DanaBot updated with new C&C communication

welivesecurity.com/2019/02/07/danabot-updated-new-cc-communication/

February 7, 2019

ESET researchers have discovered new versions of the DanaBot Trojan, updated with a more complicated protocol for C&C communication and slight modifications to architecture and campaign IDs

ESET Research 7 Feb 2019 - 12:00PM

ESET researchers have discovered new versions of the DanaBot Trojan, updated with a more complicated protocol for C&C communication and slight modifications to architecture and campaign IDs

The fast-evolving, modular Trojan <u>DanaBot</u> has undergone further changes, with the latest version featuring an entirely new communication protocol. The protocol, introduced to DanaBot at the end of January 2019, adds several layers of encryption to DanaBot's <u>C&C</u> communication.

Besides the changes in communication, DanaBot's architecture and campaign IDs have also been modified.

The evolution of DanaBot

After being <u>discovered</u> in May 2018 as part of Australia-targeted spam campaigns, DanaBot has had an eventful time since, appearing in malspam campaigns in Poland, <u>Italy, Germany, Austria and Ukraine</u>, as well as in <u>the United States</u>. The European campaigns have seen the Trojan expanding its capabilities with new plugins and <u>spam-sending features</u>.

In ESET telemetry on January 25, 2019, we noticed unusual DanaBot-related executables. Upon further inspection, these binaries were, indeed, revealed to be DanaBot variants, but using a different communication protocol to communicate with the C&C server. Starting January 26, 2019, DanaBot operators stopped building binaries with the old protocol.

At the time of writing, the new version is being distributed under two scenarios:

- As "updates" delivered to existing DanaBot victims
- Via malspam in Poland

The new communication protocol

In the communication protocol used before January 25, packets were not encrypted in any way, as seen in Figure 1.

Wireshark	Foll	ow '	ГСР	Stre	am	(tcp	stre	am e	eq 4)	• tcp	odur	np.p	сар				
00000000	00	00	00	00	ff	ff	ff	ff	53	04	00	00	03	00	00	00	S
00000010	01	00	00	00	28	1e	00	00	00	00	00	00	20	00	00	00	(
00000020	ae	75	67	24	d1	07	00	00	01	00	00	00	00	40	00	00	.ug\$@
00000030	00	00	00	00	00	00	00	00	20	41	31	43	46	44	32	31	A1CFD21
00000040	43	46	33	35	33	45	43	30	41	33	44	36	34	36	35	46	CF353EC0 A3D6465F
00000050	36	45	37	35	35	35	46	31	30	20	34	45	42	38	32	46	6E7555F1 0 4EB82F
00000060	38	39	31	42	33	34	34	34	37	34	45	39	39	43	41	42	891B3444 74E99CAB
00000070	35	39	35	35	46	30	37	35	44	37	20	37	46	43	35	36	5955F075 D7 7FC56
0800000	32	37	30	45	37	41	37	30	46	41	38	31	41	35	39	33	270E7A70 FA81A593
00000090	35	42	37	32	45	41	43	42	45	32	39	00	00	00	00	00	5B72EACB E29
000000A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000B0	00	00	00	00	00	00	00										

Figure 1 – Packet capture showing the old protocol with data in plaintext

Following the latest changes, DanaBot uses the AES and RSA encryption algorithms in its C&C communication. The new communication protocol is complicated, with several encryption layers being used, as seen in Figure 2.

Figure 2 – A diagram of DanaBot's new communication protocol

These changes break existing network-based signatures and make it more difficult to write new rules for Intrusion Detection and Prevention Systems. Also, without access to the corresponding RSA keys, it is impossible to decode sent or received packets; thus PCAP files from cloud-based analysis systems (such as <u>ANY.RUN</u>) become unusable for researchers.

