
1/20

Hancitor's packer demystified
uperesia.com/hancitor-packer-demystified

 

https://www.uperesia.com/hancitor-packer-demystified


2/20

 

 Posted by Felix Weyne, May 2019. 
 Author contact: Twitter | LinkedIn 
 Tags: Hancitor, Chanitor, packer, unpacking, spaghetti code, shellcode, control flow

obfuscation, import table reconstruction, reflective PE loading, YARA

It has been a while since I have written a blog - I have been working on some tools and other
projects instead - so I decided to have another go at it . A while ago, the Twitter users
0verfl0w_ and Vitali published some nice blogs on the Hancitor malware. This made me
curious to also have a look at the malware family.

The Hancitor malware family has been around for a while and its core job is to download and
execute additional malware. In order to succeed at its job, the malware must succeed in
being run undetected on the machine and thus effectively stay under the radar of security
software such as an antivirus. One of Hancitor's endeavors to bypass antivirus is by making
use of a booby trapped Office document and to instruct Office to inject the Hancitor binary in
a legitimate Windows process. This method has been documented well by the Airbus
security team and has been used untill approximately the summer of 2018. Around that time,
the Hancitor crew has shifted its infection mechanism by making their spammed Office
documents download a packed executable to disk. An executable written to disk usually gets
inspected/scanned by antivirus, yet the Hancitor malware has been reasonably successful in
evading being detected (initially) as malicious.

https://www.uperesia.com/referer.php?id=twitter
https://www.uperesia.com/referer.php?id=linkedin
https://github.com/felixweyne/
https://0ffset.net/reverse-engineering/malware-analysis/reversing-hancitor-again/
https://www.vkremez.com/2018/11/lets-learn-in-depth-reversing-of.html
https://airbus-cyber-security.com/analysing-hancitor-maldoc/


3/20

Hancitor's evasive success can be partly attributed to the packer/crypter being used. In this
blog I will do a (technical) deep dive into Hancitor's packer, which has not changed
much since the summer of 2018. I will discuss how the packer protects its payload
and how it tries to thwart analysis. At the end of this blog, I'll demonstrate how this
packer has also been used by many other malware families in the past.
The packer

 
The below image gives an overview of the sample which I'll discuss in this blog. Although I
will be discussing a specific packed Hancitor sample, the information in this blog is
applicable to many other packed Hancitor samples, as the packer has not changed much
between the many SPAM campaigns (particularly the first layer of the packer has been very
consistent). In this archive (password=infected) a collection of many packed Hancitor
samples can be found (many thanks to Brad and James for sharing the samples on Twitter!).

https://www.virustotal.com/#/file/e4ad65ade2f04e05a886b398ef08261f5858b15cc822ef29b604cecaac3036b5/detection
https://www.uperesia.com/resources/hancitor_packer_samples.zip
https://twitter.com/malware_traffic
https://twitter.com/James_inthe_box


4/20

 

Image one: Overview of the packed Hancitor sample

In order to keep the analysis organized, I have a divided the packed sample into
"modules" (pieces) based on functionality. For each module I have added the address
of the first and last relevant assembly instruction, such that interested readers can
use this blog as a reference when unpacking the sample themselves in a debugger.
For those who are interested in the disassembled code, but don't want to plow through the
entire sample in a debugger, I have added a commented assembly output per module.
Lastly, for the malware hunters among us, I have added a YARA rule for the packer in the
blog's addendum.

