
1/11

Peyton Smith and Tim Parisi February 6, 2019

Threat Actor “Magecart”: Coming to an eCommerce
Store Near You

crowdstrike.com/blog/threat-actor-magecart-coming-to-an-ecommerce-store-near-you/

Threat actors that target eCommerce platforms to skim credit card information from online
shoppers are commonly referred to under the umbrella threat actor name “Magecart.” This
blog analyzes recently observed Magecart tactics, techniques, and procedures (TTPs) used
to exploit e-commerce applications and steal credit card information from customers during
online checkout.

A popular target of Magecart threat actors has been the Magento eCommerce platform,
which is used by merchants to offer direct-to-consumer goods for sale. Since 2016, Magecart
threat actors have targeted Magento retailers by exploiting CVE-2016-4010, a PHP Object
Injection vulnerability in the Magento API. More recently, however, CrowdStrike has observed
Magecart threat actors targeting undisclosed PHP Object Injection vulnerabilities in Magento
eCommerce third-party plugins and extensions. Like CVE-2016-4010, these vulnerabilities
allow an attacker to execute arbitrary code in the context of the vulnerable server, commonly
known as a remote code execution (RCE) vulnerability.

Initial Reconnaissance

CrowdStrike observed recent attacks against Magento that began with an automated
scanner attempting to identify URIs (Uniform Resource Identifiers) associated with previously
aggregated vulnerable Magento plugins. The scanner requests various URIs with a basic

https://www.crowdstrike.com/blog/threat-actor-magecart-coming-to-an-ecommerce-store-near-you/

2/11

PHP Object Injection payload to probe for vulnerable servers. An example scan request for
the resource /madecache/varnish/esi is below.

Figure 1: Example of an encoded POST request to scan the /index/php/madecache/varnish/esi resource

As shown in Figure 1, the attacker assigns a large base64 encoded string to the misc
parameter and sends a secondary request parameter dl . A closer look at the misc
parameter indicates the data is likely base64-encoded, and decoding the data shows a
serialized PHP object indicative of a typical PHP object post request.

Figure 2: Decoded PHP object sent to the /madecache/varnish/esi/ resource

The decoded PHP object looks benign, with the exception of a 29-character string embedded
toward the end of the object:

Figure 3: Malicious PHP Object

When the PHP Object is deserialized, this snippet of PHP code included in the object will be
executed in the context of the server. If the /madecache/varnish/esi/ resource is
vulnerable, the server will retrieve and evaluate the contents of the “dl” parameter, shown in
figure 3 above. Percent-decoding the dl parameter value shows the following code snippet
exit("<h1>Hi</h1>"); . From this, we determine that the adversary is likely performing

3/11

automated scanning of a large set of domains to check for the HTTP 200 response of Hi .
This response determines if the URI queried is present on the web server and vulnerable to
PHP Object Injection.

CrowdStrike identified Magecart threat actors scanning for 30 URIs, shown in the list below:

/rewards/customer_notifications/unsubscribe/
/appointment/index/index/
/AvisVerifies/dialog/index/
/pdffree/Product/pdfsave/
/ajax/Showroom/submit/
/prescription/Prescription/amendQuoteItemQty/
/netgocust/Gwishlist/updategwishlist/
/CustomGrid/index/index/
/simplebundle/Cart/add/
/layaway/view/add/
/multidealpro/index/edit/
/vendors/credit/withdraw/review/
/customgrid/Blcg_Column_Renderer_index/index/
/tabshome/index/ajax/
/customgrid/Blcg/Column/Renderer/index/index/
/customgrid/index/index/
/aheadmetrics/auth/index/
/rewards/customer/notifications/unsubscribe/
/gwishlist/Gwishlist/updategwishlist/
/vendors/credit_withdraw/review/
/vendors/withdraw/review/
/emaildirect/abandoned/restore/
/rewards/notifications/unsubscribe/
/bssreorderproduct/list/add/
/advancedreports/chart/tunnel/
/minifilterproducts/index/ajax/
/ajaxproducts/index/index/
/qquoteadv/download/downloadCustomOption/
/freegift/cart/gurlgift/
/madecache/varnish/esi/

If vulnerable, the attacker will return to the website at a later time to further exploit the
application. CrowdStrike has observed three different attack paths — outlined below — that
have the same objective: to exfiltrate payment card data from online customers.

From RCE to Payment Information: Attack Path Analyses

4/11

Example One: Overwriting a Core JavaScript Library

In this attack path, the attacker attempts to overwrite a JavaScript library file, used by the
victim website, with attacker-controlled JavaScript. The HTTP request for this type of attack
would look like the following:

Figure 4: Example One payload

The payload in Figure 4 is similar in structure to the scanning payload except with a larger dl
parameter value. The attacker uses the same PHP Object Injection technique to execute the
dl parameter in the context of the vulnerable application. Percent-decoding the dl parameter
shows the code snippet in Figure 5.

