

Subverting Trust in Windows

Matt Graeber

- 1 -

Introduction

In the context of computer security, what is trust? Is it an implicit feeling of safety offered by modern

security solutions that alert to the presence of malicious code and/or actions? Is trust something that

must be explicitly acquired through careful evaluation of the software required to accomplish work in an

enterprise? In reality, there is no single correct answer. Trust is inherently subjective. What is important

is that each organization carefully consider what it means to place trust in technology. Organizations

that have a mature definition of trust should also question the means by which trust is validated by

security solutions and operating systems.

Now that the wheels are turning in your head about what trust means to you, excluding code reviews

involving manual human intervention, what are the technical means by which trust is validated? This is

obviously a much more difficult question to answer and one that you may not have even asked yourself.

The intent of this whitepaper is to shine a light on how trust decisions are made by Microsoft Windows.

By demonstrating how trust can be subverted in Windows, you will hopefully be motivated to more

frequently ask yourself what trust means to you - an extremely important and underappreciated

concept in security.

Beyond just the validation of the source and integrity of signed code, code signing and trust validation

are also critical malware classification components for many security products (e.g. anti-virus and EDR

solutions). Proper trust validation also serves as an enforcement component of most application

whitelisting solutions (AppLocker, Device Guard, etc.). Subverting the trust architecture of Windows, in

many cases, is also likely to subvert the efficacy of security products.

- 2 -

The Windows User Mode Trust Architecture

The means by which executable code is attested to originate from a particular vendor is achieved with

Authenticode digital signatures. Within user mode, the APIs through which the trust of signed code is

validated in user mode are WinVerifyTrust and WinVerifyTrustEx (which is simply a wrapper for

WinVerifyTrust with a more well-defined function prototype).

As the footprint of Windows has grown over time, there has been a need to extend the signing and trust

architecture to support additional file and binary blob formats. Depending on the file/blob specification,

signatures may need to be stored in different formats and trust should be validated in a fashion specific

to the technology. For example, digital signatures are stored in the PE file format in one particular one

way in a binary format. PowerShell scripts, on the other hand, are text files that can be signed, so their

signature, understandably, needs to be stored differently. Additionally, when signing code, hashes of the

code to be signed (typically referred to as the Authenticode hash) need to be computed and the way this

is performed is different depending on the file/blob format. Regarding trust validation of digital

signatures, the method in which the trust of a device driver is established versus that of an HTTPS

certificate will, understandably, be different.

Considering the need to support digital signatures on unique formats and to perform trust validation in

unique manners, Microsoft designed an extensible architecture to support just that. The subject

interface package (SIP) architecture was designed to support the creation, retrieval, and hash

calculation/validation of digital signatures. The validation of trust of signed code is performed using

trust providers. Both the trust provider and SIP architectures are completely abstracted away from a

software developer performing code signing and/or trust validation through the use of WinVerifyTrust

and various other exported functions in both wintrust.dll and crypt32.dll. As of this writing, there is no

evidence that documentation of this architecture has been extended to third party software developers

that might want to support signing infrastructure for their specific file formats. One possible reason this

may have not occurred is because any file, regardless of format, can technically be “signed” through the

usage of catalog signing - a file format containing a list of file hashes that can then be Authenticode

signed. Do note that validation of catalog files can only occur if the “CryptSvc” service is running.

Aside from various Windows SDK header files and the occasional MSDN documentation for exported

wintrust.dll and crypt32.dll functions, trust providers and SIPs are not documented. Due to the

complexity involved in 3rd-party implementation however, Microsoft likely intentionally chose to not

document these architectures. This whitepaper serves to document the trust provider and SIP

architectures while also explaining the ways in which they can be abused by an attacker as a means of

subverting trust, and optionally, gaining code execution in the context of processes that perform trust

validation.

Additional topics covered briefly in this whitepaper will be the extensibility of the CryptoAPI in general

to include cryptographic encoding/decoding, certificate management, etc. Microsoft couldn’t possibly

anticipate future cryptographic requirements so they designed a fully extensible architecture

https://msdn.microsoft.com/en-us/library/ms537359(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388208(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388209(v=vs.85).aspx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://msdn.microsoft.com/en-us/library/ms721625(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms721625(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms721627(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/catalog-files
https://developer.microsoft.com/windows/downloads/windows-10-sdk
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms721572(v=vs.85).aspx#_security_cryptoapi_gly

- 3 -

(presumably dating back the early 90s) to accommodate the needs of the present and the future.

Unfortunately, it’s this very extensibility that permits an attacker (with elevated privileges) to hijack

existing functionality.

Determining What Files Can Be Signed

How does one know what executable file types can be signed? A naïve approach might be to look at the

file properties of a potentially signed file and look at the “Digital Signatures” tab.

The "Digital Signatures" tab indicates the presence of an embedded Authenticode signature.

