## Malware Analysis – PlugX

countuponsecurity.com/2018/02/04/malware-analysis-plugx/

By Luis Rocha

[The PlugX malware family has always intrigued me. I was curious to look at one variant. Going over the Internet and the research articles and blogs about it I came across the <u>research</u> made by Fabien Perigaud. From here I got an old PlugX builder. Then I set a lab that allowed me to get insight about how an attacker would operate a PlugX campaign. In this post, I will cover a brief overview about the PlugX builder, analyze and debug the malware installation and do a quick look at the C2 traffic. ~LR]

PlugX is commonly used by <u>different threat</u> <u>groups on targeted attacks</u>. PlugX is also

refered as KORPLUG, SOGU, DestroyRAT and is a modular backdoor that is designed to rely on the execution of signed and legitimated executables to load malicious code. PlugX, normally has three main components, a DLL, an encrypted binary file and a legitimate and signed executable that is used to load the malware using a technique known as <u>DLL search</u> <u>order hijacking</u>. But let's start with a quick overview about the builder.

The patched builder, MD5 6aad032a084de893b0e8184c17f0376a, is an English version, from Q3 2013, of the featured-rich and modular command & control interface for PlugX that allows an operator to:

- Build payloads, set campaigns and define the preferred method for the compromised hosts to check-in and communicate with the controller.
- Proxy connections and build a tiered C2 communication model.
- Define persistence mechanisms and its attributes.
- Set the process(s) to be injected with the payload.
- Define a schedule for the C2 call backs.
- Enable keylogging and screen capture.
- Manage compromises systems per campaign.

Then for each compromised system, the operator has extensive capabilities to interact with the systems over the controller that includes the following modules:

• Disk module allows the operator to write, read, upload, download and execute files.



February 4, 2018

- Networking browser module allows the operator to browse network connections and connect to another system via SMB.
- Process module to enumerate, kill and list loaded modules per process.
- Services module allows the operator to enumerate, start, stop and changing booting properties
- Registry module allows the operator to browse the registry and create, delete or modify keys.
- Netstat module allows the operator to enumerate TCP and UDP network connections and the associated processes
- Capture module allows the operator to perform screen captures
- Control plugin allows the operator to view or remote control the compromised system in a similar way like VNC.
- Shell module allows the operator to get a command line shell on the compromised system.
- PortMap module allows the operator to establish port forwarding rules.
- SQL module allows the operator to connect to SQL servers and execute SQL statements.
- Option module allows the operator to shut down, reboot, lock, log-off or send message boxes.
- Keylogger module captures keystrokes per process including window titles.

The picture below shows the Plug-X C2 interface.

| - 12 10/013 B 10)                                                                                                                                                                              | C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Users [Latener   Builder   Setting   About                                                                                                                                                     | DBI: Nethood / Nethons is Service   Repter   Nethod:   Repter   Nethod:   Control   Shell   Shellinkator   PortHap   SQL   HelLogger   Cotton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Computer is Nene Lan Nan Location                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| II Defail(010)                                                                                                                                                                                 | La Advantational Advantational State State State Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Operation(SACL/0)                                                                                                                                                                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| одиниянийа 13.0.320 20.3.5.20                                                                                                                                                                  | Image         Pillentorevech         (77.241/08         Forders fle         2006/11.21/03.24         2006/11.21/03.24         -a-5-           Image         Routers ILL         3.0100         Reference Chemics         2006/11.21/03.24         -a-5-           Image         Routers ILL         3.0100         Reference Chemics         2006/11.21/03.24         2006/11.21/03.24         -a-5-           Image: Reference Chemics         Routers ILL         1.0100         1.017/01.000         2006/11.21/03.24         2006/11.21/03.24         -a-5-           Image: Reference Chemics         Routers ILL         1.017/01.000         Routers ILL         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         Routers ILL         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         Routers ILL         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         Routers ILL         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         -a-5-         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         -a-5-         -a-5-           Image: Reference Chemics         Routers ILL         1.012/01.000         -a-5- |
| Log [star   Carrent                                                                                                                                                                            | X Vitras<br>X Vitras<br>X Norwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Time Computer Event Fauntar                                                                                                                                                                    | E ontro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ##252920-03.224414 - Liden fat Addel     #252920-03.224420 - Liden fat Addel     #2529203.204420 - Liden fat Addel     #2529203.204420 - Liden fat Addel     #2529203.204420 - Liden fat Addel | I Control Volume Information<br>I Control Volume Information<br>I Control Volume Information<br>I Control Volume Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2028-02-01 10:44:46 Laterner: 8 Computer: 1 Online: 0 Office: 1                                                                                                                                | E(the spectra complete concerval).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

So, with this we used the builder functionality to define the different settings specifying C2 comms password, campaign, mutex, IP addresses, installation properties, injected binaries, schedule for call-back, etc. Then we build our payload. The PlugX binary produced by this version of the builder (LZ 2013-8-18) is a self-extracting RAR archive that contains three files. This is sometimes referred in the literature as the PlugX trinity payload. Executing the self-extracting RAR archive will drop the three files to the directory chosen during the process. In this case "%AUTO%/RasTIs". The files are: A legitimate signed executable from Kaspersky AV solution named "avp.exe", MD5 e26d04cecd6c7c71cfbb3f335875bc31, which is susceptible to <u>DLL search order hijacking</u>. The file "avp.exe" when executed will load the second file: "ushata.dll", MD5 728fe666b673c781f5a018490a7a412a, which in this case is a

DLL crafted by the PlugX builder which on is turn will load the third file. The third file: "ushata.DLL.818", MD5 "21078990300b4cdb6149dbd95dff146f" contains obfuscated and packed shellcode.

| avp.exe Properties                                                                                           | Digital Signature Details 🔹 🛛 🔀                                                                                                                        | Certificate ? 🗙                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Version Compatibility Digital Signatures Summary                                                     | General Advanced                                                                                                                                       | General Details Certification Path                                                                                                                                                   |
| Signature list<br>Name of signer: E-mail address: Timestamp<br>Kaspendy Lab Not evaluate Monday, June 17, 20 | Digital Signature Information     The digital signature is OK.      Signer Information     None: Exception Lab                                         | This certificate information<br>This certificate is intended for the following purpose(s):<br>+Eroures software from software publisher<br>+Protest software from software publisher |
| Detals                                                                                                       | E-mail: Pozt available Signing time: Pfondey, June 17, 2013 9-156-19-241 Niew Certificate Countersignatures Taxes of sizes: E-anal address: Taxestano. | * Refer to the certification authority's statement for details.  Issued to: Kaspanity Lab  Issued by: DigCert High Assurance Code Signing CA-1                                       |
|                                                                                                              | COMODO Time S Not evaluable Monday, June 17, 2<br>Details                                                                                              | Valid from 2/22/2013 to 4/20/2015                                                                                                                                                    |
| OK Cancel Accily                                                                                             |                                                                                                                                                        | (and Christian) (1005 Stream)                                                                                                                                                        |

So, let's look at the mechanics of what happens when the self-extracting archive is executed. The three files are extracted to a temporary directory and "avp.exe" is executed. The "avp.exe" when executed will load "ushata.dll" from the running directory due to the DLL search order hijacking using Kernel32.LoadLibrary API.

