
This report delivers a comprehensive technical analy-
sis of BRICKSTORM, an espionage backdoor linked to the
China-nexus cluster UNC5221.

NVISO investigates newly identified Windows-based
BRICKSTORM variants, expanding on its previous presence
in Linux environments. These backdoor samples,
linked to long-term espionage campaigns, target
European industries in key sectors of Chinese interest.

The analysis details adversary techniques, infrastructure,
and defensive challenges, concluding with actionable mitiga-
tion and threat-hunting recommendations.

BRICKSTORM
Backdoor Analysis

A Persistent Espionage Threat
to European Industries

NVISO Incident Response

ATHENS BRUSSELS FRANKFURT MUNICH VIENNA

www.nviso.eu

W W W . N V I S O . E U

April 2025

http://nviso.eu
http://nviso.eu

2

Contents

1. Introduction 3

2. Detailed Analysis

 2.1. Capabilities 4

 2.1.1. File Manager 5

 2.1.2. Network Tunneling 7

 2.1.3. Configuration 7

 2.2. Protocol 8

 2.2.1. Address Resolution 8

 2.2.2. Command & Control 10

 2.2.3. File Manager API 13

 2.2.4. Network Tunneling 16

 2.3 Infrastructure 17

3. Conclusions & Recommendations 20

Appendix

 4. Indicators of Compromise 21

 5. Detection & Hunting Rules

 5.1. YARA 22

 5.2. Suricata (Network) 23

 5.3. Kusto (KQL) Hunting 24

 6. 2nd Layer TLS Certificate (2023-2024) 26

 7. 2nd Layer TLS Certificate (2024-2025) 28

About NVISO 30

3

Introduction

NVISO has recently identified new information related to BRICKSTORM,
a previously identified1 backdoor linked to the China-nexus cluster UNC5221.
This report provides a technical analysis of two newly identified BRICKSTORM
samples which were affecting Windows environments. These samples are part
of the BRICKSTORM backdoor family, previously only sighted on a Linux vCenter
server. The newly identified backdoor variants are believed to have been
employed in long running cyber espionage campaigns since at least 2022,
targeting European industries of strategic interest to the People's Republic of
China (PRC).

Over the past years, the number of persistent intrusions attributed to China-
nexus actors has drastically increased. Numerous reports of compromises
affecting both critical infrastructure as well as industries of strategic interest
outline the continuous efforts deployed by the PRC. As opposed to the more
common extortion-driven intrusions, PRC-associated intrusions have been
observed to employ a high degree of discretion, enabling the actors to remain
undetected for extended duration. To achieve this strategic long-term
placement, PRC-attributed intrusions increasingly involve the usage of previously
unknown vulnerabilities (a.k.a., zero-days) alongside low-noise backdoors
such as the hereafter documented BRICKSTORM family. PRC-aligned actors
furthermore distinguish themselves through the effective targeting of network
appliances and subsequently achieved persistent access.

The PRC’s cyber operations are amongst the most active offensive programs,
backed by a diverse network of military, state and state-aligned operators.
The PRC’s focus on espionage operations has long been linked to China’s
political strategy which considers the strengthening of their economy as a matter
of national security. To this end, PRC operations are known to heavily involve the
theft of intellectual property (IP) and trade secrets pertaining to China’s long-term
strategic goals to further develop the manufacturing sector and establish itself as
a technology-intensive leader.

NVISO and its partners provide this detailed BRICKSTORM analysis to high-
light employed adversary techniques and infrastructure. This report outlines
BRICKSTORM’s inner workings and subsequent defensive challenges before
concluding with mitigation and threat hunting recommendations.

1 https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement

4

Detailed Analysis

The two newly identified BRICKSTORM executables provide attackers with
file manager and network tunneling capabilities. Through these backdoors,
adversaries can browse the file system, create/delete arbitrary files and folders as
well as tunnel network connections for lateral movement. The BRICKSTORM family
resolves its Command & Control servers through DoH (DNS over HTTPS),
hindering most network monitoring solutions.

The two Windows samples were written in Go 1.13.5 (released in 2019) and did not
export any functions. The adversaries relied on persistence mechanisms such
as scheduled tasks for execution. As noted by Mandiant, the recent sample’s Go
package is named wssoft. The second older BRICKSTORM sample however had
the Go package name wsshell, indicating that the backdoor has historically
undergone renaming.

2.1. Capabilities

BRICKSTORM provides attackers with file manager and network tunneling
capabilities. As a notable difference to Mandiant’s BRICKSTORM report, the
Windows samples discussed here are not equipped with command execution
capabilities. Instead, adversaries have been observed using network tunneling
capabilities in combination with valid credentials to abuse well-known
protocols such as RDP or SMB, thus achieving similar command execution.

The avoidance of command execution directly from the backdoor is suspected to
be a deliberate choice in order to evade detection by modern security solutions
that analyze parent-child process relationships.

5

Detailed Analysis

2.1.1. File Manager

The BRICKSTORM file manager exposes an HTTP API and rudimentary UI (User
Interface) encapsulated within the protocol (see "2.2.3. File Manager API"). The
backdoor’s JSON-based API provides a wide range of file-related actions such as
uploading, downloading, renaming, and deleting files. Adversaries can further-
more create or delete directories as well as list their contents.

The BRICKSTORM panel is served by the malware itself and proxied through
its protocol towards the Command & Control server. Its main component, as
displayed in Figure 1, allows the adversary to select a drive they wish to browse.

Figure 1: The BRICKSTORM user interface to select a drive, seen from the Command &
Control perspective.

Once the drive is selected, BRICKSTORM allows the adversary to browse through
the file system and download desired files (see Figure 2).

Figure 2: The BRICKSTORM user interface to browse the file system, seen from the
Command & Control perspective.

6

Detailed Analysis

Utilizing the above UI, the adversary can furthermore upload arbitrary files. Once
an upload is performed, the UI confirms both file path and computed SHA256
hash (outlined in Figure 3).

Figure 3: The BRICKSTORM user interface's post-upload confirmation, seen from the
Command & Control perspective.

While the above UI does not provide a mechanism to create directories and delete/
rename files. The JSON-based API does provide the necessary alternatives. The
following snippet provides an example of such an API usage.