Module 0: link to commented disassembled code (start address: 0x0040266D)
Module 1: link to commented disassembled code (start address: 0X00405177)
Module 2: link to commented disassembled code (start address: 0X004087A1)

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_overview.png
https://www.uperesia.com/resources/packer_module0.html
https://www.uperesia.com/resources/packer_module1.html
https://www.uperesia.com/resources/packer_module2.html


5/20

Module 3: link to commented disassembled code (start address:
start_mem_region+0x3E4)
Module 4: link to commented disassembled code (start address: 0X004015F0)
Module 5: link to commented disassembled code (start address: 0X00401520)
Module 6: link to commented disassembled code (start address:
start_mem_region+0x2BF0)

Spaghetti code

 
The packed Hancitor executables always start by executing random, non-dodgy functions.
We will define this code region as module zero (disassembled code). Putting random code
near the executables' entrypoint makes them look unique, that is to say, for security products
which (understandably) only parse/emulate executables partially because of performance
reasons. The random code ends by jumping to the next module, module one (disassembled
code).

The disassembled output of the module one section is hard to interpret. The packer's
author has broken the linear sequence of assembly instructions by reordering the
instructions and connecting them to each other via JUMP instructions, as can be seen
in image two. Additionally, between each instruction random instructions - which will
never be executed - are placed.

 

Image two: Spaghetti code which decrypts the next module

https://www.uperesia.com/resources/packer_module3.html
https://www.uperesia.com/resources/packer_module4.html
https://www.uperesia.com/resources/packer_module5.html
https://www.uperesia.com/resources/packer_module6.html
https://www.uperesia.com/resources/packer_module0.html
https://www.uperesia.com/resources/packer_module1.html
https://www.uperesia.com/img/articles/hancitor/hancitor_packer_spaghetti_code.gif


6/20

This technique, known as spaghetti code, bypasses static detection techniques which rely on
the malicious instructions being placed consecutively on each other. The goal of the
spaghetti code is to change the memory protection of a part of the executable (to which we
will referrer as module two) and then to decrypt said part via a simple XOR loop. Once the
relevant part is decrypted, the code execution is transferred to that part via a simple JMP
EAX instruction.

Resolving APIs

 
Module two (disassembled code) has three tasks: resolve the addresses of APIs which will
be used in the next module, map itself and the next module in a newly allocated memory
region and hunt for the start of the next module in the new memory region (delimited by the
70C5BA88 byte marker).

I will not discuss how the API addresses are resolved, as the packer will use a similar
technique in a later module, at which point I'll discuss the technique in depth (see paragraph:
reconstruct import table). The most important part of the API resolving code is the list of APIs
which are resolved:

kernel32_GetProcAddress
kernel32_GetModuleHandleA
kernel32_LoadLibraryA
kernel32_VirtualAlloc
kernel32_VirtualFree
kernel32_OutputDebugStringA
ntdll_memset
ntdll_memcpy

The APIs in the list will be used to map DLLs into the packer's process memory, to resolve
additional API addresses and to allocate and free memory regions. The thing in module
two that stands out the most is the way (API) strings are embedded inline with the
assembly code, as can be seen on image three.

https://www.uperesia.com/resources/packer_module2.html


7/20

 

Image three: Data (API names) inline with the assembly code

Most compilers will place strings in a region which is different from the region where the
assembly code resides. To get the memory address of the inline string, the assembly
code makes use of a simple trick: it will execute a CALL $+5 instruction (a procedure
call where the destination is the subsequent instruction).

Executing a CALL instruction will result in the return address (i.e. the address of the
instruction that follows the call instruction) being pushed on the stack. The return address is
immediately retrieved by executing a POP EAX instruction (pop the top of the stack into the
EAX register). The return address is thus pointing to the location of the POP instruction.
Because the assembly is interested in the start address of the inline placed string, three
bytes needs to be added to return address (skip the POP and JMP short instructions). We
can see the assembly code performing this action as follows: ADD EAX, 3. It is useful to
remember this little trick in your short-term memory, because it will also be used in the next
module.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_data_inline_with_assembly.png


8/20

Decrypt next layer

 
Module three (disassembled code) starts by overwriting code at three locations, as can be
seen on image four. These locations correspond with the packed executable's entrypoint
(module zero), the start of the spaghetti code (module one) and the start of module two (the
addresses are described on image one).

