
1/6

kai5263499

kai5263499/Bella: A pure python, post-exploitation, data
mining tool and remote administration tool for macOS.
🍎💻

github.com/kai5263499/Bella

This branch is 27 commits ahead of Trietptm-on-Security/Bella:master.

Contribute

README.md

#Bella Bella is a pure python post-exploitation data mining tool & remote
administration tool for macOS. 🍎💻

##What is it? Bella is a robust, pure python , post-exploitation and
remote administration tool for macOS.

Bella a.k.a. the server is an SSL/TLS encrypted reverse shell that
can be dropped on any system running macOS >= 10.6. Bella offers the
following features:

master

https://github.com/kai5263499/Bella

2/6

1. Pseudo-TTY that emulates an SSH instance [CTRL-C support
for most functions, streaming output, full support for inline bash
scripting, tab completion, command history, blocking command
handling, etc].

2. Auto installer! Just execute the binary, and Bella takes care of
the rest - a persistent reverse shell in a hidden location on the hard
drive, undetectable by anti-viruses.

3. Upload / Download any file[s]

4. Reverse VNC Connection.

5. Stream and save the computer's microphone input.

6. Login / keychain password phishing through system
prompt.

7. Apple ID password phishing through iTunes prompt.

8. iCloud Token Extraction.

9. Accessing all iCloud services of the user through
extracted tokens or passwords.

This includes: iCloud Contacts, Find my iPhone, Find my
Friends, iOS Backups.

10. Google Chrome Password Extraction.

11. Chrome and Safari History Extraction.

12. Auto Keychain decryption upon discovery of kc password.

13. macOS Chat History.

14. iTunes iOS Backup enumeration.

15. Extensive logging of all Bella activity and downloaded
files.

16. VERY comprehensive data storage. All information that Bella
discovers [tokens, passwords, etc] is stored in an encrypted SQL
database on the computer running Bella. This information is used for
faster function execution, and a "smarter" reverse shell.

17. Complete remote removal of Bella

3/6

18. An interactive shell for commands such as nano, ftp,
telnet, etc.

19. A lot of other great features! Mess around with it to see it
in action.

These are some of the features available when we are in the userland.
This shell is accessible at any time when the user has an internet
connection, which occurs when they are logged in and the computer is not
asleep.

If we get root , Bella's capabilities greatly expand.

Similar to the getsystem function on a meterpreter shell, Bella has a
get_root function that will attempt to gain root access through a variety

of means, including through a phished user password and/or local privilege
escalation exploits if the system is vulnerable.

Upon gaining root access, Bella will migrate over to a hidden directory in
/Library, and will load itself as a LaunchDaemon. This now provides remote
access to the Bella instance at all times, as long as the computer has a
network connection. Once we get root, we can do the following:

1. MULTI-USER SUPPORT! Bella will keep track of all information from
any active users on the computer in a comprehensive database, and
will automatically switch to the active computer user. All of the
aforementioned data extraction techniques are now available for
every user on the machine.

2. Decrypt ALL TLS/SSL traffic and redirect it through the
control center! [a nice, active, MITM attack]

3. Disable/Enable the Keyboard and/or Mouse.

4. Load an Insomnia KEXT to keep a connection open if the
user closes their laptop.

5. Automatic dumping of iCloud Tokens and Chrome passwords
[leverages keychaindump and chainbreaker if SIP is disabled]

6. A lot of behind the scenes automation.

##HOW TO USE

4/6

Bella's power lies in its high level of automation of most of the
painstaking tasks that one faces in a post-exploitation scenario. It is
incredibly easy to setup and use, requires no pre-configuration on the
target, and very little configuration on the Control Center. It leverages the
incredible behind the scenes power of macOS and Python for a fluid post-
exploitation experience.

