
1/14

By Luis Rocha February 4, 2018

Malware Analysis – PlugX
countuponsecurity.com/2018/02/04/malware-analysis-plugx/

[The PlugX malware family has always intrigued
me. I was curious to look at one variant. Going
over the Internet and the research articles and
blogs about it I came across the research made
by Fabien Perigaud. From here I got an old
PlugX builder. Then I set a lab that allowed me
to get insight about how an attacker would
operate a PlugX campaign. In this post, l will
cover a brief overview about the PlugX builder,
analyze and debug the malware installation and
do a quick look at the C2 traffic. ~LR]

PlugX is commonly used by different threat
groups on targeted attacks. PlugX is also
refered as KORPLUG, SOGU, DestroyRAT and is a modular backdoor that is designed to
rely on the execution of signed and legitimated executables to load malicious code. PlugX,
normally has three main components, a DLL, an encrypted binary file and a legitimate and
signed executable that is used to load the malware using a technique known as DLL search
order hijacking. But let’s start with a quick overview about the builder.

The patched builder, MD5 6aad032a084de893b0e8184c17f0376a, is an English version,
from Q3 2013,  of the featured-rich and modular command & control interface for PlugX that
allows an operator to:

Build payloads, set campaigns and define the preferred method for the compromised
hosts to check-in and communicate with the controller.
Proxy connections and build a tiered C2 communication model.
Define persistence mechanisms and its attributes.
Set the process(s) to be injected with the payload.
Define a schedule for the C2 call backs.
Enable keylogging and screen capture.
Manage compromises systems per campaign.

Then for each compromised system, the operator has extensive capabilities to interact with
the systems over the controller that includes the following modules:

Disk module allows the operator to write, read, upload, download and execute files.

https://countuponsecurity.com/2018/02/04/malware-analysis-plugx/
https://countuponsecurity.files.wordpress.com/2018/02/plugx.png
http://blog.airbuscybersecurity.com/post/2016/06/Getting-a-PlugX-builder
https://www.fireeye.com/blog/threat-research/2017/04/apt10_menupass_grou.html
https://researchcenter.paloaltonetworks.com/2017/06/unit42-paranoid-plugx/
http://blog.jpcert.or.jp/2015/01/analysis-of-a-r-ff05.html
https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://researchcenter.paloaltonetworks.com/2015/05/plugx-uses-legitimate-samsung-application-for-dll-side-loading/
https://www.fireeye.com/blog/threat-research/2013/05/targeted-attack-trend-alert-plugx-the-old-dog-with-a-new-trick.html
https://countuponsecurity.com/2016/05/24/digital-forensics-dll-search-order/


2/14

Networking browser module allows the operator to browse network connections and
connect to another system via SMB.
Process module to enumerate, kill and list loaded modules per process.
Services module allows the operator to enumerate, start, stop and changing booting
properties
Registry module allows the operator to browse the registry and create, delete or modify
keys.
Netstat module allows the operator to enumerate TCP and UDP network connections
and the associated processes
Capture module allows the operator to perform screen captures
Control plugin allows the operator to view or remote control the compromised system in
a similar way like VNC.
Shell module allows the operator to get a command line shell on the compromised
system.
PortMap module allows the operator to establish port forwarding rules.
SQL module allows the operator to connect to SQL servers and execute SQL
statements.
Option module allows the operator to shut down, reboot, lock, log-off or send message
boxes.
Keylogger module captures keystrokes per process including window titles.

The picture below shows the Plug-X C2 interface.