Figure 5: Example One overwrite payload

5/11

As shown in Figure 5, the attacker attempts to coerce the server to download a JavaScript
file from attacker-controlled infrastructure $url and overwrite a local file on the victim
server $dest using native PHP functions.

The attacker strategically overwrites a core JavaScript library file because these files are
referenced on every Magento web resource. This means they are executed by the victim’s
browser every time a Magento-affiliated web page is visited. If the JavaScript code identifies
a credit card form on the current webpage, the code will capture the credit card information
on submission and forward the credit card data to the attacker-controlled infrastructure.

Example Two: Altering the Magento Configuration Database Table

CrowdStrike has also observed a secondary attack vector involving a sequence of payloads
from the attacker. Using the same PHP Object Injection vulnerability to execute a request
parameter, the attacker first attempts to retrieve the Magento configuration file local.xml
by executing the following PHP code:

Figure 6: PHP payload to extract Magento database credentials

The configuration file local.xml contains the plaintext username and password for the
Magento database, providing the attacker with the necessary credentials to directly connect
to the database via a similar payload. The attacker uses the compromised credentials to
update the Magento core configuration table core_config_data to reference attacker-
controlled infrastructure. The attacker’s command would look similar to Figure 7, displayed
below.

Figure 7: PHP payload updating Magento configuration table

The base64-encoded $k variables decode to a raw SQL query, as shown below in Figure
8.

1

6/11

Figure 8: Raw SQL query updating the Magento configuration table

The config_id variable referenced in Figure 6 typically corresponds to a generic HTML
tag, such as footer , that is included on every page of the eCommerce website. Therefore,
the attacker-controlled JavaScript executes on each page, allowing the attacker to identify
credit card forms and exfiltrate payment card data.

Example Three: Exploiting Old Vulnerabilities

Creation of a Database Account

To gain access to the Magento database, attackers have also exploited versions of Magento
that do not have the SUPEE-5344 patch. This exploit leverages a vulnerability where the
attacker can create database administrator accounts through GET requests against the web
front-end. Figure 9 contains an example GET request where the attacker references the
WYSIWYG (what you see is what you get) page editor resource to leverage an SQL Injection
and ultimately create a new database administrator account inside a base64 payload.

Figure 9: Example web log showing an SQL Injection exploit to create a database administrator account

Figure 10 shows the decoded payload, which created the database administrator account
rogueaccount.

https://www.magentocommerce.com/products/downloads/magento/

7/11

Figure 10: Decoded base64 payload that creates the new database administrator account “rogueaccount”

Leveraging the Magpleasure Extension

With the malicious database administrator account created, the attackers can install
additional tools to aid in their attack. One tool in particular includes the Magpleasure
filesystem Magento extension, which allows administrators to modify the web server’s
filesystem. Similar to PowerShell in Windows, Magpleasure is used legitimately by admins,
but threat actors also leverage the extension to modify files within the web directory and
further their attack. In a number of investigations CrowdStrike has conducted, Magpleasure
was identified within the php-fpm-error.log file on a victim web server. An example from
the error log is shown in Figure 11.

Figure 11: Secondary php-fpm-error Magpleasure log

Magento Core File Code Injection

In addition to overwriting JavaScript libraries, CrowdStrike has also observed attackers
modifying a core PHP file within Magento. In this example, the attacker inserts base64
encoded code within the functions.php core Magento file. The malicious code snippet
extracts victim billing information from HTTP POST requests and copies the extracted
information to a file on disk. The code injected into functions.php can be seen in Figure 12.

8/11

Figure 12: Obfuscated threat actor code

Figure 13 shows the code from Figure 12 after it has been de-obfuscated.

Figure 13: De-obfuscated threat actor code

The malicious code is loaded when functions.php is imported into other Magento scripts. The
snippet attempts to match strings within the preg_match regular expression with data sent
via HTTP POST requests by potential victims. If a regular expression match occurs, the
skimmer then serializes the $_POST and $_COOKIE data and writes it to a JPG file in the
NFS directory of the web server. The attacker intermittently retrieves the JPG file from the
web server as data is collected.

Detection and Prevention Measures

This section provides an overview of techniques to detect and prevent attacks against your
eCommerce application.