1. Download / clone this repository onto a macOS or Linux system.

2. Run ./BUILDER and enter the appropriate information. It should look
something like this:

3. That's it! Bella is all ready to go. Just upload and execute Bella on
your macOS target.

4. Now run Control Center.py on your macOS or Linux control
center. It requires no-dependencies [except for mitmproxy if you want
to MITM]. It will do some auto-configuration, and you will see
something like this after a few seconds. ![](Screenshots/Found
Clients.png) The Control Center will constantly update this selection,
for up to 128 separate computers.

5. Press Ctrl-C to choose from the selection, and then type in the
number of the computer that you want. You will then be presented
with a screen like this.

6. Start running commands! bella_info is a great one. Run
manual to get a full manual of all of the commands. Also, you can

hit tab twice to see a list of available commands. ![]
(Screenshots/Bella Info.png)

VERY IMPORTANT DISCLAIMER: USE BELLA RESPONSIBLY. BY
USING BELLA YOU AGREE TO THE MIT LICENSE CONTAINED IN
THIS REPOSITORY. READ THE LICENSE BEFORE USING BELLA.

Little note: Bella works across the internet, if you do some configuration.
Configure your firewall to forward Bella's port to your Control Center. Other
important ports to forward: 1) VNC - 5500. 2) Microphone - 2897. 3) MITM

https://github.com/kai5263499/Bella/blob/master/Screenshots/Builder.png

5/6

- 8081. 4.) Interactive Shell - 3818

Also, VNC relies on the RealVNC application for macOS, as it is one of the
few clients that supports a reverse VNC connection. It is free to download
and use.

VNC and Microphone streaming are not yet supported for Linux control
centers.

##Other Information This project is being actively maintained. Please
submit any and all bug reports, questions, feature requests, or related
information.

Bella leverages keychaindump, VNC, microphone streaming, etc, by
sending base64 encoded C binaries over to the Bella server / target. I
have included pre-compiled and encoded files in the Payloads/payloads.txt
file. If you wish to compile your own version of these payloads, here is
what to do after you compile them:

1. Encode them in base64 and put them in the payloads.txt in the
following order, each one separated by a new line.

2. vnc, keychaindump, microphone, rootshell, insomnia, lock_icon,
chainbreaker.

payload_generator in the Payloads directory should help with this.

Please let me know if you have any issues.

###HUGE thanks https://github.com/juuso/keychaindump

https://github.com/n0fate/chainbreaker

https://github.com/richardkiss/speakerpipe-osx

https://github.com/semaja2/InsomniaX

https://github.com/stweil/OSXvnc

https://bugs.chromium.org/p/project-zero/issues/detail?
id=676&redir=1

###TODO

1. Reverse SOCKS proxy to tunnel our traffic through the
server.

2. Firefox password decryption / extraction

6/6

3. Keystroke logging with legible output [80% done]

4. VNC and Microphone functionality for a Linux Control
Center

####Some design points

1. As previously stated, Bella is a pseudo-TTY. By this, the base socket
and remote code execution handling of Bella is a fairly abstracted
version of a very simple request-response socket. Bella receives a
command from the server. If the command matches a pre-
programmed function (i.e chrome history dump), then it will perform
that function, and send the response back to the client. The client will
then handle the response in the same way. After processing the
response, it will prompt the client for another command to send.

2. Issues with a low-level socket are numerous, and not limited to: 3.
Program execution that blocks and hangs the pipe, waiting for output
that never comes (sudo, nano, ftp) 4. Not knowing how much data to
expect in the socket.recv() call. 5. Not being able to send ctrl-C, ctrl-Z
and similar commands. 6. No command history 7. A program that
crashes can kill a shell. 8. One-to-one response and request.

3. Bella address the above by: 4. recv() and send() functions that
serialize the length of the message, and loop through
response/requests accordingly. 5. Readline integration to give a more
'tty' like feel, including ctrl-C support, command history, and tab
completion. 6. Detecting programs that block, and killing them. 7.
Allowing multiple messages to be sent at once without the client
prompting for more input (great for commands like ping, tree, and
other commands with live updates).

For full information on the pre-programmed functions, run the manual
command when connected to the server.

--