While this method may confirm that some file types can be signed, as is the case in the image above for

ise.psm1 (a PowerShell script module file), this is far from a systematic method of performing signable

file type enumeration. Signature support for file types is implemented as part of a subject interface

package (SIP) - the architecture responsible for the creation, retrieval, and hash calculation/validation of

https://msdn.microsoft.com/en-us/library/dd878324(v=vs.85).aspx

- 4 -

digital signatures. For example, in the image above, it can be seen that PowerShell script modules can be

signed. How does the Explorer UI know that PowerShell code can be signed in the first place?

Here is a portion of the embedded signature in ise.psm1:

SIG # Begin signature block

MIIXXAYJKoZIhvcNAQcCoIIXTTCCF0kCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB

gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR

AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUv0M9fHFPOaghmrZBoun/tqPG

zE6gghIxMIIEYDCCA0ygAwIBAgIKLqsR3FD/XJ3LwDAJBgUrDgMCHQUAMHAxKzAp

BgNVBAsTIkNvcHlyaWdodCAoYykgMTk5NyBNaWNyb3NvZnQgQ29ycC4xHjAcBgNV

BAsTFU1pY3Jvc29mdCBDb3Jwb3JhdGlvbjEhMB8GA1UEAxMYTWljcm9zb2Z0IFJv

b3QgQXV0aG9yaXR5MB4XDTA3MDgyMjIyMzEwMloXDTEyMDgyNTA3MDAwMFoweTEL

MAkGA1UEBhMCVVMxEzARBgNVBAgTCldhc2hpbmd0b24xEDAOBgNVBAcTB1JlZG1v

bmQxHjAcBgNVBAoTFU1pY3Jvc29mdCBDb3Jwb3JhdGlvbjEjMCEGA1UEAxMaTWlj

cm9zb2Z0IENvZGUgU2lnbmluZyBQQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw

ggEKAoIBAQC3eX3WXbNFOag0rDHa+SU1SXfA+x+ex0Vx79FG6NSMw2tMUmL0mQLD

TdhJbC8kPmW/ziO3C0i3f3XdRb2qjw5QxSUr8qDnDSMf0UEk+mKZzxlFpZNKH5nN

sy8iw0otfG/ZFR47jDkQOd29KfRmOy0BMv/+J0imtWwBh5z7urJjf4L5XKCBhIWO

sPK4lKPPOKZQhRcnh07dMPYAPfTG+T2BvobtbDmnLjT2tC6vCn1ikXhmnJhzDYav

…

HNHPPQanI9HpDNBxWrVzcH6zIV1vBHSeB/tFtZpOI+beHjx7X3d1cyCg5lfERzyQ

3jJyjSbMMbz8Pj/1meM0rlWQ/ZnYYiQAtJYqUN3ctT21Uu3ZVVnw46A8voTnSRMd

5mVFLFMeFyJkWgsyqLroBTm4U/G+gZ2BB0ImzSbSfIo=

SIG # End signature block

This is how signatures happen to be stored in PowerShell code (MOF files being an exception). To

complicate matters, every file type that can be signed has its signature stored in a unique fashion. For

example, the PE Authenticode specification explains how signatures are stored and validated in PE files

(e.g. EXE, DLL, SYS, etc.).

One of the functions used to discover the SIP associated with a particular file type is the

CryptSIPRetrieveSubjectGuid function in crypt32.dll (most frequently called indirectly via

WinVerifyTrust). Given a filename and optional handle, CryptSIPRetrieveSubjectGuid returns a GUID that

represents the SIP that can handle retrieving an embedded Authenticode signature. The function

roughly works as follows:

1. Based on file magic values, it tries to determine if the file is a PE, catalog file, CTL, or cabinet file.

If it is any of these file types, it returns the following respective SIP GUID:

• C689AAB8-8E78-11D0-8C47-00C04FC295EE - PE

• DE351A43-8E59-11D0-8C47-00C04FC295EE - Catalog

• 9BA61D3F-E73A-11D0-8CD2-00C04FC295EE - CTL

• C689AABA-8E78-11D0-8C47-00C04FC295EE - Cabinet

2. If the file doesn’t match any of the previous file types, it will call CryptEnumOIDFunction, passing

it a function name of “CryptSIPDllIsMyFileType” and “CryptSIPDllIsMyFileType2”. These

functions correspond to a lookup of the following registry keys, respectively:

http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388208(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379927(v=vs.85).aspx

- 5 -

• HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\Enco

dingType 0\CryptSIPDllIsMyFileType\<All sub-GUIDs>

• HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\Enco

dingType 0\CryptSIPDllIsMyFileType2\<All sub-GUIDs>

As CryptEnumOIDFunction enumerates each SIP GUID registry subkey, it will call the export function

from the DLL listed in the “FuncName” and “Dll” registry values.