Then "ushata.dll" DLL entry point is executed. The DLL entry point contains code that verifies if the system date is equal or higher than 20130808. If yes it will get a handle to "ushata.DLL.818", reads its contents into memory and changes the memory address segment permissions to RWX using Kernel32.VirtualProtect API. Finally, returns to the first instruction of the loaded file (shellcode). The file "ushata.DLL.818" contains obfuscated shellcode. The picture below shows the beginning of the obfuscated shellcode.

| Address  | Hea | k di | JMD       |    |    |    |    |    |    |    |    |    |           |    |     |    | ASCII                                   |
|----------|-----|------|-----------|----|----|----|----|----|----|----|----|----|-----------|----|-----|----|-----------------------------------------|
| 10003008 | 7C  | 03   | 7D        | 01 | E8 | 81 | C3 | 07 | 74 | DA | 86 | BB | BE        | 50 | F3  | F8 | ■}∎è∎Ã∎tÚ∎»¾Póø                         |
| 10003018 | F7  | C7   | C6        | 60 | 5E | DA | F7 | C7 | 6E | 36 | BA | 9B | 4B        | 81 | C9  | 3F | ÷ÇÆ`^Ú÷Çn6≌∎K∎É?                        |
| 10003028 | C4  | 81   | D 0       | E9 | 01 | 00 | 00 | 00 | E9 | 81 | E1 | 47 | 39        | 4F | F 0 | E9 | Ä∎Ðé∎é∎áG90ðé                           |
| 10003038 | 01  | 00   | 00        | 00 | E8 | E9 | 01 | 00 | 00 | 00 | E9 | E9 | 01        | 00 | 00  | 00 | ∎èé∎éé∎                                 |
| 10003048 | E9  | E9   | 01        | 80 | 00 | 00 | E9 | 7E | 03 | 7F | 01 | E9 | E9        | 01 | 80  | 00 | éé∎é~∎∎∎éé∎                             |
| 10003058 | 00  | E9   | 81        | CB | BE | 19 | 92 | C1 | E9 | 01 | 00 | 00 | 00        | E8 | 81  | C9 | .é∎˾∎'Áé∎è∎É                            |
| 10003068 | AE  | 78   | EC        | 5D | E8 | 00 | 00 | 00 | 00 | 4B | 71 | 03 | 70        | 01 | E9  | 49 | ®xì]èKq∎p∎éI                            |
| 10003078 | F7  | C7   | BA        | 84 | 1F | 4C | 43 | 81 | F9 | 63 | EA | E3 | CB        | 5E | E9  | 01 | ÷Ç≌∎∎LC∎ù∎êãË^é∎                        |
| 10003088 | 00  | 00   | 00        | E9 | 7A | 03 | 7B | 01 | E8 | 81 | E9 | 5E | A2        | 93 | 69  | 81 | éz∎{∎è∎é^¢∎i∎                           |
| 10003098 | F3  | F1   | <b>B8</b> | B1 | DA | E9 | 01 | 00 | 00 | 00 | E9 | 81 | C1        | EC | 5F  | FB | óñ,±Úé∎é∎Áì_û                           |
| 100030A8 | 86  | 81   | C2        | 3E | FØ | D2 | 06 | 81 | C2 | 01 | 65 | 9B | BC        | 7A | 03  | 7B | ∎∎Â>ðÒ∎∎Â∎e∎¼z∎{                        |
| 100030B8 | 01  | E9   | 81        | FA | 48 | 3C | 57 | 69 | 81 | E2 | A5 | 02 | 46        | 3A | 81  | CB | ∎é∎úH <wi∎â¥∎f:∎ë< th=""></wi∎â¥∎f:∎ë<> |
| 100030C8 | 60  | 07   | 8B        | 91 | 47 | E9 | 01 | 00 | 00 | 00 | E9 | 81 | EE        | 69 | 88  | 00 | `∎∎'Gé∎é∎îi                             |
| 100030D8 | 00  | 7B   | 63        | 7A | 01 | 74 | 4A | 49 | 7F | 03 | 7E | 01 | E8        | E9 | 01  | 00 | .{∎z∎tJI∎∎~∎èé∎.                        |
| 100030E8 | 00  | 00   | E8        | 7A | 03 | 7B | 01 | 7B | E9 | 01 | 00 | 00 | 00        | E9 | BA  | 5F | èz∎{∎{é∎éº_                             |
| 100030F8 | 72  | DF   | 87        | 81 | E1 | 11 | BØ | CE | 4D | E9 | 01 | 00 | 00        | 00 | E9  | 81 | rß∎∎á∎°ÎMé∎é∎                           |
| 10003108 | C6  | 61   | 02        | 00 | 00 | 7D | 63 | 7C | 01 | E8 | 81 | F3 | <b>B8</b> | 47 | 5C  | 03 | Æa∎}∎ļ∎è∎ó,G\∎                          |
| 10003118 | 81  | F9   | 9C        | 94 | 29 | 60 | 81 | CF | 15 | 51 | 15 | 16 | <b>B8</b> | B5 | D7  | 01 | ∎ù∎∎)`∎Ï∎Q∎∎,µ×∎                        |
| 10003128 | 00  | 42   | 4B        | 81 | CB | EC | CC | 18 | 47 | 81 | C7 | 08 | 36        | 58 | BE  | 81 | .BK∎ËÌÌ∎G∎Ç∎6X¾∎                        |
| 10003138 | FB  | 9C   | AE        | ØD | 52 | 81 | FA | 90 | 46 | 7D | 54 | 81 | E7        | A4 | E3  | B5 | û∎®.R∎ú∎F}T∎ç¤ấµ                        |
| 10003148 | 9C  | 7A   | 03        | 7B | 01 | E9 | 4B | 47 | E9 | 01 | 00 | 00 | 00        | E8 | E9  | 01 | ∎z∎{∎éKGé∎èé∎                           |
| 10003158 | 00  | 00   | 00        | E8 | 7A | 03 | 7B | 01 | 74 | E9 | 01 | 00 | 00        | 00 | E8  | 81 | èz∎{∎té∎è∎                              |
| 10003168 | E9  | DC   | D5        | 20 | 57 | E9 | 01 | 00 | 00 | 00 | E9 | E9 | 01        | 00 | 00  | 00 | éUÖ,Wé∎éé∎                              |