Figure 4: BRICKSTORM's API, seen through Postman from the Command & Control
perspective.

7

Detailed Analysis

2.1.2. Network Tunneling

In addition to its file manager capabilities, BRICKSTORM provides network
tunneling capabilities. Specifically, the observed variants support TCP, UDP and
ICMP relaying. Attackers may leverage network tunneling to, for example, relay
RDP and SMB connections.

Network-tunneling capabilities are especially effective given that attackers
have been observed deploying BRICKSTORM on domain-joined devices after
having obtained valid privileged credentials. Combined, these techniques provide
long-lasting opportunities for network-wide lateral-movements.

2.1.3. Configuration

The BRICKSTORM configuration displays its customization flexibility. The
observed configurations defined the AuthKey (used as part of the authentication
described in section "2.2.2. Command & Control"), the ServerAddr and WsAddr,
used to establish the TLS and WebSocket connection as well as the DohHost to
resolve the domains (section "2.2.1. Address Resolution").

While configurable and used by the application, the TmpFile, UserAgent &
IsLog settings were always left empty in observed samples. In contrast, the
TlsConfig.InsecureSkipVerify setting was always set to true in the
 default configuration.

As an evolution between the two Windows BRICKSTORM variants, the inclusion of
the new IPAddrs functionality setting was observed. While left empty in observed
configurations, the setting offers the ability to embed cloud provider IP addresses
directly, rather than requiring the regular DNS resolution documented in section
"2.2.1. Address Resolution"). While attacker infrastructure was observed shifting
between cloud providers, BRICKSTORM’s authentication key remained static
throughout the campaign.

type core.Server struct {
 AuthKey string
 ServerAddr string
 WsAddr string
 IPAddrs []string // Introduced in later variants
 TmpFile string
 TlsConfig tls.Config
 UserAgent string
 DohHost []string
 Mu sync.Mutex // Not a configuration setting
 doWork map[uint8]func(net.Conn) error // Not a configuration setting
 IsLog bool
}

8

Detailed Analysis

2.2. Protocol

The BRICKSTORM protocol is designed to circumvent popular network-level
security solutions such as TLS inspection or DNS monitoring. All BRICKSTORM
Command & Control activities occur over a single connection which is multiplexed
(i.e., shared) on multiple occasions.

Should BRICKSTORM lose connectivity, the communications are reattempted
after a 40 minute sleep interval with a jitter up to ± 10 minutes.

2.2.1. Address Resolution

Observed BRICKSTORM Command & Control infrastructure leverages public
cloud services as a front; Abused solutions include Cloudflare Workers as well
as Heroku applications. Similarly, BRICKSTORM resolves its Command & Control
domains through public DoH (DNS over HTTPS) providers which encapsulates
plaintext DNS messages within secure HTTPS connections. Within multiple sam-
ples BRICKSTORM relied on Quad9, NextDNS, Cloudflare and Google for domain
name resolution (see Figure 5). Due to DoH’s usage of HTTPS, regular network-
level DNS monitoring is circumvented.

Figure 5: BRICKSTORM's DNS Configuration.

The malware does not perform validation of the DoH-providers’ TLS certificates;
organizations equipped with TLS inspection may identify DNS over HTTPS
activity through the application/dns-message header, visible in the
following decrypted request. While BRICKSTORM has support for custom
user-agents, our observed samples did not define any. It is furthermore
worth noting that DoH encapsulates the DNS message within the POST request
body, often not logged by organizations.

 POST /dns-query HTTP/1.1
 Host: REDACTED
 Content-Length: 50
 Connection: close
 Content-Type: application/dns-message

9

Detailed Analysis

As part of its DoH library, BRICKSTORM issues a DNS request containing a single
question with a hard-coded type of value 1 (see Figure 6) for 32-bit IPv4 addresses.
As a consequence, the observed BRICKSTORM samples only operate over IPv4.

Figure 6: BRICKSTORM's DNS Configuration.

While the oldest Windows BRICKSTORM variant historically exclusively
relied on DoH resolution for its Command & Control domains, the recent sample
introduced support for hardcoded IPs (see "2.1.3. Configuration" on page 7).

This latest addition ensures BRICKSTORM can operate in environments blocking
DoH resolution as proposed in Conclusions & Recommendations on page 20.

10

Detailed Analysis

2.2.2. Command & Control

Once BRICKSTORM has the front service IPs (either through optional hardcoded
values or DoH resolution), the backdoor connects to the Command & Control
domain over HTTPS (see Figure 7).

Figure 7: BRICKSTORM's connection to serverless providers over HTTPS.

The serverless providers act as reverse-proxies, providing valid SSL certificates
while proxying traffic to 2nd-tier Command & Control infrastructure, later outlined
in "2.3 Infrastructure" on page 17). The backdoor then upgrades the HTTPS
connection to a WebSocket (Figure 8) as can be seen in the following decrypted
request. As discussed in section "2.2.1. Address Resolution" on page 8,
observed BRICKSTORM samples were configured to not define any user-agent.

 GET /state HTTP/1.1
 Host: REDACTED
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: REDACTED
 Origin: https://REDACTED
 Sec-WebSocket-Version: 13

Figure 8: BRICKSTORM's usage of WebSockets through reverse HTTPS proxies.

11

Detailed Analysis

Once the BRICKSTORM WebSocket is established, the malware creates a
nested TLS connection (Figure 9). This TLS-in-TLS approach defeats monitoring
opportunities at both victim organizations (e.g., outbound HTTPS proxies)
and 1st-tier cloud providers which serve the outer HTTPS connection. As for
all BRICKSTORM connections, this nested TLS connection does not perform
certificate validation. An attacker-issued certificate is provided as "2nd Layer TLS
Certificate (2024-2025)" on page 29.

Figure 9: BRICKSTORM's nested TLS usage.

Within the nested TLS connection, the malware performs its own handshake.
BRICKSTORM starts by sending over its configured authentication key (see
section "2.1.3. Configuration"). If valid, the server acknowledges the authenti-
cation (message 0xDD, 0xCF, 0xFC) which in turn the client acknowledges
(message 0xFF, 0xCF, 0xCF).

