
Turla - development &

operations
THE BIG PICTURE

ANDRZEJ DERESZOWSKI

Picture from deviantart.com

Agenda

 Introduction

 Part I – Development

 Part II – Operations

 How to protect yourself

 Attribution ?

A bit of history from my perspective

 2008 – Agent.BTZ – threat that hit Pentagon

 2009 – Some Agent.BTZ incidents here and there

 2011 – me, tecamac and other researchers get together to analyze
certain complex threat

 Beginning 2013 – we started distributing our report and help others

handle infections

 Beginning 2014 – a series of discoveries started by G-Data and BAE

Systems

What has been published so far ?

 ThreatExpert – “Agent.btz - A Threat That Hit Pentagon” – Nov 2008

 Trend Mirco - Windows XP/Server 2003 Zero-Day Payload Uses Multiple Anti-
Analysis Techniques – Dec 2013

 G-DATA – “Uroburos – Highly complex espionage software with Russian roots” –
Feb 2014

 BAE Systems – “Snake Campaign & Cyber Espionage Toolkit” – Mar 2014

 Deresz&tecamac – “Uroburos – The Snake Rootkit” – Mar 2014

 Sourcefire VRT – “Snake Campaign: A few words about the Uroburos Rootkit” –
Apr 2014

 F-Secure – “Anatomy of Turla Exploits” – May 2014

 Kernelmode.info threads – Jun 2014

 CIRCL – “TR-25 Analysis - Turla / Pfinet / Snake/ Uroburos” – Jul 2014

 Symantec – “Turla: Spying tool targets governments and diplomats” – Aug 2014

 Kaspersky – “The Epic Turla Operation – Aug 2014

Many publications – many names

 Currently there is a lot of confusion in naming scheme

 Final stage:

Agent.BTZ/Snake/Turla/Uroburos/Carbon/Pfinet/Snark/Sengoku

 Reconaissance stage:

Epic/Tavdig/WipBot/WorldCupSec/TadjMakhal

 NOT all of them decribe the same « product »

PART I

Development

What is Turla ?

 Family of related sophisticated backdoor software

 Name comes from Microsoft detection signature – anagram of Ultra

(Ultra3 was a name of the fake driver)

 All related by shared code

Code history

Agent.BTZ

(2006)

Pfinet

(2009)

Snake

(2011)

Agent.BTZ:

- Sengoku

Pfinet:

- Carbon

- Usermorde-centric Snake

Snake:

- Urouros

- Snark

- Kernelmode-centric Snake

Features: summary

Feature Agent.BTZ Pfinet Snake

Storage Hidden folder Encrypted VFS Encrypted VFS

Configuration Hardcoded Text file Key-value store (queue)

Networking Separate exes Userland payloads Kernel+userland

Incomming transports No No Yes

VirtualBox exploit to load the driver

Source: Sourcefire VRT

Uses a vulnerability in old (yet still signed!) VirtualBox driver to load its own

driver
Source: F-Secure

Source: kernelmode.info

Pfinet

Snake

Udis86: on-the-fly manipulation of

dissassembled code in live kernel
Source: deresz & tecamac

Agent.BTZ

Pfinet

Snake

Hooking engine – Udis86 reused
Source: deresz & tecamac

Agent.BTZ

Pfinet

Snake

Encrypted VFS

 Implemented in Carbon and Snake

 CAST 128 encryption used

 Decryption/encryption implemented on low level by

hooking sector processing mechanisms:

Source: deresz & tecamac

Pfinet

Snake

Encryped VFS

Encrypted container located in %windows%\$NtUninstallQ817473$\hotfix.dat

Source: deresz & tecamac

Two volumes: permanent (mapped to a file on a real file system)

and volatile storage

Pfinet

Snake

Configuration mechanism

 Agent.BTZ:

 Config hardcoded in the user mode executables

 Pfinet:

 Configuration file stored on the VFS in a flat file: config.txt

 Transports implemented in user mode

 Usermode payloads hardcoded in the rootkit body:

 cryptoapi.dll

 inetpub.dll

Configuration mechanism

 SNAKE:

 Uses « queue » file that contains configuration parameters in the form of

key/value pairs

 « queue » file located on the VFS

 Queue contains:

 Transports configuration

 Userland payloads:

 inj_snake_Win32.dll – a counterpart of a rootkit for userland

 inj_services_Win32.dll

 rkctl_Win32.dll

Modular transports – channel elements
Snake

Type 5 (s)

np \\.\pipe\P

enc

frag

reliable

Type 2 (m) Type 4 (d)

doms

domc

udp network

Type 3 (t)

t2mmpx

Type 1 (b)

tcp network

sicmp

m2d m2b

converters

d2s

Modular transports – combined together

frag enct2mmpx reliable doms np \\.\pipe\P

domc np \\.\pipe\P
Datagram

covert channel

enc frag np \\.\pipe\P
HTTP covert

channel

Kernel mode

User
mode

Snake

enc.frag.np

domc.np

frag.enc.reliable.doms.np

Protocols to choose

 Datagram covert channels:

- Raw layer 2 (Ethernet type 0x7FF)

- Raw ICMP

- Raw UDP - DNS

- Raw IP

 Stream covert channels and activation triggers:

- Raw TCP

- HTTP: URL parameters of an HTTP request

- HTTP: Hidden in HTTP headers

- HTTP: Hidden in local part of the URL

- SMTP: triggered by a recipient e-mail address

Examples of incoming transports –

covert channels

SMTP covert channel – rootkit resides on the mail server of pwned-prg.com

HELO whatever.com

250 Hello whatever.com, I am glad to meet you

MAIL FROM: <you.bet@you.are.not>

250 OK

RCPT TO: <trueburger@pwned-org.com>

250 OK

354 End data with <CR><LF>.<CR><LF>

<commands>

.