The function prototype for “CryptSIPDllIsMyFileType” is documented here and the function prototype

for “CryptSIPDllIsMyFileType2” is documented here. If implemented, “CryptSIPDllIsMyFileType”

functions are first called and if one of its functions returns “TRUE”, the SIP GUID that handles signatures

is returned. In practice (on Windows 10, at least), no SIPs implement “CryptSIPDllIsMyFileType” so

“CryptSIPDllIsMyFileType2” functions are then called to attempt to resolve the handling SIP. For

example, PowerShell (SIP GUID: 603BCC1F-4B59-4E08-B724-D2C6297EF351) implements

CryptSIPDllIsMyFileType2 as pwrshsip!PsIsMyFileType. Upon disassembling, decompiling, and cleaning

up the output, here is a representation of the PsIsMyFileType function in C for illustration purposes:

#define CRYPT_SUBJTYPE_POWERSHELL_IMAGE \
 { 0x603BCC1F, \
 0x4B59, \
 0x4E08, \
 { 0xB7, 0x24, 0xD2, 0xC6, 0x29, 0x7E, 0xF3, 0x51 } \
 }

BOOL WINAPI PsIsMyFileType(IN WCHAR *pwszFileName, OUT GUID *pgSubject) {
 BOOL bResult;
 WCHAR *SupportedExtensions[7];
 WCHAR *Extension;
 GUID PowerShellSIPGUID = CRYPT_SUBJTYPE_POWERSHELL_IMAGE;

 SupportedExtensions[0] = L"ps1";
 SupportedExtensions[1] = L"ps1xml";
 SupportedExtensions[2] = L"psc1";
 SupportedExtensions[3] = L"psd1";
 SupportedExtensions[4] = L"psm1";
 SupportedExtensions[5] = L"cdxml";
 SupportedExtensions[6] = L"mof";

 bResult = FALSE;

 if (pwszFileName && pgSubject) {
 Extension = wcsrchr(pwszFileName, '.');

 if (Extension) {
 Extension++;

 for (int i = 0; i < 7; i++) {
 if (!_wcsicmp(Extension, SupportedExtensions[i])) {
 bResult = TRUE;
 memcpy(pgSubject, &PowerShellSIPGUID, sizeof(GUID));
 break;
 }

https://msdn.microsoft.com/en-us/library/windows/desktop/cc542636(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542640(v=vs.85).aspx

- 6 -

 }
 }
 }
 else {
 SetLastError(ERROR_INVALID_PARAMETER);
 }

 return bResult;
}

As can be seen in the C code, if any file has any of the above extensions, then the PowerShell SIP will be

used as the SIP for code signing purposes. “CryptSIPDllIsMyFileType2” need not just inspect file

extensions though. The SIP could also optionally open a file handle and inspect magic values in the file to

make the correct file/blob SIP handler determination.

Other supported SIP file type handler functions are as follows (non-exhaustive list):

1. 000C10F1-0000-0000-C000-000000000046

C:\Windows\System32\MSISIP.DLL

MsiSIPIsMyTypeOfFile

2. 06C9E010-38CE-11D4-A2A3-00104BD35090

C:\Windows\System32\wshext.dll

IsFileSupportedName

3. 0AC5DF4B-CE07-4DE2-B76E-23C839A09FD1

C:\Windows\System32\AppxSip.dll

AppxSipIsFileSupportedName

4. 0F5F58B3-AADE-4B9A-A434-95742D92ECEB

C:\Windows\System32\AppxSip.dll

AppxBundleSipIsFileSupportedName

5. 1629F04E-2799-4DB5-8FE5-ACE10F17EBAB

C:\Windows\System32\wshext.dll

IsFileSupportedName

6. 1A610570-38CE-11D4-A2A3-00104BD35090

C:\Windows\System32\wshext.dll

IsFileSupportedName

7. 5598CFF1-68DB-4340-B57F-1CACF88C9A51

C:\Windows\System32\AppxSip.dll

P7xSipIsFileSupportedName

8. 603BCC1F-4B59-4E08-B724-D2C6297EF351

C:\Windows\System32\WindowsPowerShell\v1.0\pwrshsip.dll

PsIsMyFileType

9. 9F3053C5-439D-4BF7-8A77-04F0450A1D9F

C:\Windows\System32\EsdSip.dll

- 7 -

EsdSipIsMyFileType

10. CF78C6DE-64A2-4799-B506-89ADFF5D16D6
C:\Windows\System32\AppxSip.dll

EappxSipIsFileSupportedName

11. D1D04F0C-9ABA-430D-B0E4-D7E96ACCE66C
C:\Windows\System32\AppxSip.dll

EappxBundleSipIsFileSupportedName

It may be a valuable exercise for the reader to reverse some of the above functions to see what types of

file and/or binary blobs Windows supports for code signing.