 

Image four: Overwriting three previous modules

The code then continues by decrypting the next layer (the next modules), by making use of
the APIs listed in the previous paragraph. Once the next layer has been decrypted, the
module resolves the addresses of the APIs which will be used in the next layer (image five),
to which we will refer as layer two.

https://www.uperesia.com/resources/packer_module3.html
https://www.uperesia.com/img/articles/hancitor/hancitor_packer_overwrite_previous_layer.png


9/20

 

Image five: addresses of resolved APIs in memory

After having resolved the API addresses, the code does something somewhat odd: it
patches values in the PE header and it overwrites the section header. This action doesn't
make much sense to me, because I believe these values are of no use once the executable
has been mapped into memory ? Nevertheless, this action helps us in our efforts to dump
the second layer executable from memory, as it seems like we have the correct PE header
as well as the decrypted code.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_resolved_API.png


10/20

 

Image six: overwriting section headers bug

Upon inspecting the dumped second layer executable, I noticed that the section headers
were shifted. When we look at the code responsible for overwriting the section
headers, we can notice an interesting bug in the packer. Remember the inline data trick I
discussed in the previous paragraph? It looks like the packer's author made a small mistake
while using it to overwrite the section header .

Because the JMP instruction following the POP EAX instruction in module three consists of
five bytes (it consisted of only three bytes in module two), the start address of the section
header data is off by three bytes (image six). Instead of adding three bytes to the EAX
register, the code should've added six bytes. If we correct this mistake while debugging, we
get a correct dump of layer two (which I have added here).

Module three ends by destroying its own code. The destruction is performed via a simple
loop which overwrites every address in the module with zero valued bytes (image seven).

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_section_header.png
https://www.uperesia.com/resources/hancitor_packer_samples.zip


11/20

 

Image seven: self destruction code in action (as seen via IDA debugger)

Given the fact that the module is mapped in a newly allocated memory region (image one),
one can only guess why the packer's author didn't just free the region. Maybe (s)he wanted
to avoid analysis techniques which dump code by hooking VirtualFree calls? Maybe (s)he
wanted to keep the modules nicely separated (VirtualFree can not be called before execution
is transferred to another region/module, as a VirtualFree call would destroy the code
responsible for said execution transferring)? After destroying everything, a jump is made to
the entrypoint of the second layer executable, to which I will refer as module four.

Decrypt Hancitor binary

 
Module four (disassembled code) contains a debug-thwarting trick which can be confusing if
you are not aware of what is happening. The module makes use of a technique called control
flow obfuscation. The goal of the trick is to make use of a Windows API call in such a
way that the main code flow does not continue on the code following the API call.
Instead the main code flow is transferred to a callback function which is executed
during the API call. If you are not aware of this trick, you would probably jump over
each instruction in module four which would result in loosing control over the
execution, since no debugger points are set in the registered callback function. Image
eight shows how the Hancitor packer makes use of this technique.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_self_destruction.gif
https://www.uperesia.com/resources/packer_module4.html


12/20

 

Image eight: Control flow obfuscation by making use of Window Procedures
(RegisterClassExA & CreateWindowExA)

The callback function is registered as part of a Windows Class Ex structure, which is passed
as an argument to the RegisterClassExA API call. When a call is made to the
DispatchMessageA API, the callback function gets executed. The callback function contains
a jump to the fifth module.

Module five (disassembled code) does not contain many interesting functions. The most
important function is a function which decrypts and decompresses the Hancitor executable (if
you are still reading at this point, you probably wondered when we would ever get to this
stage ). The encrypted executable is stored as data inside layer two, the decryption is
performed by three simple XOR loops, as can be seen on the decompiled function code on
image nine.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_control_flow_obfuscation.png
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/ns-winuser-tagwndclassexa
https://www.uperesia.com/resources/packer_module5.html


13/20

 

Image nine: decompiled decryption code

The decompression is performed via a function call to RtlDecompressBuffer (note that the
address of this API was resolved in module three, the puzzle pieces are starting to come
together!). The decrypted executable is mapped into a newly allocated memory region, to
which we will refer to as module six.