The shellcode unpacks itself using a custom algorithm. This shellcode contains position independent code. Figure below shows the unpacked shellcode.

| Address  | He | x di      | ump |           |    |           |    |    |    |           |    |           |            |     |    |           | ASCII                                            |
|----------|----|-----------|-----|-----------|----|-----------|----|----|----|-----------|----|-----------|------------|-----|----|-----------|--------------------------------------------------|
| 10003269 | E8 | 00        | 00  | 00        | 00 | 58        | 83 | E8 | 05 | <b>8B</b> | 40 | 24        | 04         | 51  | 68 | 40        | èX∎è∎∎L\$∎Qh@                                    |
| 10003279 | 25 | 00        | 00  | <b>8D</b> | 88 | <b>B5</b> | D7 | 01 | 00 | 51        | 68 | 96        | D2         | 01  | 00 | 8D        | %∎∎µ×∎.Qh∎Ò∎.∎                                   |
| 10003289 | 88 | 1F        | 85  | 88        | 00 | 51        | 68 | F5 | FC | 01        | 88 | <b>8D</b> | 88         | 88  | 00 | 88        | <b></b> Qhốü <b></b>                             |
| 10003299 | 00 | 51        | 54  | E8        | 86 | 00        | 00 | 00 | 83 | C4        | 10 | C2        | 04         | 00  | 55 | 8B        | .QTè <b>lB</b> Ä <b>l</b> Â <b>l</b> .U <b>l</b> |
| 100032A9 | EC | 64        | A1  | 30        | 00 | 00        | 88 | 8B | 40 | 0C        | 8B | 40        | 10         | 81  | EC | D 🛛       | ìd;0∎@.∎@∎∎ìĐ                                    |
| 100032B9 | 00 | 00        | 00  | 56        | 81 | 78        | 10 | 18 | 00 | 18        | 00 | 74        | 08         | 8B  | 00 | 85        | VEXED.E.tEE.E                                    |
| 10003209 | CØ | 75        | F1  | EB        | 07 | 8B        | 70 | 08 | 85 | F6        | 75 | 08        | 33         | C 0 | 40 | E9        | Àuñë <b>ll</b> p <b>ll</b> öu <b>l</b> 3À@é      |
| 100032D9 | A6 | 84        | 88  | 88        | 8B | 46        | 30 | 8B | 40 | 30        | 78 | 63        | CE         | 8B  | 51 | 20        | ¦∎∎F<∎L0x∎Ĩ∎Q                                    |
| 100032E9 | 53 | 8B        | 59  | 18        | 57 | 03        | D6 | 33 | FF | 85        | DB | 7E        | 61         | 8B  | 04 | BA        | S∎¥∎₩∎Ö3ÿ∎Û~a∎∎₽                                 |
| 100032F9 | 03 | <b>C6</b> | 80  | 38        | 47 | 75        | 36 | 80 | 78 | 01        | 65 | 75        | 30         | 80  | 78 | 02        | ∎Æ∎8Gu6∎x∎eu8∎x∎                                 |
| 10003309 | 74 | 75        | 2A  | 80        | 78 | 03        | 50 | 75 | 24 | 80        | 78 | 64        | 72         | 75  | 1E | 80        | tu*#x#Pu\$#x#ru##                                |
| 10003319 | 78 | 05        | 6F  | 75        | 18 | 80        | 78 | 86 | 63 | 75        | 12 | 80        | 78         | 07  | 41 | 75        | XIOUIIXICUIIXIAU                                 |
| 10003329 | 0C | 80        | 78  | 80        | 64 | 75        | 86 | 80 | 78 | 89        | 64 | 74        | 07         | 47  | 3B | FB        | . <b>ExEduEEx.dtEG;</b> û                        |
| 10003339 | 70 | BB        | EB  | 18        | 8B | 41        | 24 | 8B | 49 | 10        | 8D | 04        | 78         | ØF  | B7 | 04        | ≫ë∎A\$∎I∎∎x∎•∎                                   |
| 10003349 | 30 | 8D        | 64  | 81        | 8B | 30        | 30 | 03 | FE | 89        | 7D | ΕØ        | 75         | 07  | 6A | 02        | 0∎∎∎≮0∎þ∎}àu∎j∎                                  |
| 10003359 | E9 | 11        | 04  | 00        | 00 | 8D        | 45 | 80 | 50 | 56        | C7 | 45        | 80         | 4C  | 6F | 61        | émmmempvçemLoa                                   |
| 10003369 | 64 | C7        | 45  | 84        | 40 | 69        | 62 | 72 | C7 | 45        | 88 | 61        | 72         | 79  | 41 | <b>C6</b> | dÇEMLibrÇEMaryAÆ                                 |
| 10003379 | 45 | 8C        | 00  | FF        | D7 | 89        | 45 | DC | 85 | C Ø       | 75 | 07        | 6A         | 03  | E9 | E3        | E∎.ÿ×∎EU∎Au∎j∎éã                                 |
| 10003389 | 03 | 00        | 00  | 8D        | 85 | 60        | FF | FF | FF | 50        | 56 | C7        | 85         | 60  | FF | FF        | ■■■`ijijij₽VÇ■`ijij                              |
| 10003399 | FF | 56        | 69  | 72        | 74 | C7        | 85 | 64 | FF | FF        | FF | 75        | 61         | 6C  | 41 | C7        | ÿVirtÇ∎dÿÿÿualAÇ                                 |
| 100033A9 | 85 | 68        | FF  | FF        | FF | 6C        | 6C | 6F | 63 | C6        | 85 | 6C        | FF         | FF  | FF | 00        | ∎hÿÿÿllocÆ∎lÿÿÿ.                                 |
| 100033B9 | FF | D7        | 89  | 45        | FC | 85        | CØ | 75 | 07 | 6A        | 64 | E9        | <b>A</b> 6 | 03  | 88 | 88        | ÿ×∎Eü∎Au∎j∎é¦∎                                   |
| 100033C9 | 8D | 85        | 30  | FF        | FF | FF        | 50 | 56 | C7 | 85        | 30 | FF        | FF         | FF  | 56 | 69        | ∎Øÿÿÿ₽VÇ∎ØÿÿÿVi                                  |