Figure 10: BRICKSTORM's handshake over the nested TLS connection.

As soon as the nested TLS connection is authenticated, BRICKSTORM multiplexes
the connection to abstract new concurrent Command & Control sessions. This
makes it possible to perform concurrent activities such as establishing multiple
network tunnels and have concurrent file manager users. To achieve this multi-
plexing, BRICKSTORM leverages HashiCorp’s Yamux2 library, where the backdoor
acts as listening server and the Command & Control infrastructure as the client.
The oldest BRICKSTORM sample relied on the similar smux3 library.

2 https://github.com/hashicorp/yamux
3 https://github.com/xtaci/smux

https://github.com/hashicorp/yamux
https://github.com/xtaci/smux

12

Detailed Analysis

Once the malware operator wishes to execute a new command (file manager or
network tunneling), the attacker opens a new multiplexed session. This multi-
plexed session is immediately encrypted through a third layer of TLS (Figure 11).
To date, it is unclear whether this 3-layered TLS connection is terminated within
the 2nd-tier infrastructure or proxied through to 3rd-tier infrastructure.

Figure 11: BRICKSTORM's 3-layered TLS connection.

As part of the TLS handshake, BRICKSTORM does not verify the server’s
certificates. However, as soon as the 3rd-layer TLS connection is established, the
malware informs the Command & Control server of the perceived TLS public key
(Figure 12). This surprising verification tend to suggest that BRICKSTORM
assumes the 3rd layer TLS connection might be subject to interception.

Once its own public key is received, the BRICKSTORM server issues the desired
command (0x92 for the web service file manager or 0x12 for the network tunne-
ling), which the malware subsequently acknowledges (code 0x93).

Figure 12: BRICKSTORM's 3rd layer Command & Control sequence.

Once the command acknowledged as valid, the multiplexed layer 3 TLS connec-
tion is multiplexed once more before being delegated to the web service (i.e., File
Manager API) or network tunneling. This final multiplexing ensures that through a
single command, multiple additional sessions can be abstracted. As an example,
after having issued the web service command, multiple file manager API calls can
simultaneously be issued by the attacker through the established connection.

13

Detailed Analysis

2.2.3. File Manager API

The identified BRICKSTORM samples shared a similar HTTP API as documented
by Mandiant. In addition to the UI available at / (and subsequently browsed at
/WindowsDriver , see section "2.1.1. File Manager" on page 5), the web
service provides additional endpoints under the /api/file route,
highlighted in the table below.

Endpoint Description

/up

Receives the multipart/form-data posted from the UI. The file name and
content are retrieved from the uploadFile file part while destination-direc-
tory is part of the dir variable. This endpoint returns HTML content as seen in
Figure 3, including the new file path and its SHA265 hash.

/delete-dir
Removes the named empty directory defined in the posted {"name":"…"}
request. This endpoint returns the {"code":200,"data":"ok"} JSON.

/delete-file
Removes the named file defined in the posted {"name":"…"} request. This
endpoint returns the {"code":200,"data":"ok"} JSON.

/stat

Provides statistics on the file or directory defined in the posted {"name":"…"}
request. This endpoint returns the beneath JSON, where owner and group are
not implemented as shown in Figure 13.

{
 "code": 200,
 "fileinfo": {
 "Name":"…",
 "Size": 0,
 "Mode": 123,
 "ModTime": "…",
 "IsDir": true,
 "Owner": "",
 "Group": "",
 }
}

/change-dir
While this endpoint accepts a directory path through the posted {"name":"…"}
request, it does not perform any actions (i.e., the working directory remains the
same). This no-op endpoint returns the {"code":200,"data":"ok"} JSON.

/list-dir
Walks the directory defined in the posted {"name":"…"} request. This end-
point returns a JSON object similar to the /stat endpoint, except for the
$.fileinfo property being an array.

/mkdir
Creates the directory defined in the posted {"name":"…"} request. This end-
point returns the {"code":200,"data":"ok"} JSON.

/rename
Renames the file or directory according to the posted {"from-name":"…
","to-name":"…"} request. This endpoint returns the {"code":200,"-
data":"ok"} JSON.

/get-file
Downloads (and optionally resumes) the contents of the file according to the
{"path":"…","offset":123} JSON request body. The observed samples
did not require this endpoint to leverage the POST method.

14

Detailed Analysis

Table 1: BRICKSTORM's file manager API.

As dependencies, BRICKSTORM leverages the popular Gorilla mux4 library to
serve its HTTP API, with the lesser known nex5 library being used to perform
the encoding and decoding of API requests. Interestingly, the older inactive
BRICKSTORM sample furthermore embedded (without using) the goftp6 library.
This unused dependency provides an interesting datapoint given the project was
archived from GitHub on July 8th, 2020.

Endpoint Description

/put-file

Creates or overwrites the file named by the DestPath MIME header with the
posted data, optionally appending the file if the Append header is set to yes.
This endpoint returns the {"code":200,"data":123} JSON, indicating the
number of written bytes.

/slice-up

Uses the below POST data to create (or append/overwrite if offset is set)
using the base64-encoded data. If the size matches the destination file’s size,
the actual and expected MD5 hashes are compared. This endpoint can be lev-
eraged to upload file chunks or patch existing files.

{
 "md5": "…",
 "filename": "…",
 "size": 123,
 "offset": 123,
 "data": "…",
}

This endpoint returns the {"code":200,"data":"123"} JSON, indicating
the textual number of written bytes.

/file-md5
Computes the MD5 hash of the file defined in the posted {"name":"…"} re-
quest. This endpoint returns the {"code":200,"data":"…"} JSON with the
hex-encoded MD5.

4 https://github.com/gorilla/mux
5 https://github.com/lonng/nex
6 https://github.com/goftp/server

https://github.com/gorilla/mux
https://github.com/lonng/nex
https://github.com/goftp/server

15

Detailed Analysis

The following capture provides an example of BRICKSTORM’s file manager API
as could be used from a command & control perspective. As an example, the
above-documented stat endpoint is being used to obtain file details.

Figure 13: BRICKSTORM's file manager API, seen through Postman from the Command &
Control perspective.