Reconstruct import table

 
Module six (disassembled code) contains the last functionality of the packer. The goal of the
module is to emulate behavior which normally is performed by the Windows Loader:
map libraries (DLLs) into the process' address space, resolve the addresses of APIs
and store those addresses in the executable's Import Address Table (IAT). This
behavior needs to be emulated by the packer because it has loaded the Hancitor executable
directly into memory. If the Hancitor executable were to have been loaded from disk, the
Windows Loader would have done its job. Obviously, loading the malware from disk is not
feasible, as it would be detected quickly by security products. Code similar to the code in this
module is frequently present in malware and greyhat tools which load an executable
reflectively. As the reader will notice, the reverse engineered code discussed below for
example looks very similar to a leaked Gozi/IFSB code part (mirror) which is described by
the author as: 'a routine used to create, initialize and execute [a] PE-image without a file'.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_decryption.png
https://www.uperesia.com/resources/packer_module6.html
https://github.com/gbrindisi/malware/blob/667b44f64edcd1c5e8c42489b8e767813a589158/windows/gozi-isfb/AcDll/stubs.c#L30-L132
https://www.uperesia.com/img/articles/hancitor/gozi_github.png


14/20

I am not a suitable person to write referral material about PE structures . However, for the
sake of giving some background information on the actions which are performed in module
six, I'll try to briefly write down some pointers about the PE's import tables.

The IAT is a table of pointers to function (API) addresses which is used as a lookup table
when an application is calling a function. The addresses of functions inside a library (DLL)
are not static but change when updated versions of the DLL are released, so applications
cannot be built using hardcoded function addresses. In order for the Windows Loader to
know which libraries and functions it needs to import, they obviously need to be defined
inside the executable. This is where the Import Directory Table (IDT) comes into play.

The IDT contains structures which contain information about a DLL which a PE file imports
functions from. Two important fields in those structures are FirstThunk: a relative virtual
address (RVA) inside the IAT, and OriginalFirstThunk: a RVA of the Import Lookup Table
(ILT). The Import Lookup Table contains an array of RVAs, each RVA points to a hint/name
table (source: PE format, Microsoft). As the name suggests, the hint/name table contains the
name of a function which needs to be imported.
Module six starts by calculating the in-memory start address of the Import Directory Table. It
calculates said address by parsing the PE header of the in-memory mapped Hancitor
executable, as can be seen on image ten. First, the executable searches for the start offset
of the PE header, a value which is stored at the e_lfanew field (ref: PE offsets). The module
then jumps to a certain offset from the start of the PE header to locate a field whose value
contains the RVA of the Import Directory. Because this value is a relative offset, the value
needs to be added to the in-memory start of the mapped executable. This resulting
calculation contains the in-memory start of the Import Directory Table.

https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://www.aldeid.com/wiki/PE-Portable-executable


15/20

 

Image ten: Resolve address of kernelbase & find address of import directory table

For module six to be able to map libraries (used by Hancitor) into the process' address
space, it needs the memory location of kernel32's LoadLibrary and GetProcAddress
functions. To retrieve the function addresses, the packer needs to figure out at which address
(inside its own process address space) the kernel32 library is mapped. For this hunt the
packer relies on a small piece of shellcode which reads the Process Environment Block
(PEB). The below slide from a fifteen-years-old presentation about shellcode explains how
the PEB is used to resolve kernel32's base address.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_parse_pe_header.png
https://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-chong.pdf


16/20

 

Image eleven: Fifteen-year-old presentation discussing shellcode which retrieves the
kernel32 base memory address

After having resolved the in-memory location of the LoadLibrary and GetProcAddress
functions, module six reads the FirstThunk and the OriginalFirstThunk field values inside the
Import Directory Table (image twelve, image thirteen).

