
1/3

February 21, 2018

FinSpy VM Unpacking Tutorial Part 3: Devirtualization
msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization

February 21, 2018 Rolf Rolles

1. Overview

This is the third and final part in my series on statically unpacking the FinSpy VM. After
having deobfuscated the x86 implementation of FinSpy in part one and after having
analyzed the VM and written a disassembler for the bytecode format for the particular
sample in question in part two, we are now tasked with reconstructing x86 code
corresponding to the pre-virtualized code. As before, the files are in the GitHub repository
here. Of note:

The IDB with the devirtualized code added, and mostly analyzed: here
The devirtualization program: here
FinSpy VM bytecode disassembly listings with various simplifications: here
Binary files for the devirtualized code: here

Because the FinSpy VM is a weak and ineffective software protection, unpacking it is not
very difficult. Over half of the VM instructions in the bytecode program for the sample we're
analyzing already contain raw x86 machine code. It turns out that FinSpy only truly
virtualizes a handful of x86 instruction types, and that simple pattern-matching is effective in
reconstructing the original code. It's perhaps the easiest software protection I know of
worthy of being called a "virtualization obfuscator" -- and that makes it good practice for the
difficult ones. 

As with part one, I am attempting to write this in a walk-through tutorial style. We start from
first principles in inspecting the FinSpy VM bytecode disassembly listing, and show all of the
steps (along with the code I wrote) along the way. Hopefully I've managed to capture the
process of observation, evaluation of design considerations, actions taken including mis-
steps, and above all, the iterative, trial-and-error nature of the affair.

2. Organizational Overview

This part ended up being longer and more difficult to write than expected. In fact, writing this
document as a tutorial was considerably more difficult than doing the work in the first place.
I hope the effort pays off in terms of educational value. Because I personally don't enjoy
huge documents whose sections aren't well-segregated from one another, I have decided to
split the devirtualization process, and also this document, into a number of "phases", each

https://www.msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
http://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
https://github.com/RolfRolles/FinSpyVM/
https://github.com/RolfRolles/FinSpyVM/blob/master/VMDevirtualization/BlackOasis-WithDevirtualization.idb
https://github.com/RolfRolles/FinSpyVM/tree/master/VMDisassembler/Tmp
https://github.com/RolfRolles/FinSpyVM/tree/master/VMProgram
https://github.com/RolfRolles/FinSpyVM/tree/master/VMDevirtualization
http://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation


2/3

in its own individual blog entry. All entries are currently online and available for reading;
links to them are immediately below. Each individual part links to the code and binary
artifacts used in that phase.

Here are the contents of each phase in brief, along with links to the individual parts:

1. Part #3, Phase #1: analyzing and deobfuscating FinSpy VM bytecode programs. In
part two, we analyzed the FinSpy VM and its instruction set, and ultimately wrote a
disassembler for FinSpy VM programs. This phase begins by reviewing the FinSpy
VM instruction set. Next, we work from first principles in analyzing the FinSpy VM
bytecode program. First we add a useful feature to our FinSpy VM disassembler.
Next, we analyze a set of VM instructions -- group #2, in the parlance -- used by the
VM bytecode program for obfuscation purposes. We determine several patterns, and
write code to detect and simplify instances of those patterns within FinSpy VM
bytecode programs. After one more small tweak to the disassembler, the FinSpy VM
bytecode program is now ready to be devirtualized back into x86 machine code.

2. Part #3, Phase #2: initial devirtualization. The previous phase left the FinSpy VM
bytecode program in a suitable form for devirtualization. This phase begins by
discussing the theory behind devirtualizing the individual FinSpy VM instructions.
Next, we write a tool to devirtualize FinSpy VM bytecode programs -- this tool takes as
input the disassembly of a FinSpy VM program, and produces as output a blob of x86
machine code that no longer relies upon the VM. After producing output, we then
inspect our initial results in devirtualization to determine a few deficiencies and
remaining tasks before our devirtualization can be considered complete. This phase
ends by fixing one of the issues revealed by inspecting the devirtualized output.

3. Part #3, Phase #3: devirtualizing function calls. The devirtualization generated by the
previous stage still has a few deficiencies that need to be fixed before the output is
fully usable. As it turns out, all of these deficiencies relate to how the FinSpy VM deals
with function calls and function pointers. We discuss the source of the difficulties and
determine what needs to be done to fix the issues. Then we discuss a few strategies
that we might employ to solve the problems, including a somewhat sophisticated one
involving x86 emulation. We settle for something less than that. 

4. Part #3, Phase #4: second devirtualization. The previous phase collected information
about virtualized functions in preparation for a second attempt at devirtualization. This
phase incorporates that information into the devirtualization process, and then re-
inspects the devirtualized code for defects. After fixing one more remaining major
issue and two small ones, we now have our complete devirtualized blob of x86
machine code for the FinSpy VM program in our sample. We trick IDA into loading our
devirtualized code, and now our devirtualization journey is complete. 

After phase #4 was complete, I next completely analyzed the devirtualized FinSpy dropper
binary. I may publish some techniques I saw that weren't widely documented, and I may
publish a complete analysis of the dropper. However, that writing remains to be done, and is

http://www.msreverseengineering.com/blog/2018/2/21/wsbjxrs1jjw7qi4trk9t3qy6hr7dye
http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-2-first-attempt-at-devirtualization
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-3-fixing-the-function-related-issues
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-4-second-attempt-at-devirtualization


3/3

not part of this blog series on devirtualization.

Enjoy.