Through its extensive file manager, BRICKSTORM allows its operators to freely
stage additional data or exfiltrate files of interest. However, given the network tun-
neling capabilities, adversaries were observed prioritizing interactive file opera-
tions through RDP and SMB.

16

Detailed Analysis

2.2.4. Network Tunneling

For its network tunneling capabilities, BRICKSTORM receives a header configuring
the intended tunnel. The first byte defines the targeted network which can be
0x00 for TCP, 0x01 for UDP or 0x02 for ICMP (IPv4). The second byte defines the
target’s address type. Similar to the SOCKS5 addressing7, possible values are:

 — 0x01 for IPv4, indicating the next 4 bytes compose the IPv4 address.

 — 0x03 for a string (e.g., host name), indicating the next byte defines the string
length followed by the string’s content.

 — 0x04 for IPv6, indicating the next 16 bytes compose the IPv6 address.

Following the target address, an additional 2 bytes define the target port in
network byte order8.

Figure 14: BRICKSTORM's pseudo-SOCKS header.

Once the header received, BRICKSTORM establishes the desired connections and
tunnels the connection with the established attacker session. For TCP targets, the
backdoor has a dial timeout of 60 seconds, ensuring TCP- tunnels which cannot be
established are abandoned after a minute.

7 https://www.rfc-editor.org/rfc/rfc1928#section-5
8 https://en.wikipedia.org/wiki/Endianness#Networking

https://www.rfc-editor.org/rfc/rfc1928#section-5
https://en.wikipedia.org/wiki/Endianness#Networking

17

Detailed Analysis

2.3 Infrastructure

For Command & Control, BRICKSTORM’s observed configurations exclusively
relied on serverless providers such as Cloudflare or Heroku (see Figure 15 &
Figure 16). The usage of such providers obfuscates BRICKSTORM’s infrastructure
due to the shared and distributed nature of the provider’s IP addresses. The usage of
such serverless providers is common within the threat landscape as distinguishing
between legitimate and malicious usage poses a challenge to many organizations.

Figure 15: BRICKSTORM's Cloudflare Command & Control configuration.

Figure 16: BRICKSTORM's historical Heroku Command & Control configuration.

18

Detailed Analysis

As Cloudflare workers use a “sub-sub-domain” (i.e.,
ms-azure[.]azdatastore[.]workers[.]dev), and given TLS certificates
do not support nested wildcards (i.e., no *.*.workers.dev), certificate transpar-
ency logs provide valuable insights into when the associated 1st-tier workloads
were registered. Specifically, the observed Cloudflare infrastructure was set up
as early as November 28th, 2022; with older Heroku infrastructure predating this
datapoint. The Mandiant-reported Linux BRICKSTORM sample had its infrastruc-
ture set up on January 2nd, 2024.

Figure 17: BRICKSTORM's Cloudflare TLS certificates as seen in crt.sh certificate
transparency logs.

19

Detailed Analysis
During NVISO’s monitoring of the campaign, BRICKSTORM operators were found
updating back-end infrastructure which inadvertently exposed their usage of 2nd-
tier infrastructure. The following image was captured during temporary downtime
of the 1st-tier ms-azure[.]azdatastore[.]workers[.]dev infrastructure,
exposing the 64[.]176[.]166[.]79 Vultr instance as 2nd-tier infrastructure.
Following this maintenance window, a new 2nd-layer TLS certificate was served
(see "2nd Layer TLS Certificate (2024-2025)" on page 29)).

Figure 18: Cloudflare's error message, exposing 2nd-tier Vultr infrastructure.

While irrelevant from an architecture perspective, BRICKSTORM operators lever-
aged nip.io to provide their Vultr instance with a DNS record. The 2nd-tier Vultr
instance received its proxied Command & Control traffic on the default
unencrypted HTTP port, with a default 404 Not Found message acting as a
deception lure.

Figure 19: BRICKSTORM's assumed multi-tiered architecture.

As part of its monitoring activities, NVISO identified additional suspected 2nd-tier
Vultr instances leveraged for similar campaigns. The 2nd-tier instances could how-
ever not be validated as the configuration of the reverse TLS proxies is unknown.

20

Conclusions &
Recommendations

The inner workings of the BRICKSTORM backdoor provide effective means to
bypass common security controls such as DNS monitoring and geo-blocking at
network level. The usage of legitimate and popular cloud providers blends the
Command & Control communications amongst every-day traffic while
complicating clustering and attribution.

Although BRICKSTORM’s file manager and network tunneling functionality
could be considered basic, their effectiveness remains undoubted. These recent
discoveries of several year old adversary capabilities, alongside evidence of
infrastructure maintenance, highlight the need for at-risk industries to bolster
their security posture and continuously audit their environment for rare/
uncommon activity. To this end, NVISO provides as appendix detection and
hunting rules that highlight similar suspicious activity; Organizations are encour-
aged to review their environment for similar patterns.

While BRICKSTORM can be configured to operate without DoH (DNS over HTTPS),
organizations are nonetheless recommended to block DoH providers on their
network; preventing certain BRICKSTORM variations and similar samples from
operating. Organizations with strict network controls are encouraged to ensure
their TLS inspection either detects or, ideally, blocks nested TLS sessions.

NVISO values the collaboration of affected organizations who, through their
willingness to share information, help the community prevent and detect similar
intrusions.

 NVISO’s incident response teams can be reached 24/7 should
you be affected by BRICKSTORM or face a similar threat.

 Belgium/Global: +32 2 588 43 80
 csirt@nviso.eu

 Germany: +49 69 8088 3829
 csirt@nviso.de

 Austria: +43 720 228 337
 csirt@nviso.at

tel://+3225884380/
mailto:csirt%40nviso.eu?subject=
tel://+496980883829/
mailto:csirt%40nviso.de?subject=
tel://+43720228337/
mailto:csirt%40nviso.at?subject=

21

Appendix
Indicators of Compromise

The following indicators have been observed in BRICKSTORM intrusions. Organ-
izations encountering the beneath elements in their environment should initiate
their incident response procedures.

Organizations requiring additional assistance can reach out to NVISO’s 24/7
incident response teams9 through csirt@nviso.eu.

*The BRICKSTORM command & control domains are resolved according to section 2.2.1
and can subsequently not be identified through DNS logs.