📕 Wireshark ·	Follow TCP Stream (tcp.stream eq 0) · downloader.pcap	
00000000 00000010	24 01 00 00 00 00 00 00 65 a4 00 00 00 00 00 00 00 89 a5 00 00 00 00 00 00 00 00	\$ e
00000018 00000028	cd 0b 66 ff 63 2e c8 ff fa d5 df c2 84 bc 3d 7c 32 eb 50 3b f0 bb 47 34 85 3e c1 24 71 2b 14 6d	f.c= 2.P;G4 .>.\$q+.m
00000038 00000048	eb 98 8a c8 15 72 29 a3 dd ff 57 db e9 71 e1 6b ce 5f b9 6e 52 f2 2a a5 e7 43 5e d3 dd fa c4 da 2f c6 62 35 70 b3 50 db c0 d5 05 82 23 26 82 fa	r)Wq.k nR.*C^
00000068	b8 02 fa 73 ee 72 c9 6f dc 0c 12 50 93 eb 22 01 36 ab 83 a0 52 15 9f db a2 be 9a 9a a1 ce c1 e3	s.r.oP". 6R
00000088 00000098	62 b5 4b 42 dd 3d 52 dc e5 35 aa 23 b9 8f dd 10 38 41 41 f0 7c da ca a7 f0 7d 84 bf ed 0c 31 c6	b.KB.=R5.# 8AA
000000A8 000000B8 000000C8	32 bd 00 74 0d 9c 0f 18 64 7f b7 94 4c 4a fb 1d 0c 00 00 00 9e 03 f1 b5 c0 e5 9d 40 e5 5e 7f fd e1 1b e5 9f c3 d5 77 37 3d 91 ed 0c 4a e7 80 21	2t dLJ
000000D8 000000E8	50 f6 01 17 0f c8 c4 12 50 48 75 54 a6 43 6a 5c 05 6a 6a 35 3f bd 90 df 8d 9a 03 ba bf c5 b6 4e	P PHuT.Cj\ .jj5?N
000000F8 00000108	54 4e 5b b0 d2 95 12 11 db e4 08 1b 73 4b e8 b6 3b 9a 30 ba 20 86 f5 e7 9f 63 41 c5 f9 1c de f8	TN[sK ;.0cA
00000128 00000138	94 91 10 91 70 85 86 45 74 81 80 96 10 80 93 9d 54 b1 28 b1 e8 eb f5 87 d9 e5 f6 c4 5b 16 56 6c d5 7b 98 34 01 00 00 00 00 12 2c 00 00	4pe. et1. .T.([.V 1.{.4
00000148 00000158	00 00 00 00 46 2d 00 00 00 00 00 00 68 69 56 6b fb 32 47 ff 2a 64 80 d5 be 02 ba a6 1b fd 68 ea	FhiVk .2G.*dh.
00000168 00000178	58 8a 61 85 8d 3e 98 42 3f 88 eb c9 1c 37 f2 65 bc ad ca 2c 6c 38 be da b9 63 1c 30 45 36 87 dd	X.a>.B ?7.e ,18c.0E6
_	small packet header packet payload, padding s	ize AES key, RSA encrypted

Figure 3 – Packet capture with the new communication protocol in place

Each packet sent by the client has a 24 (0x18)-byte header:

Offset	Size (bytes)	Meaning
0x0	0x8	Size of the data after this header
0x8	0x8	Random value
0x10	0x8	Sum of first two fields

For each packet, the header is followed by AES-encrypted packet data, then a 4-byte value indicating AES padding size, and finally the RSA-encrypted AES key. Each packet is encrypted with a different AES key.

Server responses use the same format. Unlike in previous versions, packet data in server responses does not follow any specific layout (with some exceptions).

Packet data layout

Former packet data layout was detailed by <u>Proofpoint</u> in October 2018. In the latest version of DanaBot, the layout is slightly modified, as seen in Figure 4.

Previous layout

Offset	Size (bytes)	Meaning						
0x0	0x4	Random values (stack junk)						
0x4	0x4	Hardcoded -1						
0x8	0x4	Command ID						
0xC	0x4	Campaign ID						
0x10	0x4	Hardcoded 1						
0x14	0x4	Random value						
0x18	0x4	Unknown counter variable						
Ox1C	0x4	System architecture						
0x20	0x4	Windows version information						
0x24	0x4	Command parameter (0/32/64)						
0x28	0x4	Admin status						
0x2C	0x4	Process integrity level						
0x30	0x8	Payload length						
0x38	0x21	Client ID						
0x59	0x21	Command dependent						
0x7A	0x21	Checksum						
Ox9B	0x1C	Junk						
Legend:								
different field								
same field	in a different p	osition						
same field in the same position								

Offset	Size (bytes)	Meaning
0x0	0x4	Size of the packet header (0xA7)
0x4	0x8	Random value
0xC	0x8	Sum of first 2 fields
0x14	0x4	Campaign ID
0x18	0x4	Command ID
0x1C	0x4	Command parameter (0/32/64)
0x20	0x4	Random value
0x24	0x4	Unknown counter variable
0x28	0x4	System architecture
0x2C	Ox4	Windows version information
0x30	0x4	Command dependent (0/0x3E9)
0x34	0x4	Admin status
0x38	0x4	Process integrity level
0x3C	0x8	Payload length
0x44	0x21	Client ID
0x65	0x21	Command dependent
0x86	0x21	Checksum

New layout

Figure 4 – Comparison of packet data layout in DanaBot's previous and latest version

Changes in DanaBot architecture

Besides the changed communication protocol, DanaBot has also undergone some changes in architecture. The previous versions of DanaBot included a component that downloaded and executed the main module. The main module then downloaded and executed plugins and configurations.

The latest version shifts both these responsibilities to a new loader component, which is used to download all plugins along with the main module. Persistence is achieved by registering the loader component as a service.

