
1/11

norfolk February 25, 2019

How To: Analyzing a Malicious Hangul Word Processor
Document from a DPRK Threat Actor Group

norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-document-from-a-dprk-threat-actor-group/

A few days ago, ESTsecurity published a post detailing a newly identified malicious Hangul
Word Processor (HWP) document that shared technical characteristics with previously
reported malicious activity attributed to North Korean threat actors (an important note: this
particular group is not typically associated with or clustered with the SWIFT/ATM adversary
detailed in other posts on this blog, although this blog avoids using specific vendor naming
classifications where possible).

The Hangul Office suite is widely used in South Korea; in the West, it’s significantly less
common. As a result of this, there is limited public documentation regarding how to analyze
exploit-laden HWP documents. This blog post is intended to provide additional
documentation from start to finish of the file identified by ESTsecurity. As such, the language
used will be somewhat less formal than the content typically posted here.

 
The following tools (in a VM) are recommended for analysis:

 1) Cerbero Profiler (advanced or standard)
 2) Process Hacker

 3) Ghostscript
 4) Any debugger (I prefer the x96 suite)

 5) jmp2it
5) Hangul Office (optional) + a listener (e.g. FakeNet, Inetsim)

 6) scdbg (optional)

I purchased my copy of Hangul Office on Amazon a while back. The English language
version is typically vulnerable to the same exploits. Cerbero Profiler has a trial version that
will work for this analysis (though it’s a great tool and deserves a purchase).

As a final note before analysis, two previous posts from other researchers deserve
recognition: Jacob Soo’s post pointed me towards Cerbero Profiler (and discusses some
important HWP characteristics), and a post from Wayne Low at Fortinet has some great
introductory material for debugging Encapsulated PostScript (EPS).
Step 1: Triage and Analysis of the Document

MD5: f2e936ff1977d123809d167a2a51cdeb
 SHA1: 7a86e6bffba91997553ac4cf0baec407bc255212 

 SHA256: 5d9e5c7b1b71af3c5f058f8521d383dbee88c99ebe8d509ebc8aeb52d4b6267b

https://norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-document-from-a-dprk-threat-actor-group/
https://blog.alyac.co.kr/2140
https://cerbero.io/profiler/
https://www.ghostscript.com/
https://github.com/adamkramer/jmp2it/releases
http://sandsprite.com/blogs/index.php?uid=7&pid=152
http://www.vxsecurity.sg/2016/11/22/technical-teardown-exploit-malware-in-hwp-files/
https://www.fortinet.com/blog/threat-research/debugging-postscript-with-ghostscript.html


2/11

A copy of Hangul Word Processor isn’t strictly necessary to analyze the file in question. If we
do have a copy and use it to open the document, we’ll notice two key events: the document
will spawn a copy of Internet Explorer, and the analysis environment will make a network call
to a compromised Korean website. This information is useful later on, as it gives some basic
guidelines for what to expect when analyzing the document’s payload.

Opening the file in Cerbero Profiler will show several of the document’s different streams and
objects. For malicious HWP files (including the one discussed in Jacob Soo’s 2016 post
noted above), there will be malicious JavaScript present. In this case, we’re instead
interested in the contents of one of the streams, BIN0003.eps. The contents in these streams
are usually zlib compressed, and Cerbero Profiler can apply filters to them to decompress
them:

In the “Format” tab, select all of the content of the stream, right click, and hit “filter.”



3/11

Scroll down to the “unpack” category and select “zlib.” Check the box for “raw” and click
“add.” Then click “Preview” in the bottom right, select all, and copy the “Ascii” contents.
The above images detail the steps for copying and decompressing the contents of the EPS
stream. Pasting these into a file will reveal a relatively simple EPS script.

Step 2: Analyzing the EPS script

PostScript is a stack-based programming language first conceived by Adobe in the 1980s.
The documentation for the language is nearly a thousand pages long. I do not recommend
reading it. Encapsulated PostScript is a fork of this, with restrictions. The documentation for
this is significantly shorter, but still probably not necessary. I would stick with Fortinet’s
overview.

The key concept for an EPS file is that each command is added to the top of a (clearable)
“stack” in the order that it’s typed. Below is the EPS script we copied from Cerbero (pasted
into any text editor):

The decompressed EPS script
Even without truly understanding the EPS language, we can infer what’s likely happening
here. At the top, a (truncated) set of hexadecimal bytes are added to the stack. A series of
variables are defined, a transformation is applied to the bytes, and (presumably) the “exec”
function is applied to the results of this transformation. Even though we might not know

https://www.adobe.com/content/dam/acom/en/devnet/actionscript/articles/psrefman.pdf
https://blog.trendmicro.com/trendlabs-security-intelligence/hangul-word-processor-postscript-abused-malicious-attachments/
https://www-cdf.fnal.gov/offline/PostScript/5002.PDF
https://www.fortinet.com/blog/threat-research/debugging-postscript-with-ghostscript.html


