userprofile%\.oracleServices\Downloads\
%userprofile%\.oracleServices\log.txt
%userprofile%\.oracleServices\svshost_serv.doc
%userprofile%\.oracleServices\svshost_serv.exe
%userprofile%\.oracleServices\Uploads\

15/18

Scheduled task
Name: “chrome updater”
Description: “chromium updater v 37.5.0”
Interval: 1 minute
Execution: “%userprofile%\.oracleServices\svshost_serv.exe”

Appendix A: DNS Resolution Timeline

16/18

17/18

Footnotes

https://www.experts-exchange.com/articles/11591/VBScript-and-Task-Scheduler-2-0-
Creating-Scheduled-Tasks.html

About
Latest Posts

Quentin Fois

Quentin Fois is a Malware Reverse Engineer at Lastine. A casual CTF player, he also enjoys
new technical challenges and deep diving into unknown mechanisms of OS internals. Prior
to joining Lastline, Quentin worked at Airbus Cybersecurity as part of their Threat Intelligence
team, actively tracking APT groups.

Latest posts by Quentin Fois (see all)

Threat Research Report: Infostealers and self-compiling droppers set loose by an
unusual spam campaign - January 30, 2020
Reporting from Security Analyst Summit 2019 - April 18, 2019
Threat Actor “Cold River”: Network Traffic Analysis and a Deep Dive on Agent Drable -
January 11, 2019

About
Latest Posts

Labs Team

1

https://www.lastline.com/author/quentinf/
https://www.lastline.com/author/quentinf/
https://www.lastline.com/author/quentinf/
https://www.lastline.com/author/quentinf/
https://www.lastline.com/labsblog/infostealers-self-compiling-droppers-set-loose-unusual-spam-campaign/
https://www.lastline.com/labsblog/reporting-from-security-analyst-summit-2019/
https://www.lastline.com/labsblog/threat-actor-cold-river-network-traffic-analysis-and-a-deep-dive-on-agent-drable/
https://www.lastline.com/author/labs-team/
https://www.lastline.com/author/labs-team/

18/18

Lastline Labs is where some of the most brilliant minds in the threat prevention community
collaborate to develop advanced cyber security solutions. Our research team tracks the
evolution, proliferation, and impact of advanced malware. The Lastline Labs Team
continually monitors the threat landscape and analyzes new security threats and
vulnerabilities.

Latest posts by Labs Team (see all)

Threat Actor “Cold River”: Network Traffic Analysis and a Deep Dive on Agent Drable -
January 11, 2019
Tales From the Field: The Surge of Agent Tesla - August 28, 2018
From Russia(?) with Code - March 9, 2018

Tags:

Agent Drable, certificate spoofing, command and control, Django python framework, DNS
subdomain hijacking, DNS Tunneling, Nahr Elbard, Quentin Fois

https://www.lastline.com/author/labs-team/
https://www.lastline.com/author/labs-team/
https://www.lastline.com/labsblog/threat-actor-cold-river-network-traffic-analysis-and-a-deep-dive-on-agent-drable/
https://www.lastline.com/labsblog/surge-of-agent-tesla-threat-report/
https://www.lastline.com/labsblog/attribution-from-russia-with-code/
https://www.lastline.com/tag/agent-drable/
https://www.lastline.com/tag/certificate-spoofing/
https://www.lastline.com/tag/command-and-control/
https://www.lastline.com/tag/django-python-framework/
https://www.lastline.com/tag/dns-subdomain-hijacking/
https://www.lastline.com/tag/dns-tunneling/
https://www.lastline.com/tag/nahr-elbard/
https://www.lastline.com/tag/quentin-fois/