The shellcode starts by locating the kernel32.dll address by accessing the <u>Thread</u> Information Block (TIB) that contains a pointer to the <u>Process Environment Block</u> (PEB) structure. Figure below shows a snippet of the shellcode that contains the different sequence of assembly instructions for the code to find the Kernel32.dll.



It then reads kernel32.dll export table to locate the desired Windows API's by comparing them with stacked strings. Then, the shellcode decompresses a DLL (offset 0x784) MD5 333e2767c8e575fbbb1c47147b9f9643, into memory using the LZNT1 algorithm by leveraging ntdll.dll.RtIDecompressBuffer API. The DLL contains the PE header replaced with the "XV" value. Restoring the PE header signature allows us to recover the malicious DLL.

| Address  | Hex  | du       | IMP |    |    |    |    |    | ASCII  |
|----------|------|----------|-----|----|----|----|----|----|--------|
| 00350000 | 58 ! | 56       | 00  | 00 | 00 | 00 | 00 | 00 | XU     |
| 00350008 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350010 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350018 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350020 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350028 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350030 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350038 | 00   | 00       | 00  | 00 | ΕØ | 00 | 00 | 00 | à      |
| 00350040 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350048 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350050 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350058 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350060 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350068 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350070 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350078 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350080 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350088 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350090 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 00350098 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500A0 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500A8 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500B0 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500B8 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500C0 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500C8 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500D0 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500D8 | 00   | 00       | 00  | 00 | 00 | 00 | 00 | 00 |        |
| 003500E0 | 58 ! | 56       | 00  | 00 | 4C | 01 | 04 | 00 | XVL    |
| 003500E8 | DB   | 96       | 10  | 52 | 00 | 00 | 00 | 00 | UEER   |
| 003500F0 | 00   | 00       | 00  | 00 | EØ | 00 | 02 | 21 | à.∎!   |
| 003500F8 | UB   | 81<br>50 | UA  | 00 | 00 | 18 | 02 | 00 | •••••• |
| 00350100 | 00 1 | E2       | 00  | 00 | 00 | 00 | 00 | 00 | .a     |
| 00350108 | FC · | 14       | 00  | 00 | 00 | 10 | 00 | 00 | u      |

Next, the payload will start performing different actions to achieve persistence. On Windows 7 and beyond, PlugX creates a folder "%ProgramData%\RasTI" where "RasTI" matches the installation settings defined in the builder. Then, it changes the folder attributes to "SYSTEM|HIDDEN" using the SetFileAttributesW API. Next, copies its three components into the folder and sets all files with the "SYSTEM|HIDDEN" attribute.

| 0242F70C | 00155F7F | CALL to SetFileAttributesW from 00155F79      |
|----------|----------|-----------------------------------------------|
| 0242F710 | 004D8050 | FileName = "C:\ProgramData\RasTls\ushata.DLL" |
| 0242F714 | 00000006 | FileAttributes = HIDDEN SYSTEM                |

The payload also modifies the timestamps of the created directory and files with the timestamps obtained from ntdll.dll using the SetFileTime API.

| Address    | Hex dump                       | ASCII    | * | 01D8F874 | 00435F48 | CALL to SetFileTime from 00435F46 |
|------------|--------------------------------|----------|---|----------|----------|-----------------------------------|
| 81D8F89C   | F7 39 78 8A 2B 89 CB 81        | ÷9x∎+∎Ĕ  | 1 | 01D8F878 | 000000E0 | hFile = 000000E0 (window)         |
| 01D8F8A4   | F7 39 78 8A 2B 89 CB 01        | ÷9x + E  | - | 01D8F87C | 01D8F89C | pCreationTime = 01D8F89C          |
| 01D8F8AC   | 58 9B 7A 8A 2B 89 CB 01        | XIZI+IË  |   | 01D8F880 | 01D8F8A4 | pLastAccess = 01D8F8A4            |
| B1 NITES   | standard information attribute |          |   | 01D8F884 | 01D8F8AC | pLastWrite = 01D8F8AC             |
| 011 timest | standard mormation attribute   |          |   | 01D8F888 | 004436F8 | ASCII "XInstall.cpp"              |
| 011 umesta | amps are manipulated to look   | n.t.d.1. |   | 01D8F88C | 001B2EE8 | UNICODE "C:\ProgramData\RasTls\"  |
| 01         | ke the ones from htdll.dll     | 1d.1.    |   | 01D8F890 | 00440998 | UNICODE "%AUTO%\RasT1s"           |

Then it creates the service "RasTI" where the ImagePath points to "%ProgramData%\RasTI\avp.exe"

| 0225FBA0 | 002B4567  | CALL to CreateServiceW From 00284565                                |
|----------|-----------|---------------------------------------------------------------------|
| 0225FBA4 | 00523F68  | hManager = 00523F68                                                 |
| 0225FBA8 | 002DCB98  | ServiceName = "RasTls"                                              |
| 0225FBAC | 002DCD98  | DisplayName = "RasTls"                                              |
| 0225FBB0 | 000F01FF  | DesiredAccess = SERVICE_ALL_ACCESS                                  |
| 0225FBB4 | 00000110  | ServiceType = SERVICE_WIN32_OWN_PROCESS SERVICE_INTERACTIVE_PROCESS |
| 0225FBB8 | 000000002 | <pre>StartType = SERVICE_AUTO_START</pre>                           |
| 0225FBBC | 000000000 | ErrorControl = SERVICE_ERROR_IGNORE                                 |
| 0225FBC0 | 00523FE0  | BinaryPathName = "C:\ProgramData\RasTls\avp.exe"                    |
| 0225FBC4 | 000000000 | LoadOrderGroup = NULL                                               |
| 0225FBC8 | 000000000 | pTagId = NULL                                                       |
| 0225FBCC | 000000000 | pDependencies = NULL                                                |
| 0225FBD0 | 000000000 | ServiceStartName = NULL                                             |
| 0225FBD4 | 000000000 | Password = NULL                                                     |