So, with this we used the builder functionality to define the different settings specifying C2
comms password, campaign, mutex, IP addresses, installation properties, injected binaries,
schedule for call-back, etc. Then we build our payload. The PlugX binary produced by this
version of the builder (LZ 2013-8-18) is a self-extracting RAR archive that contains three
files. This is sometimes referred in the literature as the PlugX trinity payload. Executing the
self-extracting RAR archive will drop the three files to the directory chosen during the
process. In this case “%AUTO%/RasTls”. The files are: A legitimate signed executable from
Kaspersky AV solution named “avp.exe”, MD5 e26d04cecd6c7c71cfbb3f335875bc31, which
is susceptible to DLL search order hijacking . The file “avp.exe” when executed will load the
second file: “ushata.dll”, MD5 728fe666b673c781f5a018490a7a412a, which in this case is a

https://countuponsecurity.files.wordpress.com/2018/02/plgux-manager.png
https://countuponsecurity.com/2016/05/24/digital-forensics-dll-search-order/


3/14

DLL crafted by the PlugX builder which on is turn will load the third file. The third file:
“ushata.DLL.818”, MD5 “21078990300b4cdb6149dbd95dff146f” contains obfuscated and
packed shellcode.

So, let’s look at the mechanics of what happens when the self-extracting archive is executed.
The three files are extracted to a temporary directory and “avp.exe” is executed. The
“avp.exe” when executed will load “ushata.dll” from the running directory due to the DLL
search order hijacking using Kernel32.LoadLibrary API.

Then “ushata.dll” DLL entry point is executed. The DLL entry point contains code that verifies
if the system date is equal or higher than 20130808. If yes it will get a handle to
“ushata.DLL.818”, reads its contents into memory and changes the memory address
segment permissions to RWX using Kernel32.VirtualProtect API. Finally, returns to the first
instruction of the loaded file (shellcode). The file “ushata.DLL.818” contains obfuscated
shellcode. The picture below shows the beginning of the obfuscated shellcode.

https://countuponsecurity.files.wordpress.com/2018/01/plugx-avpsignature.png
https://countuponsecurity.files.wordpress.com/2018/01/plugx-loadlibrary.png


4/14

The shellcode unpacks itself using a custom algorithm. This shellcode contains position
independent code. Figure below shows the unpacked shellcode.

The shellcode starts by locating the kernel32.dll address by accessing the Thread
Information Block (TIB) that contains a pointer to the Process Environment Block (PEB)
structure. Figure below shows a snippet of the shellcode that contains the different sequence
of assembly instructions for the code to find the Kernel32.dll.

https://countuponsecurity.files.wordpress.com/2018/01/plugx-obfuscatedshellcode.png
https://countuponsecurity.files.wordpress.com/2018/01/plugx-shellcode.png
https://web.archive.org/web/20170413084049/https://vxheaven.org/lib/vra06.html
http://blog.harmonysecurity.com/2009_06_01_archive.html
http://garage4hackers.com/archive/index.php/t-1902.html
http://sandsprite.com/CodeStuff/Understanding_the_Peb_Loader_Data_List.html


5/14

It then reads kernel32.dll export table to locate the desired Windows API’s by comparing
them with stacked strings. Then, the shellcode decompresses a DLL (offset 0x784) MD5
333e2767c8e575fbbb1c47147b9f9643, into memory using the LZNT1 algorithm by
leveraging ntdll.dll.RtlDecompressBuffer API. The DLL contains the PE header replaced with
the “XV” value. Restoring the PE header signature allows us to recover the malicious DLL.

https://countuponsecurity.files.wordpress.com/2018/02/plugx-pebshellcode.png


6/14

Next, the payload will start performing different actions to achieve persistence. On Windows
7 and beyond, PlugX creates a folder “%ProgramData%\RasTl” where “RasTl” matches the
installation settings defined in the builder. Then, it changes the folder attributes to
“SYSTEM|HIDDEN” using the SetFileAttributesW API. Next, copies its three components into
the folder and sets all files with the “SYSTEM|HIDDEN” attribute.

https://countuponsecurity.files.wordpress.com/2018/01/plugx-modifiedpeheader.png


7/14

The payload also modifies the timestamps of the created directory and files with the
timestamps obtained from ntdll.dll using the SetFileTime API.