 

Image twelve: Parsing Import Directory Table for OriginalFirstThunk & FirstThunk fields

By enumerating these fields, the module knows via the corresponding hint/name
tables which functions need to be imported. The libraries are imported via calls to the
LoadLibrary function, the function addresses are resolved via calls to the
GetProcAddress function. The module writes the function addressess into Hancitor's
Import Address Table. The result of this action can be seen on image fourteen (note that the
Import Directory field values can be nicely visualised via Hasherezade's PE bear). A
graphical overview of the relation between the fields and import tables discussed in this
paragraph can be seen on image thirteen.

This action is the last action by the packer, the execution can now *finally* be transferred to
Hancitor's code .

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_shellcode_kernel32_base_hunting.png
https://www.uperesia.com/img/articles/hancitor/hancitor_packer_import_lookup_table.png
https://hshrzd.wordpress.com/pe-bear/


17/20

 

Image thirteen: Graphical overview of the relations between the import tables. 
 Source: dematte.org.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_pe_import_table.png
http://www.dematte.org/2006/03/04/InterceptingWindowsAPIs.aspx


18/20

 

Image fourteen: Parsing the Import Directory Table (IDT) with the ultimate goal of filling the
Import Address Table (IAT)

Old packer, still does the job

 
During the hunt for additional packed Hancitor samples (using the below YARA rule), I
noticed that some of the packed samples were protecting a malware family which didn't look
like Hancitor at all . One sample protected some kind of Delphi malware which embedded
the names of Turkish banks. The malware looked very similar to the ATMZombie malware,
which Kaspersky blogged about (mirror). When we look at an ATMZombie sample which is
explicitly mentioned in the Kaspersky blog, we can see that the packer of the mentioned
sample is the same packer as the one which is discussed in this blog. Another packed
sample which I noticed during my hunt protected a shellcode loader. The sample is
mentioned in a Proofpoint blog (mirror) as a Metasploit Stager which in turn downloaded
Cobalt Strike.

https://www.uperesia.com/img/articles/hancitor/hancitor_packer_import_directory_table.png
https://www.virustotal.com/#/file/cd3cff88a9be3624de40018397b4844d7da3be67f959de2d271bde98b5674ce8/detection
https://securelist.com/atmzombie-banking-trojan-in-israeli-waters/73866/
https://www.uperesia.com/img/articles/hancitor/kaspersky_atmzombie.png
https://www.virustotal.com/#/file/8662e3c0c564b85ee4af656dcf76fdafdacb41a2f13a3de509bca16b2e8928c7/detection
https://www.virustotal.com/#/file/39ac90410bd78f541eb42b1108d2264c7bd7a5feafe102cd7ac8f517c1bd3754/details
https://www.proofpoint.com/us/threat-insight/post/microsoft-word-intruder-integrates-cve-2017-0199-utilized-cobalt-group-target
https://www.uperesia.com/img/articles/hancitor/proofpoint_wmi_intruder.png


19/20

At this point it became clear to me that this packer has been around for a time, and
that it isn't exclusively used by Hancitor. In fact, when I kept digging, I found many
samples of (old) malware families which were packed by this packer. Some examples
are: Zeus/Panda banker, Cryptowall, Ramnit, PoSeidon and Gootkit. All packed and
unpacked malware samples can be found here (password=infected). When I launched a
YARA search on parts of the encrypted module two bytes (there are 255 variations, as a
single byte XOR key is used in the spaghetti code of module one), I found older versions of
the packer. One example is a packed Qadars sample. The sample is mentioned as an IOC in
an ESET article (mirror) from 2013. This suggests that the packer has been around for at
least five years already.