If the malware fails to start the just installed service, it will delete it and then it will create a persistence mechanism in the registry by setting the registry value

"C:\ProgramData\RasTIs\avp.exe" to the key

"HKLM\SOFTWARE\Classes\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\RasTls" using the RegSetValueExW API.

| 0233F78C                                                                                                                                                 | 0011E571                                                                                                                                      | <pre>CALL to RegCreateKeyExW from 0011E56F</pre>                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0233F790                                                                                                                                                 | 8000000                                                                                                                                       | hKey = HKEY_CLASSES_ROOT                                                                                                                                                                                                                                                                                         |
| 0233F794                                                                                                                                                 | 0013D19C                                                                                                                                      | Subkey = "Software\Microsoft\Windows\CurrentVersion\Run"                                                                                                                                                                                                                                                         |
| 0233F798                                                                                                                                                 | 000000000                                                                                                                                     | Reserved = 0                                                                                                                                                                                                                                                                                                     |
| 0233F79C                                                                                                                                                 | 00000000                                                                                                                                      | Class = NULL                                                                                                                                                                                                                                                                                                     |
| 0233F7A0                                                                                                                                                 | 000000000                                                                                                                                     | Options = REG_OPTION_NON_VOLATILE                                                                                                                                                                                                                                                                                |
| 0233F7A4                                                                                                                                                 | 00000102                                                                                                                                      | Access = KEY_SET_VALUE 100                                                                                                                                                                                                                                                                                       |
| 0233F7A8                                                                                                                                                 | 000000000                                                                                                                                     | pSecurity = NULL                                                                                                                                                                                                                                                                                                 |
| 0233F7AC                                                                                                                                                 | 0233F7D4                                                                                                                                      | pHandle = 0233F7D4                                                                                                                                                                                                                                                                                               |
| 0233F7B0                                                                                                                                                 | 00000000                                                                                                                                      | pDisposition = NULL                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |
| 0233F798                                                                                                                                                 | 0011E532                                                                                                                                      | rCALL to RegSetValueExV from 0011E530                                                                                                                                                                                                                                                                            |
| 0233F79C                                                                                                                                                 | 000000FA                                                                                                                                      | hKey = FA                                                                                                                                                                                                                                                                                                        |
| 0233F7A0                                                                                                                                                 | 0013D39C                                                                                                                                      | ValueName = "RasTls"                                                                                                                                                                                                                                                                                             |
| 0233F7A4                                                                                                                                                 | 00000000                                                                                                                                      | Reserved = 0                                                                                                                                                                                                                                                                                                     |
| 0233F7A8                                                                                                                                                 | 00000001                                                                                                                                      | ValueType = REG_SZ                                                                                                                                                                                                                                                                                               |
| 0233F7AC                                                                                                                                                 | 00772EC8                                                                                                                                      | Buffer = 00772EC8                                                                                                                                                                                                                                                                                                |
| 0233F7B0                                                                                                                                                 | 0000003A                                                                                                                                      | BufSize = 3A (58.)                                                                                                                                                                                                                                                                                               |
| 0233F79C<br>0233F7A0<br>0233F7A4<br>0233F7A8<br>0233F7AC<br>0233F7B0<br>0233F79C<br>0233F79C<br>0233F79C<br>0233F7A0<br>0233F7A4<br>0233F7A8<br>0233F7A8 | 00000000<br>00000102<br>00000000<br>0233F7D4<br>00000000<br>00011E532<br>000000FA<br>0013D39C<br>00000000<br>00000001<br>00772EC8<br>0000003A | Class = NULL<br>Options = REG_OPTION_NON_VOLATILE<br>Access = KEY_SET_VALUE   100<br>pSecurity = NULL<br>pHandle = 0233F7D4<br>pDisposition = NULL<br>CALL to RegSetValueExW from 0011E530<br>hKey = FA<br>ValueName = "RasT1s"<br>Reserved = 0<br>ValueType = REG_SZ<br>Buffer = 00772EC8<br>BufSize = 3A (58.) |

If the builder options had the Keylogger functionality enabled, then it may create a file with a random name such as "%ProgramData%\RasTl\rjowfhxnzmdknsixtx" that stores the key strokes. If the payload has been built with Screen capture functionality, it may create the folder "%ProgramData%\RasTl\RasTl\Screen" to store JPG images in the format <datetime>.jpg that are taken at the frequency specified during the build process. The payload may also create the file "%ProgramData%\DEBUG.LOG" that contains debugging information about its execution (also interesting that during execution the malware outputs debug messages about what is happening using the OutputDebugString API. This messages could be viewed with DebugView from SysInternals). The malicious code completes its mission by starting a new instance of "svchost.exe" and then injects the malicious code into svchost.exe process address space using process hollowing technique. The pictures below shows the first step of the process hollowing technique where the payload creates a new "svchost.exe" instance in SUSPENDED state.

| 0242FB1C | 00142F69  | CALL to CreateProcessW from 00142F67                |
|----------|-----------|-----------------------------------------------------|
| 0242FB20 | 88888888  | ModuleFileName = NULL                               |
| 0242FB24 | 004D2EE8  | CommandLine = "C:\Windows\system32\svchost.exe"     |
| 0242FB28 | 000000000 | pProcessSecurity = NULL                             |
| 0242FB2C | 000000000 | pThreadSecurity = NULL                              |
| 0242FB30 | 888888888 | InheritHandles = FALSE                              |
| 0242FB34 | 00000014  | CreationFlags = CREATE SUSPENDED[CREATE NEW CONSOLE |
| 0242FB38 | 000000000 | pEnvironment = NULL                                 |
| 0242FB3C | 000000000 | CurrentDir = NULL                                   |
| 0242FB40 | 0242FB78  | pStartupInfo = 0242FB78                             |
| 0242FB44 | 0242FBD0  | pProcessInfo = 0242FBD0                             |
| 0242FB48 | 0016344C  | ASCII "XBoot.cpp"                                   |
|          |           |                                                     |