Then it creates the service “RasTl” where the ImagePath points to
“%ProgramData%\RasTl\avp.exe”

If the malware fails to start the just installed service, it will delete it and then it will create a
persistence mechanism in the registry by setting the registry value
“C:\ProgramData\RasTls\avp.exe” to the key
“HKLM\SOFTWARE\Classes\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\RasTls”
using the RegSetValueExW API.

https://countuponsecurity.files.wordpress.com/2018/01/plugx-setfileattributes.png
https://countuponsecurity.files.wordpress.com/2018/01/plugx-setfiletime.png
https://countuponsecurity.files.wordpress.com/2018/01/plugx-createservice.png
https://countuponsecurity.files.wordpress.com/2018/02/plugx-registry1.png


8/14

If the builder options had the Keylogger functionality enabled, then it may create a file with a
random name such as “%ProgramData%\RasTl\rjowfhxnzmdknsixtx” that stores the key
strokes. If the payload has been built with Screen capture functionality, it may create the
folder “%ProgramData%\RasTl \RasTl\Screen” to store JPG images in the format
<datetime>.jpg that are taken at the frequency specified during the build process. The
payload may also create the file “%ProgramData%\DEBUG.LOG” that contains debugging
information about its execution (also interesting that during execution the malware outputs
debug messages about what is happening using the OutputDebugString API. This messages
could be viewed with DebugView from SysInternals). The malicious code completes its
mission by starting a new instance of “svchost.exe” and then injects the malicious code into
svchost.exe process address space using process hollowing technique. The pictures below
shows the first step of the process hollowing technique where the payload creates a new
“svchost.exe” instance in SUSPENDED state.

and then uses WriteProcessMemory API to inject the malicious payload

Then the main thread, which is still in suspended state, is changed in order to point to the
entry point of the new image base using the SetThreadContext API. Finally, the
ResumeThread API is invoked and the malicious code starts executing. The malware also
has the capabilities to bypass User Account Control (UAC) if needed. From this moment
onward, the control is passed over “svchost.exe” and Plug-X starts doing its thing. In this
case we have the builder so we know the settings which were defined during building
process. However, we would like to understand how could we extract the configuration
settings. During Black Hat 2014, Takahiro Haruyama and Hiroshi Suzuki gave a presentation
titled “I know You Want Me – Unplugging PlugX” where the authors go to great length
analyzing a variety of PlugX samples, its evolution and categorizing them into threat groups.
But better is that the Takahiro released a set of PlugX parsers for the different types of PlugX
samples i.e, Type I, Type II and Type III. How can we use this parser? The one we are

https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-hollowing/
https://countuponsecurity.files.wordpress.com/2018/01/plugx-createprocess.png
https://countuponsecurity.files.wordpress.com/2018/01/plugx-writeprocessmem.png
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
https://twitter.com/cci_forensics
https://twitter.com/herosi_t
https://www.blackhat.com/docs/asia-14/materials/Haruyama/Asia-14-Haruyama-I-Know-You-Want-Me-Unplugging-PlugX.pdf
http://takahiroharuyama.github.io/blog/2014/03/27/id-slash-idapython-scripts-extracting-plugx-configs/


9/14

dealing in this article is considered a PlugX type II. To dump the configuration, we need to
use Immunity Debugger and use the Python API. We need to place the “plugx_dumper.py”
file into the “PyCommands” folder inside Immunity Debugger installation path. Then attached
the debugger to the infected process e.g, “svchost.exe” and run the plugin. The plugin will
dump the configuration settings and will also extract the decompressed DLL

We can see that this parser is able to find the injected shellcode, decode its configuration
and all the settings an attacker would set on the builder and also dump the injected DLL
which contains the core functionality of the malware.

In terms of networking, as observed in the PlugX controller, the malware can be configured
to speak with a controller using several network protocols. In this case we configured it to
speak using HTTP on port 80. The network traffic contains a 16-byte header followed by a
payload. The header is encoded with a custom routine and the payload is encoded and
compressed with LZNT1. Far from a comprehensive analysis we launched a Shell prompt
from the controller, typed command “ipconfig” and observed the network traffic. In parallel,

https://countuponsecurity.files.wordpress.com/2018/02/plugx-dumper.png


10/14

we attached a debugger to “svchost.exe” and set breakpoints: on Ws2_32.dll!WSASend and
Ws2_32.dll!WSARecv to capture the packets ; on ntdll.dll!RtlCompressBuffer and
ntdll.dll!RtlDecompressBuffer to view the data before and after compression. ; On custom
encoding routine to view the data before and after. The figure below shows a disassemble
listing of the custom encoding routine.