Alongside the above sample, the following historical sample was identified.

*The BRICKSTORM command & control domains are resolved according to section 2.2.1
and can subsequently not be identified through DNS logs.

Indicator Value

Filename CreatedUACExplorer.exe

Size 7687168 bytes (7507 KiB)

SHA256 b42159d68ba58d7857c091b5acc59e30e50a854b15f7ce04b61ff6c11cdf0156

SHA1 b4af963d43b6e834a28ad281c2004d348a91b938

MD5 c65d7f8accb57a95e3ea8a07fac9550f

Domain* ms-azure[.]azdatastore[.]workers[.]dev

Indicator Value

Filename CreateUACExplorer.exe

Size 7677440 bytes (7497 KiB)

SHA256 42692bd13333623e9085d0c1326574a3391efcbf18158bb04972103c9ee4a3b8

SHA1 e57515297ee77c595eec19c00b2a77bba0171879

MD5 8af1c3f39b60072d4b68c77001d58109

Domain* ms-azure[.]herokuapp[.]com

9 https://www.nviso.eu/contact

22

Appendix
Detection & Hunting Rules

The following detection rules cover Windows samples observed by NVISO; refer to
Mandiant’s notes10 for vCenter appliances.

5.1. YARA

rule NVISO_BACKDOOR_BRICKSTORM {
 meta:
 description = "Detects the BRICKSTORM backdoor Windows executables"
 author = "NVISO"
 created = "2024-11-25"
 md5 = "8af1c3f39b60072d4b68c77001d58109"
 md5 = "c65d7f8accb57a95e3ea8a07fac9550f"
 license = "Detection Rule License (DRL) 1.1"

reference = "https://nviso.eu/blog/nviso-analyzes-brickstorm-espionage-backdoor"

 strings:
 $lib1 = "wsshell/core/task.DoTask" ascii wide
 $lib2 = "wssoft/core/task.DoTask" ascii wide
 $wss = "wss://" ascii wide
 $go = "/golang.org/" ascii wide
 $doh01 = "https://1.0.0.1/dns-query" ascii wide
 $doh02 = "https://1.1.1.1/dns-query" ascii wide
 $doh03 = "https://8.8.4.4/dns-query" ascii wide
 $doh04 = "https://8.8.8.8/dns-query" ascii wide
 $doh05 = "https://9.9.9.9/dns-query" ascii wide
 $doh06 = "https://9.9.9.11/dns-query" ascii wide
 $doh07 = "https://45.90.28.160/dns-query" ascii wide
 $doh08 = "https://45.90.30.160/dns-query" ascii wide
 $doh09 = "https://149.112.112.11/dns-query" ascii wide
 $doh10 = "https://149.112.112.112/dns-query" ascii wide
 $cmd1 = "/get-file" ascii wide
 $cmd2 = "/put-file" ascii wide
 $cmd3 = "/slice-up" ascii wide
 $cmd4 = "/file-md5" ascii wide

 condition:
 uint16be(0) == 0x4D5A
 and any of ($lib*)
 and any of ($doh*)
 and any of ($cmd*)

 and $wss and $go

}

10 https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement

https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement

23

Appendix
Detection & Hunting Rules

5.2. Suricata (Network)

The following IDS (Intrusion Detection System) rule alerts on known BRICKSTORM
Command & Control connections.

Organizations are furthermore encouraged to consider additional public rules
such as Proofpoint’s ET INFO Observed Cloudflare workers.dev Domain in
TLS SNI11, potentially identifying similar infrastructure.

alert tls $HOME_NET any -> $EXTERNAL_NET any (msg:"[NVISO] Observed BRICKSTORM CnC
Domain (ms-azure .azdatastore .workers .dev in TLS SNI)"; flow:established,to_server;
tls.sni; bsize:32; content:"ms-azure.azdatastore.workers.dev"; fast_pattern;
reference:url,nviso.eu/blog/nviso-analyzes-brickstorm-espionage-backdoor;
classtype:domain-c2; sid:1; rev:1; metadata:attack_target Server_Endpoint, created_at
2025_03_25, deployment Perimeter, performance_impact Low, confidence High,
signature_severity Critical, malware_family BRICKSTORM;)

11 https://rules.emergingthreats.net/open/suricata-7.0.9/rules/emerging-info.rules

https://rules.emergingthreats.net/open/suricata-7.0.9/rules/emerging-info.rules

24

5.3. Kusto (KQL) Hunting

The following Kusto queries, intended for threat hunting, are designed for usage
within Microsoft Defender’s Advanced Hunting due to the dependency on the
FileProfile12 function.

Given the backdoor’s long-running nature, the following query identifies rare pro-
cesses that have been running for over 10 days while making network connections.

let Lookback = 30d; //Parameters:
let ProcessAge = 10d; // The minimal age of the running process
let URLThreshold = 2; // The limit of contacted URLs
let LocalPrevalenceThreshold = 5; // The limit of internal sightings
let GlobalPrevalenceThreshold = 20; // The limit of world-wide sightings
// Identify long-running processes performing successful public network connections
DeviceNetworkEvents
| where Timestamp > ago(Lookback)
 and isnotempty(InitiatingProcessSHA256)
 and RemoteIPType == "Public"
 and ActionType == "ConnectionSuccess"
 and InitiatingProcessCreationTime < Timestamp-ProcessAge
| summarize
 DeviceCount=dcount(DeviceId),
 DeviceNames=make_set(DeviceName, LocalPrevalenceThreshold),
 IPCount=dcount(RemoteIP),
 URLCount=dcountif(RemoteUrl, isnotempty(RemoteUrl)),
 arg_max(Timestamp, *)
 by InitiatingProcessSHA256
// Where the executables have rarely been seen publicly
| where URLCount <= URLThreshold and DeviceCount <= LocalPrevalenceThreshold
| as IntermediaryResult
| where assert(toscalar(IntermediaryResult | count) <= 1000, "Too many matches for FileProfile")
| invoke FileProfile("InitiatingProcessSHA256", 1000)
| where GlobalPrevalence <= GlobalPrevalenceThreshold
// Order the results by priority
| project-reorder
 Timestamp,
 DeviceNames,
 GlobalPrevalence,
 InitiatingProcessFolderPath,
 InitiatingProcessCommandLine,
 RemoteIP,
 RemoteUrl,
 SHA256,
 IPCount,
 URLCount
| order by GlobalPrevalence asc, URLCount asc, IPCount desc

