
CARBANAK Week Part One: A Rare Occurrence
fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

It is very unusual for FLARE to analyze a prolifically-used, privately-developed backdoor only
to later have the source code and operator tools fall into our laps. Yet this is the
extraordinary circumstance that sets the stage for CARBANAK Week, a four-part blog series
that commences with this post.

CARBANAK is one of the most full-featured backdoors around. It was used to perpetrate
millions of dollars in financial crimes, largely by the group we track as FIN7. In 2017, Tom
Bennett and Barry Vengerik published Behind the CARBANAK Backdoor, which was the
product of a deep and broad analysis of CARBANAK samples and FIN7 activity across
several years. On the heels of that publication, our colleague Nick Carr uncovered a pair of
RAR archives containing CARBANAK source code, builders, and other tools (both available in
VirusTotal: kb3r1p and apwmie).

FLARE malware analysis requests are typically limited to a few dozen files at most. But the
CARBANAK source code was 20MB comprising 755 files, with 39 binaries and 100,000 lines
of code. Our goal was to find threat intelligence we missed in our previous analyses. How
does an analyst respond to a request with such breadth and open-ended scope? And what
did we find?

My friend Tom Bennett and I spoke about this briefly in our 2018 FireEye Cyber Defense
Summit talk, Hello, Carbanak! In this blog series, we will expound at length and share a
written retrospective on the inferences drawn in our previous public analysis based on
binary code reverse engineering. In this first part, I’ll discuss Russian language concerns,
translated graphical user interfaces of CARBANAK tools, and anti-analysis tactics as seen

1/14

https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html
https://feye.io/fin7
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://www.virustotal.com/#/file/783b2eefdb90eb78cfda475073422ee86476aca65d67ff2c9cf6a6f9067ba5fa/detection
https://www.virustotal.com/#/file/4116ec1eb75cf336a3fdde253c28f712668d0a325a74c41445c7fa87c4e9b7a5/detection
https://www.fireeye.com/content/fireeye-summit/en_US/learn/tracks.html#technical-4

from a source code perspective. We will also explain an interesting twist where analyzing the
source code surprisingly proved to be just as difficult as analyzing the binary, if not more.
There’s a lot here; buckle up!

File Encoding and Language Considerations

The objective of this analysis was to discover threat intelligence gaps and better protect our
customers. To begin, I wanted to assemble a cross-reference of source code files and
concepts of specific interest.

Reading the source code entailed two steps: displaying the files in the correct encoding, and
learning enough Russian to be dangerous. Figure 1 shows CARBANAK source code in a text
editor that is unaware of the correct encoding.

Figure 1: File without proper decoding

Two good file encoding guesses are UTF-8 and code page 1251 (Cyrillic). The files were
mostly code page 1251 as shown in Figure 2.

2/14

Figure 2: Code Page 1251 (Cyrillic) source code

Figure 2 is a C++ header file defining error values involved in backdoor command execution.
Most identifiers were in English, but some were not particularly descriptive. Ergo, the second
and more difficult step was learning some Russian to benefit from the context offered by
the source code comments.

FLARE has fluent Russian speakers, but I took it upon myself to minimize my use of other
analysts’ time. To this end, I wrote a script to tear through files and create a prioritized
vocabulary list. The script, which is available in the FireEye vocab_scraper GitHub repository,
walks source directories finding all character sequences outside the printable lower ASCII
range: decimal values 32 (the space character) through 126 (the tilde character “~”) inclusive.
The script adds each word to a Python defaultdict_ and increments its count. Finally, the
script orders this dictionary by frequency of occurrence and dumps it to a file.

The result was a 3,400+ word vocabulary list, partially shown in Figure 3.

3/14

https://github.com/fireeye/vocab_scraper

Figure 3: Top 19 Cyrillic character
sequences from the CARBANAK source
code

I spent several hours on Russian
language learning websites to study the
pronunciation of Cyrillic characters and
Russian words. Then, I looked up the
top 600+ words and created a small
dictionary. I added Russian language
input to an analysis VM and used
Microsoft’s on-screen keyboard
(osk.exe) to navigate the Cyrillic
keyboard layout and look up definitions.