So, from a debugger view, with the right breakpoints we could start to observe what is
happening. In the picture below, on the left-hand side it shows the packet before encoding
and compression. It contains a 16-byte header, where the first 4-bytes are the key for the
custom encoding routine. The next 4-bytes are the flags which contain the
commands/plugins being used. Then the next 4-bytes is the size. After the header there is
the payload which in this case contains is output of the ipconfig.exe command. On the right-
hand side, we have the packet after encoding and compressing. It contains the 16-byte
header encoded following by the payload encoded and compressed.

https://countuponsecurity.files.wordpress.com/2018/02/plugx-customencoding.png


11/14

Then, the malware uses WSASend API to send the traffic.

Capturing the traffic, we can observe the same data.

https://countuponsecurity.files.wordpress.com/2018/02/plugx-c2shelltraffic.png
https://countuponsecurity.files.wordpress.com/2018/02/plugx-c2wsasend.png
https://countuponsecurity.files.wordpress.com/2018/02/plugx-packet.png


12/14

On the controller side, when the packet arrives, the header will be decoded and then the
payload will be decoded and decompressed. Finally, the output is showed to the operator.

Now that we started to understand how C2 traffic is handled, we can capture it and decode it.
 Kyle Creyts has created a PlugX decoder that supports PCAP’s. The decoder supports
decryption of PlugX Type I.But Fabien Perigaud reversed the Type II algorithm and
implemented it in python. If we combine Kyle’s work with the work from Takahiro Haruyama
and Fabien Perigaud we could create a PCAP parser to extract PlugX Type II and Type III.
Below illustrates a proof-of-concept for this exercise against 1 packet. We captured the traffic
and then used a small python script to decrypt a packet. No dependencies on Windows
because it uses the herrcore’s standalone LZNT1 implementation that is based on the one
from the ChopShop protocol analysis and decoder framework by MITRE.

https://countuponsecurity.files.wordpress.com/2018/02/plgux-operatorshell.png
https://github.com/kcreyts/plugxdecoder
https://airbus-cyber-security.com/plugx-v2-meet-scontroller/
https://gist.github.com/herrcore/344ba2ea540f622b52efba858050539f
https://github.com/MITRECND/chopshop


13/14

That’s it for today! We build a lab with a PlugX controller, got a view on its capabilities. Then
we looked at the malware installation and debugged it in order to find and interpret some of
its mechanics such as DLL search order hijacking, obfuscated shellcode, persistence
mechanism and process hollowing. Then, we used a readily available parser to dump its
configuration from memory. Finally, we briefly looked the way the malware communicates
with the C2 and created a small script to decode the traffic. Now, with such environment
ready, in a controlled and isolated lab, we can further simulate different tools and techniques

https://countuponsecurity.files.wordpress.com/2018/02/plugx-decoder.png


14/14

and observe how an attacker would operate compromised systems. Then we can learn,
practice at our own pace and look behind the scenes to better understand attack methods
and ideally find and implement countermeasures.

References:
Analysis of a PlugX malware variant used for targeted attacks by CRCL.lu
Operation Cloud Hopper by PWC
PlugX Payload Extraction by Kevin O’Reilly
Other than the authors and articles cited troughout the article, a fantastic compilation about
PlugX articles and papers since 2011 is available here.

Credits: Thanks to Michael Bailey who showed me new techniques on how to deal with
shellcode which I will likely cover on a post soon.

http://circl.lu/assets/files/tr-12/tr-12-circl-plugx-analysis-v1.pdf
https://www.pwc.co.uk/cyber-security/pdf/cloud-hopper-annex-b-final.pdf
https://info.contextis.com/acton/attachment/24535/f-030c/1/-/-/-/-/PlugX%20-%20Payload%20Extraction.pdf
http://tracker.h3x.eu/info/290
https://twitter.com/mykill