Once the software that needs to retrieve a signature obtains the GUID for the SIP, it can then proceed to

extract the certificate.

File Signature Retrieval and Hash Validation

Once the SIP responsible for handling signing for a particular file/binary blob format is identified via its

respective GUID identifier, WinVerifyTrust will then know how to obtain the digital signature from the

file in question and validate its computed hash against the signed hash embedded within the digital

signature. To achieve this, WinVerifyTrust calls the following functions in the registry:

SIP signature retrieval function location:

● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\EncodingTy

pe 0\CryptSIPDllGetSignedDataMsg\{SIP Guid}

○ Dll

○ FuncName

SIP hash validation function:

● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\EncodingTy

pe 0\CryptSIPDllVerifyIndirectData\{SIP Guid}

○ Dll

○ FuncName

The function prototypes for CryptSIPDllGetSignedDataMsg and CryptSIPDllVerifyIndirectData are both

documented in MSDN as well as within mssip.h in the Windows SDK.

SIP signature retrieval function prototype:

BOOL WINAPI CryptSIPGetSignedDataMsg(

IN SIP_SUBJECTINFO *pSubjectInfo,

OUT DWORD *pdwEncodingType,

IN DWORD dwIndex,

IN OUT DWORD *pcbSignedDataMsg,

OUT BYTE *pbSignedDataMsg);

https://msdn.microsoft.com/en-us/library/windows/desktop/cc542585(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542591(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736434(v=vs.85).aspx

- 8 -

SIP hash validation function:

BOOL WINAPI CryptSIPVerifyIndirectData(

IN SIP_SUBJECTINFO *pSubjectInfo,

IN SIP_INDIRECT_DATA *pIndirectData);

The arguments supplied to these functions are populated by the calling trust provider (more details on

the trust provider architecture in sections to follow). When CryptSIPGetSignedDataMsg is called, the SIP

will extract the encoded digital signature (a CERT_SIGNED_CONTENT_INFO structure most often ASN.1

PKCS_7_ASN_ENCODING and X509_ASN_ENCODING encoded) and return it via the “pbSignedDataMsg”

parameter. The CERT_SIGNED_CONTENT_INFO content consists of the signing certificate (including its

issuing chain), the algorithm used to hash and sign the file, and the signed hash of the file. The calling

trust provider then decodes the digital signature, extracts the hash algorithm and signed hash value and

passes them to CryptSIPVerifyIndirectData. After the Authenticode hash is computed and compared

against the signed hash, if they match, CryptSIPVerifyIndirectData returns TRUE. Otherwise, it returns

FALSE and WinVerifyTrust will return an error indicating that there was a hash mismatch.

CryptSIPVerifyIndirectData is one of the most important digital signature validation functions as it is

what would indicate an error if an attacker simply applied an existing, legitimate digital signature to

their malware - a technique employed in the wild.

Here’s an example of what a hash mismatch would look like on a malware sample with a legitimate

Authenticode signature applied to it:

Example of a hash mismatch error being displayed on an unsigned file with a Microsoft Authenticode signature applied to it

(note identical SignerCertificate thumbprint values)

https://msdn.microsoft.com/en-us/library/windows/desktop/bb736434(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736433(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa377540(v=vs.85).aspx
https://twitter.com/craiu/status/879690795946827776?lang=en

- 9 -

An unsigned file fails to validate when it has an Authenticode signature from a signed file applied to it. This is by design.

Trust Provider Architecture

Up to this point, the basic architecture of SIPs has been discussed. As should now be understood, SIPs

are only responsible for digital signature application, retrieval, and hash calculation/validation. The

presence of a digital signature applied to a file is meaningless unless certain criteria are actually

validated. This is where trust providers come into play - they validate trust based on a combination of

parameters specified by the caller to WinVerifyTrust in addition to criteria built into the desired trust

provider.

Like SIPs, trust providers are also uniquely identified by GUIDs. As of Windows 10, the following trust

providers are present:

- 10 -

A7F4C378-21BE-494e-BA0F-BB12C5D208C5 UNKNOWN .NET VERIFIER

7801EBD0-CF4B-11D0-851F-0060979387EA CERT_CERTIFICATE_ACTION_VERIFY

6078065B-8F22-4B13-BD9B-5B762776F386 CONFIG_CI_ACTION_VERIFY

D41E4F1F-A407-11D1-8BC9-00C04FA30A41 COR_POLICY_LOCKDOWN_CHECK

D41E4F1D-A407-11D1-8BC9-00C04FA30A41 COR_POLICY_PROVIDER_DOWNLOAD

31D1ADC1-D329-11D1-8ED8-0080C76516C6 COREE_POLICY_PROVIDER

F750E6C3-38EE-11D1-85E5-00C04FC295EE DRIVER_ACTION_VERIFY

573E31F8-AABA-11D0-8CCB-00C04FC295EE HTTPSPROV_ACTION

5555C2CD-17FB-11d1-85C4-00C04FC295EE OFFICESIGN_ACTION_VERIFY

64B9D180-8DA2-11CF-8736-00AA00A485EB WIN_SPUB_ACTION_PUBLISHED_SOFTWARE

C6B2E8D0-E005-11CF-A134-00C04FD7BF43 WIN_SPUB_ACTION_PUBLISHED_SOFTWARE_NOB

ADUI

189A3842-3041-11D1-85E1-00C04FC295EE WINTRUST_ACTION_GENERIC_CERT_VERIFY

FC451C16-AC75-11D1-B4B8-00C04FB66EA0 WINTRUST_ACTION_GENERIC_CHAIN_VERIFY

00AAC56B-CD44-11D0-8CC2-00C04FC295EE WINTRUST_ACTION_GENERIC_VERIFY_V2

573E31F8-DDBA-11D0-8CCB-00C04FC295EE WINTRUST_ACTION_TRUSTPROVIDER_TEST

The purpose of some of these trust providers is documented in MSDN and SoftPub.h in the Windows

SDK, but their respective implementations are not documented, requiring a leap of faith from

developers that trust verification of certificates, signatures, chains, revocation, and time-stamping are

performed correctly. One of the more common trust providers used by a developer calling

WinVerifyTrust will be WINTRUST_ACTION_GENERIC_VERIFY_V2 for generic Authenticode signature

trust validation. If the trust of a driver needs to be validated in user mode, DRIVER_ACTION_VERIFY should

be used.

Like SIPs, trust providers are registered in the registry as well in the following key:
● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\Providers\Trust

Within the “Trust” key is a list of subkeys corresponding to each step of trust provider validation that

can occur: Initialization, Message, Signature, Certificate, CertCheck, FinalPolicy, DiagnosticPolicy, and

Cleanup. Within each of these keys are the trust provider GUIDs that implement each of those steps (not

all of which are required. e.g. CertCheck, DiagnosticPolicy, and Cleanup). Within each respective GUID

subkey are the DLLs and export functions that implement the trust provider steps: $DLL and

$Function.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa388208(v=vs.85).aspx

- 11 -

Example of a trust provider registration in the registry

The purpose of each trust provider step can be broken down roughly as follows:

1. Initialization:

a. Initializes the CRYPT_PROVIDER_DATA structure based on the WINTRUST_DATA

structure passed to WinVerifyTrust. CRYPT_PROVIDER_DATA is a structure that is passed

between all of the trust provider functions and serves to maintain state across all the

calls including and error codes that could have occurred each step along the way (see

TRUSTERROR_STEP values in wintrust.h).

b. Opens a read file handle to the file to be validated.

2. Message:

a. Obtains signer information from the subject interface package. This is the only step in

the verification process that calls into the respective SIP to obtain the correct signature.

Note that some trust verification utilities will first check the catalog store for a signature

before attempting to obtain a signature from an embedded Authenticode signature.

b. Both the “initialization” and “message” steps are referred as “object providers.”

3. Signature:

a. In this step, the digital signature is built out and counter-signers and timestamps are

validated.

b. This step is referred to as a “signature provider.”

4. Certificate:

a. In this step, the full certificate chain is built out.

b. This step is referred to as a “certificate provider.”

5. CertCheck:

a. If this optional step is implemented, this function is called for each index within the

certificate chain and is used to indicate to the trust provider that the certificate chain

should continue to be built out.

6. FinalPolicy:

a. This is the function where the majority of trust decisions are made. At this point, the

signature and certificate chain has been decoded, parsed and supplied to this

implementing function.

b. What components of the signature, certificate chain, and certificate store are validated

vary depending upon the trust provider. Here is small list of some of the checks that

https://msdn.microsoft.com/en-us/library/windows/desktop/aa381453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388205(v=vs.85).aspx

- 12 -

occur when the WINTRUST_ACTION_GENERIC_VERIFY_V2 trust provider is used

(implemented as wintrust!SoftPubAuthenticode):

i. Verify that the file was signed with a certificate designated for code signing as

indicated by an enhanced key usage (EKU) of “1.3.6.1.5.5.7.3.3”

ii. Check if the certificate is expired and hasn’t been timestamped.

iii. Check if the certificate has been revoked.

iv. Validate that the file was not signed using a hash algorithm that has been

designated as “weak.”

v. If the file was signed with a certificate designated for “Windows System

Component Verification” (EKU - 1.3.6.1.4.1.311.10.3.6), validate that the signing

certificate chains to a fixed set of trusted Microsoft root certificates.