One helpful effect of learning to
pronounce Cyrillic characters was my
newfound recognition of English loan
words (words that are borrowed from
English and transliterated to Cyrillic). My
small vocabulary allowed me to read
many comments without looking
anything up. Table 1 shows a short
sampling of some of the English loan
words I encountered.

Cyrillic English Phonetic English Occurrences Rank

Файл f ah y L file 224 5

сервер s e r v e r server 145 13

адрес a d r e s address 52 134

команд k o m a n d command 110+ 27

бота b o t a bot 130 32

4/14

плагин p l ah g ee n plugin 116 39

сервис s e r v ee s service 70 46

процесс p r o ts e s s process 130ish 63

Table 1: Sampling of English loan words in the CARBANAK source code

Aside from source code comments, understanding how to read and type in Cyrillic came in
handy for translating the CARBANAK graphical user interfaces I found in the source code
dump. Figure 4 shows a Command and Control (C2) user interface for CARBANAK that I
translated.

Figure 4: Translated C2 graphical user interface

These user interfaces included video management and playback applications as shown in
Figure 5 and Figure 6 respectively. Tom will share some interesting work he did with these in
a subsequent part of this blog series.

5/14

Figure 5: Translated video management application user interface

Figure 6: Translated video playback application user interface
6/14

Figure 7 shows the backdoor builder that was contained within the RAR archive of operator
tools.

Figure 7: Translated backdoor builder application user interface

The operator RAR archive also contained an operator’s manual explaining the semantics of
all the backdoor commands. Figure 8 shows the first few commands in this manual, both in
Russian and English (translated).

7/14

Figure 8: Operator manual (left: original Russian; right: translated to English)

Down the Rabbit Hole: When Having Source Code Does Not Help

In simpler backdoors, a single function evaluates the command ID received from the C2
server and dispatches control to the correct function to carry out the command. For
example, a backdoor might ask its C2 server for a command and receive a response bearing
the command ID 0x67. The dispatch function in the backdoor will check the command ID
against several different values, including 0x67, which as an example might call a function to
shovel a reverse shell to the C2 server. Figure 9 shows a control flow graph of such a
function as viewed in IDA Pro. Each block of code checks against a command ID and either
passes control to the appropriate command handling code, or moves on to check for the
next command ID.

8/14

Figure 9: A control flow graph of a simple command handling function

In this regard, CARBANAK is an entirely different beast. It utilizes a Windows mechanism
called named pipes as a means of communication and coordination across all the threads,
processes, and plugins under the backdoor’s control. When the CARBANAK tasking
component receives a command, it forwards the command over a named pipe where it
travels through several different functions that process the message, possibly writing it to
one or more additional named pipes, until it arrives at its destination where the specified
command is finally handled. Command handlers may even specify their own named pipe to
request more data from the C2 server. When the C2 server returns the data, CARBANAK
writes the result to this auxiliary named pipe and a callback function is triggered to handle
the response data asynchronously. CARBANAK’s named pipe-based tasking component is
flexible enough to control both inherent command handlers and plugins. It also allows for

9/14

https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes

the possibility of a local client to dispatch commands to CARBANAK without the use of a
network. In fact, not only did we write such a client to aid in analysis and testing, but such a
client, named botcmd.exe, was also present in the source dump.

Tom’s Perspective

Analyzing this command-handling mechanism within CARBANAK from a binary perspective
was certainly challenging. It required maintaining tabs for many different views into the
disassembly, and a sort of textual map of command ids and named pipe names to describe
the journey of an inbound command through the various pipes and functions before
arriving at its destination. Figure 10 shows the control flow graphs for seven of the named
pipe message handling functions. While it was difficult to analyze this from a binary reverse
engineering perspective, having compiled code combined with the features that a good
disassembler such as IDA Pro provides made it less harrowing than Mike’s experience. The
binary perspective saved me from having to search across several source files and deal with
ambiguous function names. The disassembler features allowed me to easily follow cross-
references for functions and global variables and to open multiple, related views into the
code.