and then uses WriteProcessMemory API to inject the malicious payload

| Address  | Hex  | dunp  |     |    |    |    |            | ASCII          | *      | 0242FAF0         | 001486   | 3A  | CALL to WriteProcessMemory from 00148635 |
|----------|------|-------|-----|----|----|----|------------|----------------|--------|------------------|----------|-----|------------------------------------------|
| 00068261 | E8   | 00 00 | -00 | 00 | 58 | 83 | E8         | èX∎è           |        | 0242FAF4         | 888888   | F4  | hProcess = 000000F4                      |
| 00068269 | 85 1 | 8B 4C | 24  | 84 | 51 | 68 | 40         | TEL\$-QhG      | _      | 0242FAF8         | 000800   | 99  | Address = 80000                          |
| 00068271 | 25   | 00 00 | 8D  | 88 | B5 | D7 | 01         | %∎µ×           |        | 0242FAFC         | 000682   | 61  | Buffer   loader-u.00068261               |
| 00068279 | 00 ! | 51 68 | 96  | D2 | 81 | 88 | 8D         | Buffer poin    | ts i   | to the address   | FC       | F5  | BytesToWrite = 1FCF5 (130293.)           |
| 00068281 | 88   | 1F 05 | 00  | 88 | 51 | 68 | F5         | containing the | fire   | t instruction of | f the    | 2C  | <pre>LpBytesWritten = 0242FB2C</pre>     |
| 00068289 | FC   | 01 00 | 8D  | 88 | 88 | 00 | 00         | dacad          | ord of | Sholloodo        | 1010 100 | 88  |                                          |
| 00068291 | 00 ! | 51 54 | E8  | 86 | 88 | 88 | 88         | 00000          | 8u     | Shelicode        | 34       | 4C  | ASCII "XBoot.cpp"                        |
| 00068299 | 83 ( | C4 1C | C2  | 84 | 00 | 55 | 88         | ∎üÂU∎          |        | 0242FB10         | 0016DB   | A B | UNICODE "%windir%\system32\svchost.exe"  |
| 88868261 | FC ( | 64 61 | 38  | 88 | 88 | 88 | <b>R</b> R | ∎Bıhŕ          |        | 0242FB14         | 000000   | 99  |                                          |

Then the main thread, which is still in suspended state, is changed in order to point to the entry point of the new image base using the SetThreadContext API. Finally, the ResumeThread API is invoked and the malicious code starts executing. The malware also has the capabilities to <u>bypass</u> User Account Control (UAC) if needed. From this moment onward, the control is passed over "svchost.exe" and Plug-X starts doing its thing. In this case we have the builder so we know the settings which were defined during building process. However, we would like to understand how could we extract the configuration settings. During Black Hat 2014, <u>Takahiro Haruyama</u> and <u>Hiroshi Suzuki</u> gave a presentation titled "<u>I know You Want Me – Unplugging PlugX</u>" where the authors go to great length analyzing a variety of PlugX samples, its evolution and categorizing them into threat groups. But better is that the Takahiro released a set of <u>PlugX parsers</u> for the different types of PlugX samples i.e, Type II and Type III. How can we use this parser? The one we are

dealing in this article is considered a PlugX type II. To dump the configuration, we need to use Immunity Debugger and use the Python API. We need to place the "plugx\_dumper.py" file into the "PyCommands" folder inside Immunity Debugger installation path. Then attached the debugger to the infected process e.g, "svchost.exe" and run the plugin. The plugin will dump the configuration settings and will also extract the decompressed DLL



We can see that this parser is able to find the injected shellcode, decode its configuration and all the settings an attacker would set on the builder and also dump the injected DLL which contains the core functionality of the malware.

In terms of networking, as observed in the PlugX controller, the malware can be configured to speak with a controller using several network protocols. In this case we configured it to speak using HTTP on port 80. The network traffic contains a 16-byte header followed by a payload. The header is encoded with a custom routine and the payload is encoded and compressed with LZNT1. Far from a comprehensive analysis we launched a Shell prompt from the controller, typed command "ipconfig" and observed the network traffic. In parallel,

we attached a debugger to "svchost.exe" and set breakpoints: on Ws2\_32.dll!WSASend and Ws2\_32.dll!WSARecv to capture the packets ; on ntdll.dll!RtlCompressBuffer and ntdll.dll!RtlDecompressBuffer to view the data before and after compression. ; On custom encoding routine to view the data before and after. The figure below shows a disassemble listing of the custom encoding routine.

| 🔲 🚄 🛽  | 3                        |
|--------|--------------------------|
|        |                          |
| Decrup | t:                       |
| mou    | eax, ecx                 |
| sh1    | eax. 7                   |
| shr    | ecx. 3                   |
| sub    | eax, ecx                 |
| lea    | ecx, [eax+esi+713A8FC1h] |
| mov    | eax, [ebp+arg_4]         |
| add    | eax, esi                 |
| mov    | edx, ecx                 |
| shr    | edx, 18h                 |
| xor    | dl, [edi+eax]            |
| mov    | ebx, ecx                 |
| shr    | ebx, 10h                 |
| xor    | d1, b1                   |
| mov    | ebx, ecx                 |
| shr    | ebx, 8                   |
| xor    | d1, b1                   |
| xor    | d1, c1                   |
| inc    | esi                      |
| mov    | [eax], dl                |
| cmp    | esi, [ebp+arg_0]         |
| j1     | short Decrypt            |
|        |                          |

So, from a debugger view, with the right breakpoints we could start to observe what is happening. In the picture below, on the left-hand side it shows the packet before encoding and compression. It contains a 16-byte header, where the first 4-bytes are the key for the custom encoding routine. The next 4-bytes are the flags which contain the commands/plugins being used. Then the next 4-bytes is the size. After the header there is the payload which in this case contains is output of the ipconfig.exe command. On the right-hand side, we have the packet after encoding and compressing. It contains the 16-byte header encoded following by the payload encoded and compressed.