Figure 5 – Comparison of architecture in DanaBot's previous and latest version

Commands

According to our analysis, the loader component uses the following commands:

- 0x12C Hello. First command sent by client to server
- 0x12D Download 32/64-bit launcher component
- 0x12E Request list of plugins and configuration files
- 0x12F Download plugin/configuration files

Downloaded plugins and configuration files are encrypted using an AES key derived from the Client ID. In addition to that, plugins are compressed in ZIP format using LZMA compression, whereas configuration files are compressed using zlib.

Commands with ID numbers 0x130 – 0x134 are sent by the main module:

- 0x130 Upload collected information to C&C server (e.g., screenshot of a victim's computer; system information)
- 0x131 Upload collected information to C&C server (e.g., list of files on the victim's hard disk)
- 0x132 Ask C&C server for further commands; there are around 30 available commands typical
 of backdoors, including launching plugins, gathering detailed system information and modifying
 files on client system
- 0x133 Update C&C server list via Tor proxy
- 0x134 Exact purpose unknown; most likely used for communication between plugins and C&C

Changes in campaign IDs

Previous research has suggested that DanaBot is distributed under various "affiliate" or "campaign" IDs.

In the previous version of DanaBot, almost <u>20 different campaign IDs</u> were used. In the latest version, campaign IDs have changed slightly. As of February 5, 2019, we are seeing the following IDs in the wild:

- **ID=2** appears to be a test version, serving a limited number of configuration files and no webinjects
- **ID=3** is being actively spread, targeting users in both Poland and Italy, serving all configuration files and webinjects for both Polish and Italian targets
- ID=5 serves configuration files for Australian targets
- ID=7 is being spread only in Poland, serving webinjects for Polish targets
- **ID=9** appears to be another test version, with limited spread and no specific targeting, serving a limited number of configuration files and no webinjects

Conclusion

In 2018, we observed DanaBot expanding in both <u>distribution</u> and <u>functionality</u>. The beginning of 2019 has seen the Trojan undergo "internal" changes, indicating active development by its authors. The latest updates suggest the authors are making an effort to evade detection at the network level, and possibly paying attention to published research and making changes to stay ahead of defenders.

ESET systems detect and block all DanaBot components and plugins under detection names listed in the IoCs section.

This research was carried out by Kaspars Osis, Tomáš Procházka and Michal Kolář.

C&C servers used by the new version of DanaBot

- 84.54.37[.]102
- 89.144.25[.]243
- 89.144.25[.]104
- 178.209.51[.]211
- 185.92.222[.]238
- 192.71.249[.]51

Webinject and redirect servers

- 47.74.249[.]106
- 95.179.227[.]160
- 185.158.249[.]144

Example hashes

Note that since new builds of DanaBot's components are released regularly, we provide just a sampling of hashes.

Component	SHA-1	ESET detection name
Dropper	98C70361EA611BA33EE3A79816A88B2500ED7844	Win32/TrojanDropper.Danabot.O
Loader (x86), campaign ID=3	0DF17562844B7A0A0170C9830921C3442D59C73C	Win32/Spy.Danabot.L
Loader (x64), campaign ID=3	B816E90E9B71C85539EA3BB897E4F234A0422F85	Win64/Spy.Danabot.G
Loader (x86), campaign ID=9	5F085B19657D2511A89F3172B7887CE29FC70792	Win32/Spy.Danabot.I
Loader (x64), campaign ID=9	4075375A08273E65C223116ECD2CEF903BA97B1E	Win64/Spy.Danabot.F
Main module (x86)	28139782562B0E4CAB7F7885ECA75DFCA5E1D570	Win32/Spy.Danabot.K
Main module (x64)	B1FF7285B49F36FE8D65E7B896FCCDB1618EAA4B	Win64/Spy.Danabot.C

Plugins

Plugin	SHA-1	ESET detection name
RDPWrap	890B5473B419057F89802E0B6DA011B315F3EF94	Win32/Spy.Danabot.H
Stealer (x86)	E50A03D12DDAC6EA626718286650B9BB858B2E69	Win32/Spy.Danabot.C
Stealer (x64)	9B0EC454401023DF6D3D4903735301BA669AADD1	Win64/Spy.Danabot.E
Sniffer	DBFD8553C66275694FC4B32F9DF16ADEA74145E6	Win32/Spy.Danabot.B
VNC	E0880DCFCB1724790DFEB7DFE01A5D54B33D80B6	Win32/Spy.Danabot.D
TOR	73A5B0BEE8C9FB4703A206608ED277A06AA1E384	Win32/Spy.Danabot.G

7 Feb 2019 - 12:00PM

Sign up to receive an email update whenever a new article is published in our <u>Ukraine</u> <u>Crisis – Digital Security Resource Center</u>

Newsletter

Discussion