12 https://learn.microsoft.com/en-us/defender-xdr/advanced-hunting-fileprofile-function

25

Appendix
Detection & Hunting Rules

Given the backdoors were not signed, the following query identifies uncommon
and unsigned System executables interacting with Cloudflare. Do note it relies on
hard-coded ranges due to performance issues combining the externaldata
and FileProfile operators.

let Lookback = 30d;
// Define Cloudflare IPs (see https://www.cloudflare.com/ips-v4/#)
let Cloudflare = datatable(Range: string)[
 "173.245.48.0/20" , "103.21.244.0/22" , "103.22.200.0/22", "103.31.4.0/22" ,
 "141.101.64.0/18" , "108.162.192.0/18", "190.93.240.0/20", "188.114.96.0/20",
 "197.234.240.0/22", "198.41.128.0/17" , "162.158.0.0/15" , "104.16.0.0/13" ,
 "104.24.0.0/14" , "172.64.0.0/13" , "131.0.72.0/22"];
// Identify system processes making Cloudflare connections
DeviceNetworkEvents
| where Timestamp > ago(Lookback) and InitiatingProcessAccountName =~ "System"
| evaluate ipv4_lookup(Cloudflare, RemoteIP, Range)
| summarize Count=count()
 by
 DeviceId,
 DeviceName,
 InitiatingProcessFolderPath,
 InitiatingProcessFileName,
 InitiatingProcessSHA256,
 InitiatingProcessSHA1
// Where the file is not signed (based on Defender telemetry)
| join kind=leftanti (DeviceFileCertificateInfo | where Timestamp > ago(Lookback))
 on $left.InitiatingProcessSHA1 == $right.SHA1
| summarize
 Devices=dcount(DeviceId),
 Count=sum(Count),
 InitiatingProcessFolderPath=make_list(InitiatingProcessFolderPath),
 DeviceName=make_list(DeviceName),
 InitiatingProcessFileName=make_list(InitiatingProcessFileName)
 by InitiatingProcessSHA256, InitiatingProcessSHA1
// Where the file is not signed (based on Microsoft telemetry) and uncommon
| as IntermediaryResult
| where assert(toscalar(IntermediaryResult | count) <= 1000, "Too many matches for FileProfile")
| invoke FileProfile("InitiatingProcessSHA1", 1000)
| where SignatureState == "Unsigned" and GlobalPrevalence < 50000
| mv-expand DeviceName, InitiatingProcessFolderPath, InitiatingProcessFileName
| project-reorder DeviceName, InitiatingProcessFolderPath, SHA256, SHA1, Count
| order by Count desc

26

Appendix
2nd Layer TLS Certificate (2023-2024)

As described in section "2.2.2. Command & Control" on page 10, BRICKSTORM’s
protocol relies on 3 layers of TLS encryption. While the first layer is provided by
legitimate cloud service providers, the second and potentially third layer are
attacker-controlled. The following non-redacted x509 certificate has been
recovered as part of the 2nd layer TLS handshake and is provided for pivoting and
clustering purposes.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 ca:56:1f:f5:5d:fb:f1:03:a9:04:5a:81:c5:d5:5f:02
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=
 Validity
 Not Before: Oct 19 13:14:40 2023 GMT
 Not After : Oct 18 13:14:40 2024 GMT
 Subject: O=
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b5:37:32:d3:60:59:7f:7e:5e:55:4e:1e:06:7b:
 97:14:b1:84:11:d4:71:10:9d:8a:b0:93:87:87:f2:
 77:0b:f5:05:c5:b5:12:79:f6:29:87:eb:43:08:3c:
 cf:25:88:74:bb:0b:b0:7e:dc:17:5f:a0:dc:15:5c:
 67:ef:f2:2d:53:39:24:49:e6:cf:25:c0:1c:29:8e:
 2e:dd:f8:f6:2c:1b:7f:42:49:24:f6:e0:ef:4a:83:
 5a:9d:84:12:a0:39:4e:1c:1a:9c:88:5b:ac:be:c3:
 8e:aa:71:0f:c4:85:94:55:b8:d3:9a:57:e8:22:e0:
 65:a1:0b:af:5f:4e:72:14:d6:33:2e:86:4c:1b:b7:
 ef:f2:a3:26:28:67:4b:0b:b0:ad:a7:75:79:50:fa:
 d1:70:b6:f9:ff:7e:d5:a0:7d:4f:e8:0d:7f:ce:a0:
 35:41:f7:f8:72:ec:c9:11:65:6b:c1:bc:49:be:ae:
 42:c3:da:23:5d:6c:6d:b0:7a:46:a7:23:fa:7c:69:
 1a:73:5c:2d:29:0f:9a:03:91:09:fa:a0:a3:18:6a:
 ca:c5:c0:95:87:38:74:ff:6b:9a:0f:fb:ac:c9:79:
 1b:01:8d:fe:3a:4e:7e:2b:65:c6:4a:c4:6c:e9:12:
 e4:3d:aa:71:cb:0e:73:a5:00:2d:0f:67:9d:a8:6a:
 44:1b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment, Certificate Sign
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Subject Alternative Name:

27

Appendix
2nd Layer TLS Certificate (2023-2024)