| Address Hex dump                                             | ASCII                                        | Address Rex dump                                                      | ASCII                     |
|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|---------------------------|
| #38F5F28 63 D8 38 93 03 78 00 08 2E 07 00 08 00              | 00 00 00 c8;8 9                              | 83855528 43 D8 38 93 79 83 79 74 40 12 28 18 40 16 DD FE              | ER:BullutH:+-H-91         |
| 038F5F38 00 88404 88 57 88 69 88 6E 88 64 88 6F              | 00 77 00                                     | B38F5F38 A9 FR BE 95 78 F9 79 23 31 79 85 16 23 14 89 FF              | 10-1200210 2-11           |
| 838F5F48 73 88 28 88 49 88 58 88 28 88 43 88 6F              | 88 6E M S1.PC.o.n.                           | 038F5F48 F4 36 48 34 85 18 EC DD 75 EA 6C D3 5E 42 81 F2              | 06H4# 194010 cò           |
| B3BF5F58 66 88 69 88 67 88 75 88 72 88 61 88 74              | 00 69 00 F.i.g.u.r.a.t.i.                    | 030F5F50 F6 68 AC 03 04 65 E0 C6 08 48 65 41 01 3F CD 30              | ühl. " ehd. Jeks?1-       |
| 038F5F68 Key = 0.03360003 P0 Dated of the incode on          | 0 0.n                                        | 838F5F68 E3 58 18 78 93 C8 A2 F8 F8 EF 64 77 5D 5C 29 9C              | äX+p∎Å¢ûðĭdv]\)∎          |
| #38F5F78 Flags = 0x7003 P0 Flags sent to                     | theC2 0 E.t.h.e.r.n.e.t.                     | 038F5F78 02 1F A5 72 06 C1 99 C8 72 AD 50 47 DB 10 F9 04              | Ó¥rĎÁ∎Ér-PCŰúŐ            |
| 838F5F88 5ize 0x72e 08 78 08 74 00 65                        | 00 72 00 .a.d.a.p.t.e.r.                     | 038F5F88 97 96 12 C8 30 B4 B8 40 D5 10 FD 10 BC 22 6C 01              | ■#:E=´xH0+\$4*1           |
| 838F5F98 28 88 42 88 6C 88 75 88 65 88 74 88 6F              | 00 6F 00 .B.1.u.e.t.o.o.                     | 038F5F98 36 5D 1A 54 11 DB 7F 6C 79 F5 4C A2 19 F8 5E 15              | 6]-T <b>4Ü≣</b> 1yőL¢¦a^⊥ |
| 038F5FA8 74 00 68 00 20 00 4E 00 65 00 74 00 77              | 00 6F 00 t.hN.e.t.w.o.                       | BOBFSFAB 19 48 61 52 88 60 3F EB 93 C2 E7 43 FF 88 56 6C              | KaR.m?ëBAçCijuUl          |
| 038F5F88 72 00 68 00 20 00 43 00 6F 00 6E 00 6E              | 00 65 00 r.kC.o.n.n.e.                       | 838F5F88 1C D6 55 AF FD D7 27 42 8E D9 98 6D 96 DA 9D 82              | 00 0×*8,00n00             |
| R38F5FC8 63 88 74 88 69 88 6F 88 6E 88 3A 88 8D              | 00 0A 00 c.t.i.o.n.:                         | 038F5FC8 0A D2 C8 59 C3 C3 C6 7C 88 FC DF 1E CD 7E 9F D7              | .OEYAAAE BUB1~B×          |
| BUDFSFDB 00 00 00 00 00 20 00 20 00 20 00 40 00 65           | 00 64 00H.e.d.                               | 038F5FD8 DE C1 33 AC 05 05 11 50 10 10 31 00 DF 26 2D 49              | ÞÁ3-Eaýk zYMG-I           |
| B3BF5FE8 69 68 61 PugX Payload before encryption and 1 00 74 | 00 65 00 1.aS.t.a.t.e.                       | B3BF5FEB A0 4C 82 50 Plog header encrypted and payload 8C EB 01 88 C8 | L'PUIS+'1\IF d            |
| 038F5FF8 20 00 2E compression Contains a 15-bytes E 00 20    | 00 2E 00                                     | 030F5FF8 CE 53 0E 88                                                  | IS/So29- R#Z#Ij=,         |
| USEP 6 008 20 00 2E shell command E 00 20                    | 00 2E 00                                     | 038F6888 7A D8 86 A8 30 C5 56 7D 8A D7 8A 80 1F 37 48 4A              | 288+(090).×2.78J          |
|                                                              | 00 3A 00                                     | 038F6018 88 DF 34 95 DE 8F 1C E6 DB 23 C7 09 27 D8 78 44              | HD48,SEUSC. UXD           |
| 0000 0 020 20 00 40 00 05 00 04 00 07 00 01 00 20            | 00 64 00 .n.e.d.1.sd.                        | U387-6428 84 51 08 RE 66 E8 08 56 E1 80 30 41 6F 36 70 0F             | QUULECVa-RI6)R            |
| 0307 04038 07 00 73 00 03 00 07 00 00 00 00 00 00 00         | 00 03 00 1.5.C.0.n.n.e.C.                    | U3876U38 BE G3 31 F9 15 28 89 08 87 12 0E 86 31 80 FE 43              | \$A10-(#R]n13p6           |
| 0307 0 048 74 00 05 00 04 00 00 00 00 00 20 00 20            | 00 20 00 t.e.o                               | 1311 6 0911 36 F7 F8 12 69 FF D8 72 F2 84 85 66 20 C4 F7 9F           | 6+U_1UUrompF-A+           |
| 030FA0A0 AF 88 AF 88 25 88 73 88 78 88 AF 88 AS              | 88 40 88 0 0 - 5 0 e e i                     | 0307 5058 03 5E 67 98 HE E1 00 HH 06 H5 14 01 53 38 00 00             | - 0 CBHAYN, 9958.5        |
| BIDEFARTE 44 88 49 88 43 88 20 88 34 88 34 88 35 88 35       | 88 28 88 6 i c D H S                         | 000004070 ME E9 94 E9 75 87 74 94 49 94 88 50 PE 88 48 58             | NSS Strate bills          |
| BODE 4 800 C3 88 75 88 44 88 44 88 40 88 70 88 78            | 00 20 00 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000054000 40 47 14 EE 91 80 PE 89 78 88 78 PL 50 87 ED 89             | 10                        |
| B3054800 35 88 20 88 34 88 20 88 80 80 80 80 80 80 80 80     | 00 20 00 310.11.1.1.1.1.1                    | 030F4000 88 20 FF 00 bb 82 13 20 00 14 38 83 02 Fb 08 54              | 18- 11107 (#180-          |
| RORFADDR 45 88 74 88 68 88 65 88 72 88 65 88 72              | 00 7h 00 F.t.b.e.r.p.e.t.                    | 000FA000 80 2F 44 70 7F 80 67 F4 FE 8F 02 40 57 64 02 57              | Extra shik typin          |
| RODE 4800 20 80 61 88 64 88 61 88 70 88 74 88 65             | 00 72 00 .a.d.a.p.t.e.r.                     | 03054000 ES BC 35 A3 CR 50 R3 A3 A5 1A A4 CA 47 87 R0 99              | NEVER 12 CO. LEDING       |
| RORFARCE 20 88 MC 88 6F 88 63 88 61 88 6C 88 28              | 00 51 00 .1.0.5.0.10.                        | 038560C8 #C 82 C1 60 #2 CE 97 20 27 E3 76 E8 30 61 3E #9              | - Micles (me-a?D          |
| B38F6808 72 88 65 88 61 88 28 88 43 88 6F 88 6F              | 00 6E 00 r.e.aC.o.n.n.                       | 038F6008 80 66 57 FD 68 91 Ch 99 F6 83 84 8F F8 95 9C 51              | KFW01'AB0' aBB0           |
| #38F64E8 65 88 63 88 74 88 69 88 6F 88 6E 88 3A              | 00 00 00 e.c.t.i.o.n.:                       | ROBFGRER AE 79 95 80 12 42 28 41 20 4A CB F6 98 28 89 99              | Bul. 18 A. JESS (18       |