Figure 10: Control flow graphs for the named pipe message handling functions

Mike’s Perspective

Having source code sounds like cheat-mode for malware analysis. Indeed, source code
contains much information that is lost through the compilation and linking process. Even so,
CARBANAK’s tasking component (for handling commands sent by the C2 server) serves as a
counter-example. Depending on the C2 protocol used and the command being processed,
control flow may take divergent paths through different functions only to converge again

10/14

later and accomplish the same command. Analysis required bouncing around between
almost 20 functions in 5 files, often backtracking to recover information about function
pointers and parameters that were passed in from as many as 18 layers back. Analysis also
entailed resolving matters of C++ class inheritance, scope ambiguity, overloaded functions,
and control flow termination upon named pipe usage. The overall effect was that this was
difficult to analyze, even in source code.

I only embarked on this top-to-bottom journey once, to search for any surprises. The effort
gave me an appreciation for the baroque machinery the authors constructed either for the
sake of obfuscation or flexibility. I felt like this was done at least in part to obscure
relationships and hinder timely analysis.

Anti-Analysis Mechanisms in Source Code

CARBANAK’s executable code is filled with logic that pushes hexadecimal numbers to the
same function, followed by an indirect call against the returned value. This is easily
recognizable as obfuscated function import resolution, wherein CARBANAK uses a simple
string hash known as PJW (named after its author, P.J. Weinberger) to locate Windows API
functions without disclosing their names. A Python implementation of the PJW hash is
shown in Figure 11 for reference.

def pjw_hash(s):
 ctr = 0
 for i in range(len(s)):
 ctr = 0xffffffff & ((ctr << 4) + ord(s[i]))
 if ctr & 0xf0000000:
 ctr = (((ctr & 0xf0000000) >> 24) ^ ctr) & 0x0fffffff

 return ctr

Figure 11: PJW hash

This is used several hundred times in CARBANAK samples and impedes understanding of
the malware’s functionality. Fortunately, reversers can use the flare-ida scripts to annotate
the obfuscated imports, as shown in Figure 12.

11/14

https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html

Figure 12: Obfuscated import resolution annotated with FLARE's shellcode hash search

The CARBANAK authors achieved this obfuscated import resolution throughout their
backdoor with relative ease using C preprocessor macros and a pre-compilation source
code scanning step to calculate function hashes. Figure 13 shows the definition of the
relevant API macro and associated machinery.

12/14

Figure 13: API macro for import resolution

The API macro allows the author to type API(SHLWAPI, PathFindFileNameA)(…) and have it
replaced with GetApiAddrFunc(SHLWAPI, hashPathFindFileNameA)(…). SHLWAPI is a
symbolic macro defined to be the constant 3, and hashPathFindFileNameA is the string
hash value 0xE3685D1 as observed in the disassembly. But how was the hash defined?

The CARBANAK source code has a utility (unimaginatively named tool) that scans source
code for invocations of the API macro to build a header file defining string hashes for all the
Windows API function names encountered in the entire codebase. Figure 14 shows the
source code for this utility along with its output file, api_funcs_hash.h.

Figure 14: Source code and output from string hash utility

When I reverse engineer obfuscated malware, I can’t help but try to theorize about how
authors implement their obfuscations. The CARBANAK source code gives another data point
into how malware authors wield the powerful C preprocessor along with custom code
scanning and code generation tools to obfuscate without imposing an undue burden on
developers. This might provide future perspective in terms of what to expect from malware
authors in the future and may help identify units of potential code reuse in future projects
as well as rate their significance. It would be trivial to apply this to new projects, but with the
source code being on VirusTotal, this level of code sharing may not represent shared
authorship. Also, the source code is accessibly instructive in why malware would push an
integer as well as a hash to resolve functions: because the integer is an index into an array
of module handles that are opened in advance and associated with these pre-defined
integers.

13/14

Conclusion

The CARBANAK source code is illustrative of how these malware authors addressed some of
the practical concerns of obfuscation. Both the tasking code and the Windows API
resolution system represent significant investments in throwing malware analysts off the
scent of this backdoor. Check out Part Two of this series for a round-up of antivirus
evasions, exploits, secrets, key material, authorship artifacts, and network-based indicators.
Part Three and Part Four are available now as well!

14/14

https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-two-continuing-source-code-analysis.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-three-behind-the-backdoor.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-four-desktop-video-player.html

	CARBANAK Week Part One: A Rare Occurrence
	File Encoding and Language Considerations
	Down the Rabbit Hole: When Having Source Code Does Not Help
	Tom’s Perspective
	Mike’s Perspective
	Anti-Analysis Mechanisms in Source Code
	Conclusion