4/11

precisely how to interpret this transformation, we can assume that there is a second layer to
this script. In other programming languages, we might tell the script to Alert, MsgBox, or Print
the executed value (instead of executing this value), and EPS is no exception. Substitute the
“exec” commands with a single print:

Replace “exec exec” with “print”
 We also need something to actually run the EPS file. Ghostscript supports EPS execution

and is a relatively quick install. Ghostscript comes with a GUI/Shell version and a command-
line version. For this, we need to use the command-line version, as the shell won’t render all
of the data that gets printed and thus we won’t be able to copy and paste it. Open up a
command line prompt and copy the syntax below (noting the inverted slashes on a Windows
system and the parenthesis- these were derived from test dragging files into the Shell
version to determine the proper syntax).

Executing an EPS file with Ghostscript
 Hit enter, and it will print the contents. From there, copy and paste the content of the console

into a new text file:

https://www.ghostscript.com/download/gsdnld.html


5/11

Printed second-layer EPS script. The boxed brackets represent the boundaries of the hex
array to be copied into a file for analysis.
At this stage, we can infer that we likely have executable shellcode: the beginning of the
large byte array begins with a 0x90 “nop sled.” Copy just the hex array as bytes into a hex
editor (such as HxD) and save the file. We can move on to the next analysis step.

Step 3: Analyzing Shellcode

The dumped bytes don’t represent a compiled program; rather, they are raw instructions of
executable code. There are two great tools that can help triage and analyze this code:

1) scdbg- Emulates the shellcode and highlights key API calls
2) jmp2it- Executes shellcode in an attachable, debuggable program



6/11

By performing a quick triage with scdbg, we can get a bit of a head start on the shellcode
that we’re about to examine (note: I had initially redacted the username in some images):

We can see a handful of API calls, including one that resolves the folder path for the
Program Files directory. However, our initial execution of the HWP document indicated that
the sample would launch Internet Explorer and issue a network callout. The API calls above
are insufficient to perform those two tasks; hence, we need to debug the shellcode to
determine what’s “missing” and why that might be.

The jmp2it tool will execute shellcode beginning at a specified offset (in this case, 0x00 will
work as that’s the start of the “noop sled”) and can pause it in an infinite loop while we attach
a debugger. It provides additional instructions for patching this loop and jumping in to the
next function.

Debugging the shellcode itself requires a bit of practice. In this sample, immediately after the
noop sled, the first routine begins decoding additional code (and thus, modified the code):

The “analyze” button (both before and after any routines that change the code) will help
highlight specific functions.



7/11

As the code is relatively small, single-stepping through is not as daunting as it might be for a
larger sample (though, stepping out of loops that you already understand will certainly save
time). One of our questions from the triage was identifying additional API calls and next-step
functionality. For the former, look for (and comment/label) functions that are repeated often:

The boxed routine on the left returns an API to the EAX register.
Ultimately, this shellcode stage will take several actions: it will attempt to open a (non-
existent) “thumbs.db” file (not pictured), and it will launch a suspended copy of Internet
Explorer, inject additional code into its memory (using more resolved API calls) and then
create a remote thread in that process to execute this code:



8/11

Writing code to, and creating a remote thread in, the Internet Explorer process



9/11

We do not want to step into or over the CreateRemoteThread call. Instead, we want to dump
the executable section of code from the suspended Internet Explorer instance, and repeat
the debugging steps.

Identifying an additional set of injected code
Running this code through scdbg suggests that we’re nearing the end:



10/11

Now we see our network traffic endpoint (a compromised website) and a series of API calls
directly related to communicating with that location. Debugging this second set of shellcode
(with the help of jmp2it) will show a similar pattern: an initial decoding routine, following by
the resolution of the API calls needed to carry out the next task:

And finally, these are used to communicate with the endpoint:

Unfortunately, this is where our analysis ends without running the sample and capturing a
PCAP (or pulling one down from a sandbox). The next call is for the code to read the
response from the server and execute it; presumably, this is an additional layer of shellcode
(perhaps containing an embedded payload). Without that code, we can’t say for sure what
the payload might be; however, some quick pivoting on our initial code can help us make an
educated assessment:



11/11

It would appear that “our” sample has a code overlap with a previously submitted sample,
and this sample communicates with a C2 previously highlighted in a Cisco Talos report.* In
that report, Cisco noted (and documented) a final payload classified as “NavRAT” delivered
using a very similar mechanism and containing the same file name from the ESTsecurity
report. If we were making an assessment, our best guess would be that we would expect the
same (or similar) payload here.

* Most likely, somebody took the older shellcode, converted it into an executable for analysis,
and uploaded to VirusTotal.

https://blog.talosintelligence.com/2018/05/navrat.html
https://blog.alyac.co.kr/2140