Then, the malware uses WSASend API to send the traffic.

| Address  | ex dump ASCII 03E4E020 00139C33 CC                                                                     | ALL to WSASend from 00139C31 |
|----------|--------------------------------------------------------------------------------------------------------|------------------------------|
| 03E4FD44 | C 02 00 00 28 5F BF 03 60 FD E4 03 3C 91 13 00 0( 1 03 4FD24 00000520 5                                | ocket = 520                  |
| 03E4FD54 | 8 5F 8F 83 8C 82 88 80 F8 44 58 88 84 FD E4 83 ( 2 4                                                   | Buffers = 03E4FD44           |
| 83E4FD64 | D 89 13 88 F8 44 58 88 28 5F BF 83 80 93 80 98 98 98 98 98 98 98 98 98 98 98 98 98                     | Buffers - 1                  |
| 83E4FD74 | 8 SF BF 03 28 SF BF 03 10 DE 52 00 8 pBuffers contains a pointer to an 03E4FD30 03E4FD34 p             | BytesSent = 03E4FD54         |
| 03E4FD84 | 4 FD E4 03 92 8C 13 00 28 5F BF 03 8 array trail contains the supe and the Line - 03E4FD34 000000000 F | lags = 0                     |
| 03E4FD94 | 18 FD E4 03 30 75 00 00 28 5F BF 03 1 Control of the data to be sent of the Life L 03E4FD38 00584514 p | Overlapped = 00584514        |
| 03E4FDA4 | E 07 00 00 10 08 13 20 03 70 00 00 2 . or ov ou                                                        | allback = NULL               |

Capturing the traffic, we can observe the same data.

On the controller side, when the packet arrives, the header will be decoded and then the payload will be decoded and decompressed. Finally, the output is showed to the operator.



Now that we started to understand how C2 traffic is handled, we can capture it and decode it. Kyle Creyts has created a <u>PlugX decoder</u> that supports PCAP's. The decoder supports decryption of PlugX Type I.But Fabien Perigaud <u>reversed</u> the Type II algorithm and implemented it in python. If we combine Kyle's work with the work from Takahiro Haruyama and Fabien Perigaud we could create a PCAP parser to extract PlugX Type II and Type III. Below illustrates a proof-of-concept for this exercise against 1 packet. We captured the traffic and then used a small python script to decrypt a packet. No dependencies on Windows because it uses the <u>herrcore's</u> standalone LZNT1 implementation that is based on the one from the <u>ChopShop</u> protocol analysis and decoder framework by MITRE.

```
luisrocha@ubuntu: /tmp
luisrocha@ubuntu:/tmp$ python plugx-type2-decrypt.py
[*] Decrypting header with key 2470172771:0x933bd863
[*] Header stream with 16 bytes to be decrypted:
63d83b93798379744d122b1b4d16ddee
[*] Decrypted header stream output:
5391350b037000007c022e0700000000
[*] Flags: 0x7003
*] Size: 0x27c
[*] Decrypting Payload with key 2500787017:0x950efb49
[*] Payload stream of 636 bytes to be decoded:
[*] Decrypted payload stream output:
[*] Decompressed payload stream output:
Windows IP Configuration
Ethernet adapter Bluetooth Network Connection:
  Media State . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
Ethernet adapter Local Area Connection:
  Connection-specific DNS Suffix . :
  Default Gateway . . . . . . . . : 10.0.0.254
Tunnel adapter isatap.{9F0AD41D-BD78-4D28-AA5C-0577679BB312}:
  Media State . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
Tunnel adapter isatap.{B59F5FF7-F1AF-45AE-BF6D-7DC0BE444BF6}:
  Media State . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
Tunnel adapter Teredo Tunneling Pseudo-Interface:
  Media State . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
C:\>
luisrocha@ubuntu:/tmp$
```

That's it for today! We build a lab with a PlugX controller, got a view on its capabilities. Then we looked at the malware installation and debugged it in order to find and interpret some of its mechanics such as DLL search order hijacking, obfuscated shellcode, persistence mechanism and process hollowing. Then, we used a readily available parser to dump its configuration from memory. Finally, we briefly looked the way the malware communicates with the C2 and created a small script to decode the traffic. Now, with such environment ready, in a controlled and isolated lab, we can further simulate different tools and techniques

and observe how an attacker would operate compromised systems. Then we can learn, practice at our own pace and look behind the scenes to better understand attack methods and ideally find and implement countermeasures.

References:

Analysis of a PlugX malware variant used for targeted attacks by CRCL.lu

Operation Cloud Hopper by PWC

PlugX Payload Extraction by Kevin O'Reilly

Other than the authors and articles cited troughout the article, a fantastic compilation about PlugX articles and papers since 2011 is available <u>here</u>.

Credits: Thanks to <u>Michael Bailey</u> who showed me new techniques on how to deal with shellcode which I will likely cover on a post soon.