7. DiagnosticPolicy:

a. This optional step is designed to aid debugging for trust provider developers. It is

intended to allow for a Microsoft developer to dump out structure contents prior to

returning to WinVerifyTrust.

b. WINTRUST_ACTION_TRUSTPROVIDER_TEST is the only trust provider that implements

this step. WINTRUST_ACTION_TRUSTPROVIDER_TEST is identical to

WINTRUST_ACTION_GENERIC_VERIFY_V2 but it just implements this extra step

implemented as wintrust!SoftpubDumpStructure. SoftpubDumpStructure dumps out

the populated CRYPT_DATA_PROVIDER structure to C:\TRUSTPOL.TXT. This step

can be easily tested with signtool.exe (available in the Windows SDK) from an elevated

prompt (required to write a file to C:\) by specifying the

WINTRUST_ACTION_TRUSTPROVIDER_TEST (Authenticode Test) trust provider

GUID:

i. signtool verify /pg {573E31F8-DDBA-11D0-8CCB-

00C04FC295EE} filename.exe

8. Cleanup:

a. In this optional step, a trust provider can cleanup any CRYPT_PROVIDER_PRIVDATA that

was populated to pass policy-specific data across trust provider steps.

Trust Provider and SIP Registration

It is important to know the legitimate means by which trust providers and SIPs are registered in the

registry in order to understand how an attacker might take advantage of the registration process (or

subvert it entirely).

SIP Registration

Subject interface packages are formally registered by calling the wintrust!CryptSIPAddProvider function

within a DllRegisterServer export function. This enables the SIP to be formally registered by calling

“regsvr32.exe SIPfilename.dll”. CryptSIPAddProvider requires a SIP_ADD_NEWPROVIDER

https://msdn.microsoft.com/en-us/library/windows/desktop/aa381456(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380283(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682162(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387767(v=vs.85).aspx

- 13 -

structure consisting of the export functions exported in the SIP DLL that implement signing functionality.

The following SIP_ADD_NEWPROVIDER fields are required:

1. pwszDLLFileName:

The name of the SIP DLL. This can be just the file name but it should be a full path.

2. pwszGetFuncName:

Export function name of implemented CryptSIPGetSignedDataMsg

3. pwszPutFuncName:

Export function name of implemented CryptSIPPutSignedDataMsg

4. pwszCreateFuncName:

Export function name of implemented CryptSIPCreateIndirectData

5. pwszVerifyFuncName:

Export function name of implemented CryptSIPVerifyIndirectData

6. pwszRemoveFuncName:

Export function name of implemented CryptSIPRemoveSignedDataMsg

The following SIP_ADD_NEWPROVIDER fields are optional:

1. pwszIsFunctionNameFmt2:

Export function name of implemented pfnIsFileSupportedName

2. pwszGetCapFuncName:

Export function name of implemented pCryptSIPGetCaps

3. pwszIsFunctionName:

Export function name of implemented pfnIsFileSupported

Upon calling CryptSIPAddProvider, wintrust.dll adds the respective export function names and

implementing DLL to the

“HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\EncodingType 0”

subkeys.

SIP DLLs should also implement a DllUnregisterServer deregistration function that calls

CryptSIPRemoveProvider to remove all relevant SIP registry entries.

Trust Provider Registration

Trust providers are formally registered by calling the wintrust!WintrustAddActionID function within a

DllRegisterServer export function. This enables the trust provider to be formally registered by calling

“regsvr32.exe TrustProviderfilename.dll”. WintrustAddActionID requires a

CRYPT_REGISTER_ACTIONID structure consisting of the export functions exported in the trust provider

DLL that perform all the trust validation steps. Trust provider registration functionality can either be

shared with that of a SIP registration or it can be separate in its own, dedicated DLL.

https://msdn.microsoft.com/en-us/library/windows/desktop/cc542585(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736358(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542591(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542589(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542640(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh968154(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc542636(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms691457(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380284(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388196(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa381463(v=vs.85).aspx

- 14 -

Upon calling WintrustAddActionID, wintrust.dll adds the respective export function names and

implementing DLL to the

“HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\Providers\Trust”

subkeys.

Trust providers are formally deregistered by calling wintrust!WintrustRemoveActionID within a

DllUnregisterServer export function .

Trust Provider and SIP Registration Example

The most significant trust provider registration resides in wintrust!DllRegisterServer which performs the

following registration steps:

1. Calls WintrustDllRegisterServer

a. Registers ASN.1 encoding/decoding routines used by CryptEncodeObject and

CryptDecodeObject by calling wintrust!CryptRegisterOIDFunction. Many of these

functions are called upon creation of a digital signature. Their decoding counterpart

functions will often be called when parsing digital signatures for verification purposes.