Addendum: YARA Rule

 

https://www.virustotal.com/#/file/b8ce490bc146c058abad4b6593d9e08adcf0b9d374616bca25df78e92ae7d753/detection
https://www.virustotal.com/#/file/bf352825a70685039401abde5daf1712fd968d6eee233ea72393cbc6faffe5a2/detection
https://www.virustotal.com/#/file/e64ffc50c920105c03a1f0cf40dc015bdba23db13021bf12321b5145fc21485c/detection
https://www.virustotal.com/gui/file/50524041df82a17a0e28d1e6ed7cb205e4c427e552c25cb36cc4dfab13c121df/detection
https://www.virustotal.com/gui/file/c839f4cca442547096bad395e58eee579f6d73e31d6549ee0859ff2a64a1304e/detection
https://www.uperesia.com/resources/hancitor_packer_samples.zip
https://www.uperesia.com/resources/hancitor_packer_like_YARA.txt
https://www.virustotal.com/#/file/04f0feb7ab6b68dabbebc3da2082afabacbe488bca3464f3da985a9b4d9c7c2c/detection
https://www.welivesecurity.com/2013/12/18/qadars-a-banking-trojan-with-the-netherlands-in-its-sights/
https://www.uperesia.com/img/articles/hancitor/eset_qadars.png


20/20

import "pe" 
rule hancitor_packer 
{ 
 meta: 
   author = "Felix Weyne, 2019" 
   description = "Hancitor packer spaghetti code (loose match)" 
   hash1= "37f6f1f59bf7952fd7182deeb07d4cd0d367dd59" 
   hash2= "2508b3211b066022c2ab41725fbc400e8f3dec1e" 
   hash3= "3855f6d9049936ddb29561d2ab4b2bf26df7a7ff" 
   hash4= "e9ec4a4fb6f5d143b304df866bba4277cd473843" 
 strings: 
   //E9=JMP, EB=JMP SHORT, 71/0F=JNO 
   $change_sp={89 EC (E9|EB|71|0F)}  //mov    esp,ebp 
   $2={5D (E9|EB|71|0F)}   //pop    ebp 
   $3={BF ?? ?? ?? 00 (E9|EB|71|0F)}  //mov    edi, 274C67h 
   $4={81 ?? ?? ?? ?? 00 (E9|EB|71|0F)} //add    edi, 17E792h 
   $5={57 (E9|EB|71|0F)}   //push   edi 
   $6={BE ?? ?? 00 00 (E9|EB|71|0F)}  //mov    esi, 88Bh 
   $7={6A 00 (E9|EB|71|0F)}   //push   0 
   $8={54 (E9|EB|71|0F)}   //push   esp 
   $9={6A 40 (E9|EB|71|0F)}   //push   40h 
   $mov_eax={B8 ?? ?? ?? 00 (E9|EB|71|0F)} //mov    eax, 5ADBh 
   $add_eax={05 ?? ?? ?? 00 (E9|EB|71|0F)} //add    eax, 0E525h 
   $12={8B 00 (E9|EB|71|0F)}   //mov    eax, [eax] 
   $13={FF D0 (E9|EB|71|0F)}   //call   eax 
   $ecx_zero={B9 00 00 00 00 (E9|EB|71|0F)} //mov    ecx, 0 
   $xor={30 07 (E9|EB|71|0F)}   //xor    [edi], al 
   $18={41 (E9|EB|71|0F)}   //inc    ecx 
   $19={47 (E9|EB|71|0F)}   //inc    edi      
   $20={39 F1 (E9|EB|71|0F)}   //cmp    ecx, esi   
   $21={58 (E9|EB|71|0F)}   //pop    eax 
 condition: 
   filesize < 110KB 
   and pe.is_32bit() 
   and #add_eax >= 3 
   and #mov_eax >= 3 
   and all of them 
   and for any i in (1..#xor):($change_sp in (@xor[i][email protected][i]+400)) 
   and for any i in (1..#xor):($ecx_zero in (@xor[i][email protected][i]+300)) 
} 