Recipient user name must be 10 characters

Last two characters (in red) are the checksum calculated

on the first 8:

username[9] == sum / 26 + 65

username[10] == 122 - sum % 26

Examples of incoming transports

HTTP covert channel – rootkit resides on the web server of pwned-prg.com

GET / HTTP/1.1

SomeHeader: trueburgerYmFzZTY0ZW5jb2RlZCBzdHJpbmcKYmFz

…

- Same signature calculated on the first 10 bytes of the header value

- Base 64 content that follows is decoded and XOR-ed back with raw buffer
starting at offset 0

- First four bytes of the resulting content is a magic value, by default set to

0xDEADBEEF but changed by the initialization queue

SNORT signatures – difficult to create !

Possible to create Surricata sigs with the use of LUA

Big picture view of compromised

network

Developers

 Vlad, gilg, urik

 Version control info present in some of the samples:

$Id: snake_config.c 5204 2007-01-04 10:28:19Z vlad $

$Id: mime64.c 12892 2010-06-24 14:31:59Z vlad $

$Id: event.c 14097 2010-11-01 14:46:27Z gilg $

$Id: named_mutex.c 15594 2011-03-18 08:04:09Z gilg $

$Id: nt.c 20719 2012-12-05 12:31:20Z gilg $

$Id: ntsystem.c 19662 2012-07-09 13:17:17Z gilg $

$Id: rw_lock.c 14516 2010-11-29 12:27:33Z gilg $

$Id: rk_bpf.c 14518 2010-11-29 12:28:30Z gilg $

$Id: t_status.c 14478 2010-11-27 12:41:22Z gilg $

$Id: l1_check.c 4477 2006-08-28 15:58:21Z vlad $

$Id: m2_to_b2_stub.c 4477 2006-08-28 15:58:21Z vlad $

$Id: m_frag.c 8715 2007-11-29 16:04:46Z urik $

Who are they ?

PART II

Operations

Hmm, which group are we talking

about ?

 Not sure we can speak about one « Turla group »

 Turla is just one of the tools « Turla group(s) » uses

 There is however a lot of common things …

 While the tool itself is quite impressive, operators that are using it are

sloppy …

Countries of interest

Source: BAE Systems

Publicly known victims

Turla: Staged operation

 Stage 0 – attack stage - infection vector

 Stage 1 – reconaissance stage - initial backdoor

 Stage 2 – lateral movements

 Stage 3 – « access established » stage – TURLA deployed

 On each stage they can quit if it turns out that the « non-interesting »

victim has been encountered

Stage 0: infection vector

 Traditional infection vector – spear phishing: exploits (CVE-2013-3346

+ CVE-2013-5065)

 Watering holes (strategic web compromise)

 “Adobe update” social engineering trick

 Java exploits (CVE-2012-1723), Adobe Flash exploits (unknown) or

Internet Explorer 6, 7, 8 exploits (unknown)

 Third party suppliers compromise

 No use of 0-day exploits (almost no)

Stage 0: Watering

holes mechanism

Source: Kaspersky Lab

Stage 0: Watering hole panel

Stage 0: Web shell

Stage 1: reconaissance stage

 Initial backdoor dropped – WipBot/Epic/TavDig

 Simple backdoor with a handful of commands

 Has no code in common with any variant of Turla but exports

functions with the same names: ModuleStart and ModuleStop

 Well desribed in Kaspersky Lab report:

Stage 1: Some interesting tricks

used in WipBot

 CVE-2013-3346 - zero day used together with a known exploit

 Sets ThreadHideFromDebugger – breaks debugging

 Creates a new process in suspended mode and maps the same
section of memory twice, in two different processes

 SetWindowsLong API call to start a thread in the newly created

process – breaks most malware sandboxes

 Jumps several times from one process to another

 Wipes out the PE section so that it is harder to rebuild the unpacked
executable

Source: Trend Micro

Stage 2: lateral movements

 Stage 1 C&C servers are easy targets – for example, they can be

caught in spear phishing e-mails and sandbox

 Stage 2 backdoor: So let’s replace this by a less known backdoor

 Go after Domain Admin credentials

 Further explore and compromise the network

Stage 3: Turla
 Network has been found interesting to explore long-term and exfiltrate

 Is fully compromised

 Turla dropped on chosen machines

 Usage of many other tools

 Some networks owned for years…

How to detect Turla ?

 Not very easy task …

 One fun story to tell

 Do not only rely on vendors - talk to your partner organizations

 Establish relationships and share information !

 IOCs exchange is good but not enough these days:

 They are easy to change by the intruders

 Separate samples and infras used for different victims

 Good Yara sigs and custom detection tools can help

 Check your third party suppliers – for intruders it’s a perfect way to get
in

Divagations on attribution

 Development:

 Vlad, gilg, urik

 “Transmittion”, “Password it’s wrong” etc.

 Zagruzchik.dll

 Operations:

 Geographic distribution of infections

 Virustotal submission countries

 $default_charset = 'Windows-1251';

Questions ?

deresz@gmail.com

@deresz666