Like with SIP and trust provider registrations, these implementing functions are also

stored in the registry:

● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID

\EncodingType

1\[CryptDllDecodeObject|CryptDllEncodeObject]

All of these encoding functions take on the following function signature:

● BOOL WINAPI EncoderDecoderFunction(DWORD

dwCertEncodingType, LPCSTR lpszStructType,

PSPC_PE_IMAGE_DATA pInfo, BYTE *pbEncoded, DWORD

*pcbEncoded);

WintrustDllRegisterServer registers the following encoding/decoding routines:

i. 1.3.6.1.4.1.311.2.1.15 (SPC_PE_IMAGE_DATA_OBJID)

Function: wintrust!WVTAsn1SpcPeImageDataEncode

ii. 1.3.6.1.4.1.311.2.1.25 (SPC_CAB_DATA_OBJID)

 Function: wintrust!WVTAsn1SpcLinkEncode

iii. 1.3.6.1.4.1.311.2.1.20 (SPC_JAVA_CLASS_DATA_OBJID)

 Function: wintrust!WVTAsn1SpcLinkEncode

iv. 1.3.6.1.4.1.311.2.1.28 (SPC_LINK_OBJID)

 Function: wintrust!WVTAsn1SpcLinkEncode

v. 1.3.6.1.4.1.311.2.1.30 (SPC_SIGINFO_OBJID)

 Function: wintrust!WVTAsn1SpcSigInfoEncode

vi. 1.3.6.1.4.1.311.2.1.4 (SPC_INDIRECT_DATA_OBJID)

 Function: wintrust!WVTAsn1SpcIndirectDataContentEncode

vii. 1.3.6.1.4.1.311.2.1.10 (SPC_SP_AGENCY_INFO_OBJID)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa388199(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378145(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378145(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380266(v=vs.85).aspx

- 15 -

 Function: wintrust!WVTAsn1SpcSpAgencyInfoEncode

viii. 1.3.6.1.4.1.311.2.1.26 (SPC_MINIMAL_CRITERIA_OBJID)

 Function: wintrust!WVTAsn1SpcMinimalCriteriaInfoEncode

ix. 1.3.6.1.4.1.311.2.1.27 (SPC_FINANCIAL_CRITERIA_OBJID)

 Function: wintrust!WVTAsn1SpcFinancialCriteriaInfoEncode

x. 1.3.6.1.4.1.311.2.1.11 (SPC_STATEMENT_TYPE_OBJID)

 Function: wintrust!WVTAsn1SpcStatementTypeEncode

xi. 1.3.6.1.4.1.311.12.2.1 (CAT_NAMEVALUE_OBJID)

 Function: wintrust!WVTAsn1CatNameValueEncode

xii. 1.3.6.1.4.1.311.12.2.2 (CAT_MEMBERINFO_OBJID)

 Function: wintrust!WVTAsn1CatMemberInfoEncode

xiii. 1.3.6.1.4.1.311.12.2.3 (CAT_MEMBERINFO2_OBJID)

 Function: wintrust!WVTAsn1CatMemberInfo2Encode

xiv. 1.3.6.1.4.1.311.2.1.12 (SPC_SP_OPUS_INFO_OBJID)

 Function: wintrust!WVTAsn1SpcSpOpusInfoEncode

xv. 1.3.6.1.4.1.311.2.4.2 (szOID_INTENT_TO_SEAL)

 Function: wintrust!WVTAsn1IntentToSealAttributeEncode

xvi. 1.3.6.1.4.1.311.2.4.3 (szOID_SEALING_SIGNATURE)

 Function: wintrust!WVTAsn1SealingSignatureAttributeEncode

xvii. 1.3.6.1.4.1.311.2.4.4 (szOID_SEALING_TIMESTAMP)

 Function: wintrust!WVTAsn1SealingTimestampAttributeEncode

2. Next, SoftpubDllRegisterServer is called where it calls WintrustAddActionID to register the

following trust providers:

a. WINTRUST_ACTION_GENERIC_VERIFY_V2

b. WIN_SPUB_ACTION_PUBLISHED_SOFTWARE

c. WIN_SPUB_ACTION_PUBLISHED_SOFTWARE_NOBADUI

d. WINTRUST_ACTION_GENERIC_CERT_VERIFY

e. WINTRUST_ACTION_TRUSTPROVIDER_TEST

f. HTTPSPROV_ACTION. The following related default “usages” are also registered (all

stored in

HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\Provider

s\Trust\Usages):

i. 1.3.6.1.4.1.311.10.3.3 (szOID_SERVER_GATED_CRYPTO)

 Alloc/dealloc function: wintrust!SoftpubLoadDefUsageCallData

ii. 1.3.6.1.5.5.7.3.1 (szOID_PKIX_KP_SERVER_AUTH)

 Alloc/dealloc function: wintrust!SoftpubLoadDefUsageCallData

iii. 1.3.6.1.5.5.7.3.2 (szOID_PKIX_KP_CLIENT_AUTH)

 Alloc/dealloc function: wintrust!SoftpubLoadDefUsageCallData

iv. 2.16.840.1.113730.4.1 (szOID_SGC_NETSCAPE)