Audit Magento Third-Party Extensions and Plugins

CrowdStrike recommends auditing your Magento installation to determine if your deployment
contains any aforementioned plugins targeted by Magecart threat actors. If identified,
CrowdStrike recommends removing the plugin, or blocking requests to these resources by
editing .htaccess, utilizing Apache mod_rewrite or similar, depending on the web
infrastructure in use. A forensic investigation should be conducted to determine if threat
actors successfully targeted these resources. Additionally, unnecessary plugins and
extensions should be removed to minimize the eCommerce application’s attack surface.

Database Logging in Magento Enterprise

9/11

In some investigations, CrowdStrike was able to identify previous attacker activity by
analyzing a table in the Magento database that logs all changes made to it. The
enterprise_logging_event_changes table, available in enterprise versions of Magento

only, records changes to the Magento database. This can be extremely useful to forensic
investigators if any reverting occurred or modifications were made to the database since the
initial attack. Figure 14 below shows an example entry in the
enterprise_logging_event_change table, where a URL to a malicious JavaScript file

was added to the absolute_footer field.

Figure 14: Example entry in the enterprise_logging_event_change table that shows changes made to the
database

Web Log Analysis and Monitoring

eCommerce environments should actively monitor and analyze web access logs for
unauthorized or suspicious activity, specifically for the presence of SQL Injection methods,
and the placement and interaction with web shells. eCommerce environments should also
monitor authentications to the back-end eCommerce application database to ensure only
authorized accounts from expected source IP addresses are occurring.

Perform Regular Penetration Tests

eCommerce environments should perform web application penetration testing on at least a
biannual basis to ensure their eCommerce web application is patched and secure. The
testing should be conducted by a third party with the goals of identifying any unpatched
vulnerabilities on the web application and/or the system running the web application, as well
as trying to access the eCommerce web server and/or the database.

Implement Code Integrity Checks

eCommerce environments should consider implementing code integrity verification checks
and processes for their eCommerce applications. These checks would detect the
“Overwriting a Core JavaScript Library” example mentioned above. For instance, an
eCommerce administrator can calculate a SHA256 hash of core JavaScript libraries
employed by the eCommerce application and ensure the hash of these libraries only
changes during expected maintenance periods.

Regular Updates and Patching

10/11

eCommerce environments should minimize the attack footprint by regularly patching the core
eCommerce platform and pertinent application dependencies, such as Apache and PHP.
Administrators should also audit and remove unnecessary eCommerce application plugins
and extensions.

Implement a Web Application Firewall

Deploying and configuring a Web Application Firewall (WAF) will mitigate the probability of a
successful attack. WAFs should be configured to block and generate alerts on potential code
injection attacks, such as PHP Object Injection or SQL Injection. Generated alerts should be
regularly reviewed by security personnel to ensure the attacks were successfully prevented.

Implement Advanced Endpoint Protection

Deploying an advanced endpoint protection program, such as the CrowdStrike® Falcon®
platform, will mitigate the risk of a successful attack. Falcon utilizes an array of powerful
methods to provide protection against rapidly changing TTPs used by various adversaries.
Falcon Prevent™ next-gen antivirus is capable of detecting and preventing the execution of
exploits and web shells that are often used in attacks against eCommerce applications.

Conclusion

Magecart threat actors continue to target payment web applications in an attempt to steal
credit card information. Despite the absence of known high-severity vulnerabilities in the core
Magento eCommerce product since 2016, attackers have successfully gained access by
targeting common third-party Magento plugins. They have also used these same techniques
on other eCommerce applications such as PinnacleCart. CrowdStrike analysts expect this
attack trend to continue, and they advise eCommerce administrators to review the previously
mentioned detection and prevention measures to minimize the likelihood of the attackers
successfully exploiting and exfiltrating payment card information.

Footnotes

1. This file may vary depending on Magento version

Additional Resources

Learn how CrowdStrike can help your organization answer its most important security
questions: Visit the CrowdStrike Services web page.
Download the 2018 CrowdStrike Services Cyber Intrusion Casebook and read up on
real-world incident response (IR) investigations, with details on attacks and
recommendations that can help your organization be better prepared.
Watch an on-demand webcast on the Cyber Intrusion Casebook: Stories From the
Front Lines of Cybersecurity in 2018 and Insights That Matter for 2019.

https://www.crowdstrike.com/services/
https://www.crowdstrike.com/resources/reports/cyber-intrusion-services-casebook-2018/?ctm_source=Digital&ctm_medium=blog&ctm_campaign=WC_Casebook2018_Report
https://www.crowdstrike.com/resources/crowdcasts/cyber-intrusion-services-casebook-2018-cc/

11/11

Learn more about CrowdStrike’s next-gen endpoint protection by visiting the Falcon
platform product page.

https://www.crowdstrike.com/products/