 DNS:localhost
 Signature Algorithm: sha256WithRSAEncryption
 Signature Value:
 0e:36:bf:ed:4d:33:e1:0f:22:5a:a0:5a:33:8f:1f:ac:a9:c1:
 a8:23:31:7d:56:84:3c:50:d1:eb:10:1f:b6:d8:95:a3:cc:7a:
 03:0d:10:f8:a7:16:98:08:76:cd:df:cf:c7:04:5b:9a:01:f8:
 51:99:8e:d8:32:73:e5:a8:c8:1f:ea:0c:eb:09:64:75:9d:5b:
 b4:d8:aa:73:fa:c7:d9:bc:49:22:94:2d:1f:3d:1d:85:a6:2f:
 9b:e6:15:04:42:53:fb:bf:44:1a:20:01:17:0a:fd:15:aa:15:
 cd:4e:57:cf:3b:5f:7d:55:83:b0:ee:f7:8b:f2:b2:80:32:55:
 14:95:aa:91:8e:43:4b:ad:0f:20:50:f5:ed:db:de:4c:14:61:
 f2:f0:83:cc:f4:79:55:20:82:5d:04:47:1f:f1:50:6c:05:e8:
 bc:9b:6c:7e:97:ec:38:4d:00:fc:dd:b7:f1:fd:62:8c:64:c9:
 88:f2:13:b7:9b:c0:36:0c:b3:0d:d7:fe:2f:5b:b1:cb:32:71:
 36:7c:1a:7b:73:34:b9:07:0c:d7:6f:4a:a7:d7:32:30:82:dc:
 f8:30:30:bf:2c:6a:bf:17:1a:be:1d:c1:ee:c1:c9:9a:ac:85:
 dc:d2:5e:82:51:e0:df:43:5e:52:e2:ec:d2:90:ff:16:3c:85:
 b6:69:59:ac
-----BEGIN CERTIFICATE-----
MIIC7zCCAdegAwIBAgIRAMpWH/Vd+/EDqQRagcXVXwIwDQYJKoZIhvcNAQELBQAw
CzEJMAcGA1UEChMAMB4XDTIzMTAxOTEzMTQ0MFoXDTI0MTAxODEzMTQ0MFowCzEJ
MAcGA1UEChMAMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtTcy02BZ
f35eVU4eBnuXFLGEEdRxEJ2KsJOHh/J3C/UFxbUSefYph+tDCDzPJYh0uwuwftwX
X6DcFVxn7/ItUzkkSebPJcAcKY4u3fj2LBt/Qkkk9uDvSoNanYQSoDlOHBqciFus
vsOOqnEPxIWUVbjTmlfoIuBloQuvX05yFNYzLoZMG7fv8qMmKGdLC7Ctp3V5UPrR
cLb5/37VoH1P6A1/zqA1Qff4cuzJEWVrwbxJvq5Cw9ojXWxtsHpGpyP6fGkac1wt
KQ+aA5EJ+qCjGGrKxcCVhzh0/2uaD/usyXkbAY3+Ok5+K2XGSsRs6RLkPapxyw5z
pQAtD2edqGpEGwIDAQABo04wTDAOBgNVHQ8BAf8EBAMCAqQwEwYDVR0lBAwwCgYI
KwYBBQUHAwEwDwYDVR0TAQH/BAUwAwEB/zAUBgNVHREEDTALgglsb2NhbGhvc3Qw
DQYJKoZIhvcNAQELBQADggEBAA42v+1NM+EPIlqgWjOPH6ypwagjMX1WhDxQ0esQ
H7bYlaPMegMNEPinFpgIds3fz8cEW5oB+FGZjtgyc+WoyB/qDOsJZHWdW7TYqnP6
x9m8SSKULR89HYWmL5vmFQRCU/u/RBogARcK/RWqFc1OV887X31Vg7Du94vysoAy
VRSVqpGOQ0utDyBQ9e3b3kwUYfLwg8z0eVUggl0ERx/xUGwF6LybbH6X7DhNAPzd
t/H9YoxkyYjyE7ebwDYMsw3X/i9bscsycTZ8GntzNLkHDNdvSqfXMjCC3PgwML8s
ar8XGr4dwe7ByZqshdzSXoJR4N9DXlLi7NKQ/xY8hbZpWaw=
-----END CERTIFICATE-----

28

Appendix
2nd Layer TLS Certificate (2024-2025)

The beneath x509 certificate has been recovered as part of the 2nd layer TLS hand-
shake following the maintenance window described in section "2.3 Infrastructure"
on page 17; It is provided for pivoting and clustering purposes.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 5b:3f:1a:69:74:17:df:2b:0e:a1:52:f0:22:12:f8:d4
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=
 Validity
 Not Before: Dec 18 07:49:40 2024 GMT
 Not After : Dec 18 07:49:40 2025 GMT
 Subject: O=
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b0:fb:8e:13:72:94:26:b5:01:60:40:dd:41:28:
 e0:21:37:17:2f:e7:78:af:54:52:c1:a3:1d:de:37:
 53:0e:f6:4d:b0:a2:f7:9e:2f:d0:6e:c6:6d:62:e4:
 3d:04:92:d0:6f:9b:0a:19:aa:dc:b0:b3:56:31:d4:
 1c:fc:52:c6:fe:c6:f8:cf:bb:d7:27:88:ae:14:c3:
 b7:f4:85:a2:5a:ee:79:2c:f7:32:ce:db:f4:9f:20:
 22:99:ff:99:64:ac:12:f7:e4:ae:9b:56:68:d2:55:
 b9:d6:aa:9b:36:84:96:8b:c5:04:cf:50:26:67:ef:
 75:2f:15:08:79:07:a8:4a:ac:53:15:1a:cd:6b:54:
 e2:f9:e0:99:f1:34:a4:7e:c4:a9:e5:8e:e5:c1:0a:
 f0:a6:6c:1d:b2:76:74:8e:52:f8:55:31:80:df:ae:
 06:84:89:1d:1a:90:d7:32:43:a2:02:56:57:a6:f5:
 4c:f1:ce:11:de:7d:73:3e:4a:c4:8d:79:39:d9:bd:
 b6:04:59:d8:5a:83:9e:d5:b5:c2:ef:15:75:c0:07:
 82:72:e6:06:c8:68:b8:4c:c5:33:43:bf:97:cc:39:
 a5:28:bb:a3:77:d4:04:3d:ee:54:93:9e:b1:5c:aa:
 e7:64:77:25:aa:ed:42:1d:4b:06:b0:e8:f1:4a:54:
 fe:5b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment, Certificate Sign
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Subject Alternative Name:
 DNS:localhost

29

Appendix
2nd Layer TLS Certificate (2024-2025)

