
1/5

Tomasuh

Retefe unpacker
github.com/Tomasuh/retefe-unpacker

layout title date comments categories

post Retefe unpacker 2018-12-28 true

This is a writeup on how to implement an unpacker for current versions (at the time of
publication) of the banking malware Retefe.

Resources about the threat:

Retefe banking Trojan leverages EternalBlue exploit in Swiss campaigns
The Retefe Saga
Reversing Retefe
New version of Retefe Banking Trojan Uses EternalBlue

Historically there seems to be some variance of ways the malware has stored it's Javascript
payload. Some sources mentions self extracting ZIP files and other XORed data. The current
version makes use of a 4 byte XOR key which is generated based on the scripts length and
a few mathematical operations performed on it. The post Reversing Retefe from about two
months back (2018-11-08) shows use of a one byte XOR key which indicates that the threat
actor has changed its code base after the release of that post. This post is made with the
intention to shed some light on the current way the threat Retefe stores its payload.

https://github.com/Tomasuh/retefe-unpacker
https://www.proofpoint.com/us/threat-insight/post/retefe-banking-trojan-leverages-eternalblue-exploit-swiss-campaigns
https://www.govcert.admin.ch/blog/33/the-retefe-saga
https://www.govcert.admin.ch/blog/35/reversing-retefe
https://www.mysonicwall.com/sonicalert/searchresults.aspx?ev=article&id=1094
https://www.govcert.admin.ch/blog/35/reversing-retefe

2/5

Looking at the mapped binary image with IDA shows a large amount of unexplored data that
is in the .data segment.

Browsing the .data segment with Binary Ninja shows a large segment of data whose top is
referenced in a copy instruction:

The copy instruction is part of a function that passes the address of this copied data as an
argument to a decoding function together with the length of the buffer:

The decoder function passes the buffer length and another int to a function that
takes buffer length to the power of that int . Then a shift and subtraction is performed.
The result is the XOR key that is used to decode the buffer.

https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/code-explored.png
https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/copy-instruction.png
https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/decoder-setup.png

3/5

Later on the decode operation is performed:

That the data actually becomes decoded can be verified with a debugger, watching the
memory of the buffer after the decoder function has ran:

https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/xor-key.png
https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/decoder-decode.png

4/5

With the above research its possible to write an unpacker.

The actions performed by the unpacker:

Use yara rules to find buffer location buffer length, number of shifts, subtraction value
and power to value of it.
Calculate the buffer RVA as the extracted location is relative to the LEA instruction that
references it
Calculate XOR array based on values extracted with the help of the yara rules
Extract and decode the script

The sourcecode to do this is available in this github repo.

Recent hashes that it has been confirmed to work on:

Example run:

352b78b8ed38be7ada1d9f4d82352da5015a853bf3c3bdb8982e4977d98f981c
5c548447203104e9a26c355beaf2367a8fa4793a1b0d3668701ee9ba120b9a7b
1a3f25f4067e50aa113dfd9349fc4bdcf346d2e589ed6b4cebbc0a33e9eea50d

https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/dbg.png
https://github.com/Tomasuh/retefe_unpacker

5/5

Screenshots in this post are based on the sample
1a3f25f4067e50aa113dfd9349fc4bdcf346d2e589ed6b4cebbc0a33e9eea50d .

https://github.com/Tomasuh/retefe-unpacker/blob/master/readme_images/example-run.png