 Signature Algorithm: sha256WithRSAEncryption
 Signature Value:
 63:5e:92:03:e5:fd:1b:51:6f:78:ed:c3:c5:49:9d:30:f6:06:
 0f:92:75:b2:32:a9:65:e1:a5:76:6b:eb:30:7a:fd:c8:a2:39:
 ca:da:ad:76:11:0e:13:40:81:6c:f9:be:2b:46:d5:58:6d:5b:
 3b:8c:94:7b:d4:95:1e:f2:78:94:fb:99:cc:33:8e:ae:2c:91:
 10:c5:b8:3f:5a:25:2a:b4:6f:c9:8c:32:3b:ea:88:fb:bf:1d:
 e2:34:7e:fb:5d:71:4b:61:8e:1c:28:83:a0:bf:1d:8f:eb:0d:
 ec:2c:20:f4:a0:82:8c:2c:70:e4:60:a5:29:7e:37:86:fe:d7:
 f9:62:7e:b7:d9:3e:f6:ef:59:91:ea:ef:fb:31:93:e3:b9:52:
 5e:ae:6c:4c:94:69:27:36:eb:e6:10:8c:8b:bb:5e:51:0d:1c:
 79:f1:6d:f4:6b:66:51:fa:12:9e:33:62:cc:04:03:6f:86:8d:
 bd:0a:96:db:cc:45:80:1d:1b:a9:cf:9f:22:b0:2b:bf:6c:0c:
 42:61:cb:03:53:71:af:d2:29:d2:e7:c9:b8:61:31:87:11:68:
 04:38:8c:0d:7a:4f:3a:ea:26:fd:8e:2b:d6:cb:86:4b:a8:69:
 76:9c:47:4f:48:4a:23:27:06:99:4c:25:76:92:dd:87:33:e5:
 ee:7f:95:16
-----BEGIN CERTIFICATE-----
MIIC7jCCAdagAwIBAgIQWz8aaXQX3ysOoVLwIhL41DANBgkqhkiG9w0BAQsFADAL
MQkwBwYDVQQKEwAwHhcNMjQxMjE4MDc0OTQwWhcNMjUxMjE4MDc0OTQwWjALMQkw
BwYDVQQKEwAwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCw+44TcpQm
tQFgQN1BKOAhNxcv53ivVFLBox3eN1MO9k2woveeL9Buxm1i5D0EktBvmwoZqtyw
s1Yx1Bz8Usb+xvjPu9cniK4Uw7f0haJa7nks9zLO2/SfICKZ/5lkrBL35K6bVmjS
VbnWqps2hJaLxQTPUCZn73UvFQh5B6hKrFMVGs1rVOL54JnxNKR+xKnljuXBCvCm
bB2ydnSOUvhVMYDfrgaEiR0akNcyQ6ICVlem9UzxzhHefXM+SsSNeTnZvbYEWdha
g57VtcLvFXXAB4Jy5gbIaLhMxTNDv5fMOaUou6N31AQ97lSTnrFcqudkdyWq7UId
Swaw6PFKVP5bAgMBAAGjTjBMMA4GA1UdDwEB/wQEAwICpDATBgNVHSUEDDAKBggr
BgEFBQcDATAPBgNVHRMBAf8EBTADAQH/MBQGA1UdEQQNMAuCCWxvY2FsaG9zdDAN
BgkqhkiG9w0BAQsFAAOCAQEAY16SA+X9G1FveO3DxUmdMPYGD5J1sjKpZeGldmvr
MHr9yKI5ytqtdhEOE0CBbPm+K0bVWG1bO4yUe9SVHvJ4lPuZzDOOriyREMW4P1ol
KrRvyYwyO+qI+78d4jR++11xS2GOHCiDoL8dj+sN7Cwg9KCCjCxw5GClKX43hv7X
+WJ+t9k+9u9Zkerv+zGT47lSXq5sTJRpJzbr5hCMi7teUQ0cefFt9GtmUfoSnjNi
zAQDb4aNvQqW28xFgB0bqc+fIrArv2wMQmHLA1Nxr9Ip0ufJuGExhxFoBDiMDXpP
Ouom/Y4r1suGS6hpdpxHT0hKIycGmUwldpLdhzPl7n+VFg==
-----END CERTIFICATE-----

30

NVISO is a leading European cyber security firm with offices in Brussels,
Frankfurt, Munich, Athens, and Vienna. Founded by seasoned experts, we are
a pure-play cyber security company and home to world-class professionals
who author SANS Institute trainings, speak at major conferences, and lecture
at universities across Europe. Knowledge sharing is at the core of our DNA.
Our blog posts and publications are widely cited by security professionals
globally.

We specialize in preventing, detecting, and responding to cyber security
incidents. Our prevention services tackle infrastructure, application,
and human challenges, while our detection and response offerings range
from on-demand threat hunting to continuous Managed Detection &
Response (MDR) services.

Our CSIRT team is recognized as a Trusted Introducer (TI) member, a FIRST
member, and a BSI-listed APT Incident Responder. We regularly share our
research on the NVISO Labs blog.

About NVISO

blog.nviso.eu

nviso.eu

EMERGENCY

Belgium/Global: +32 2 588 43 80
 csirt@nviso.eu

Germany: +49 69 8088 3829
 csirt@nviso.de

Austria: +43 720 228 337
 csirt@nviso.at

http://blog.nviso.eu
http://nviso.eu
tel://+3225884380/
mailto:csirt%40nviso.eu?subject=
tel://+496980883829/
mailto:csirt%40nviso.de?subject=
tel://+43720228337/
mailto:csirt%40nviso.at?subject=

	Introduction
	Detailed Analysis
	2.1.	Capabilities
	2.1.1.	File Manager
	2.1.2.	Network Tunneling
	2.1.3.	Configuration

	2.2. Protocol
	2.2.1. Address Resolution
	2.2.2. Command & Control
	2.2.3. File Manager API
	2.2.4. Network Tunneling

	2.3 Infrastructure

	Conclusions & Recommendations
	Appendix
	Indicators of Compromise
	Appendix
	Detection & Hunting Rules
	5.1. YARA
	5.2. Kusto (KQL) Hunting
	5.3.	Suricata (Network)

	2nd Layer TLS Certificate (2023-2024)
	2nd Layer TLS Certificate (2023-2024)
	2nd Layer TLS Certificate (2024-2025)
	2nd Layer TLS Certificate (2024-2025)
	About NVISO