 Alloc/dealloc function: wintrust!SoftpubLoadDefUsageCallData

g. DRIVER_ACTION_VERIFY

h. WINTRUST_ACTION_GENERIC_CHAIN_VERIFY

https://msdn.microsoft.com/en-us/library/windows/desktop/hh802766(v=vs.85).aspx

- 16 -

3. Finally, mssip32DllRegisterServer is called to register SIPs. Specifically, CryptSIPAddProvider is

called to register the following SIPs:

a. DE351A42-8E59-11D0-8C47-00C04FC295EE

CRYPT_SUBJTYPE_FLAT_IMAGE

b. C689AABA-8E78-11d0-8C47-00C04FC295EE

CRYPT_SUBJTYPE_CABINET_IMAGE

c. C689AAB8-8E78-11D0-8C47-00C04FC295EE

CRYPT_SUBJTYPE_PE_IMAGE

d. DE351A43-8E59-11D0-8C47-00C04FC295EE

CRYPT_SUBJTYPE_CATALOG_IMAGE

e. 9BA61D3F-E73A-11D0-8CD2-00C04FC295EE

CRYPT_SUBJTYPE_CTL_IMAGE

4. mssip32DllRegisterServer also explicitly deregisters the following SIPs (in reality, the Java SIP

artifacts remain in the registry in a default built of Windows):

a. C689AAB9-8E78-11D0-8C47-00C04FC295EE

CRYPT_SUBJTYPE_JAVACLASS_IMAGE

b. 941C2937-1292-11D1-85BE-00C04FC295EE

 CRYPT_SUBJTYPE_SS_IMAGE

While it is certainly not recommended, all wintrust trust provider and SIP registrations can be formally

deregistered with the following command (from an elevated prompt):

● regsvr32.exe /u C:\Windows\System32\wintrust.dll

Running the above command would strip Windows of the ability to perform most digital signature

retrieval and trust validation in user mode.

Trust Provider and SIP Interaction

While the interaction between a SIP and a trust provider was mentioned in the “Message” trust provider

step previously, a diagram illustrating all the steps in order should be helpful.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa380369(v=vs.85).aspx

- 17 -

Illustration of the interplay between WinVerifyTrust, trust providers, and subject interface packages

Hopefully by now, there is a basic level of understanding about the role of trust providers and subject

interface packages and the extent to which their architecture is designed to be modular through

registration in the registry. In the next section, attacks on the modularity of the Windows trust

architecture will be discussed.

- 18 -

Windows Trust Architecture Attacks

Armed with a basic understanding of the Windows user mode trust architecture and an elevated

privilege level, an attacker has what he/she needs to subvert trust. What might an attacker wish to

achieve by subverting trust?

1. Have the OS believe that attacker-supplied code was signed with and validated as a “trusted”

code signing certificate - e.g. one used to sign Microsoft code. The motivation behind such an

attack would be any of the following:

a. To influence a security product to classify attacker supplied code as benign.

b. To hide from security/diagnostic tools that perform signature validation.

c. To generally remain under the radar. Incident responders may be more likely to

overlook code that is “signed using a legitimate certificate”.

d. To load malicious code in the context of any process that performs user mode trust

validation.

2. Subvert application whitelisting publisher rules that enforce policy based on trusted signing

authorities. Publisher enforcement is one of the most common whitelisting rule scenarios as it

allows code signed by trusted publishers to execute even across updates versus hash rules that

don’t permit software updates and are more difficult to maintain and audit.

SIP Hijack #1: CryptSIPDllGetSignedDataMsg

As was explained earlier, the CryptSIPDllGetSignedDataMsg component of a SIP is what enables the

retrieval of an encoded digital certificate from a signed file. As a reminder, the implemented export

function for a SIP’s CryptSIPDllGetSignedDataMsg component is present in the following registry key:

● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\EncodingTy

pe 0\CryptSIPDllGetSignedDataMsg\{SIP Guid}

○ Dll - Path to the DLL that implements the digital signature

retrieval function

○ FuncName - The name of the exported function that

implements the digital signature retrieval function

Additionally, as was discussed previously, CryptSIPDllGetSignedDataMsg functions have the following

documented function prototype:

BOOL WINAPI CryptSIPGetSignedDataMsg(

IN SIP_SUBJECTINFO *pSubjectInfo,

OUT DWORD *pdwEncodingType,

IN DWORD dwIndex,

IN OUT DWORD *pcbSignedDataMsg,

OUT BYTE *pbSignedDataMsg);

https://msdn.microsoft.com/en-us/library/windows/desktop/bb736434(v=vs.85).aspx

- 19 -

Any attacker familiar with C/C++ will be able to easily implement such a function and replace the

existing SIP entry with that of their malicious function. First, it is important to understand the meaning

of each parameter:

1. pSubjectInfo: A structure passed in from the calling trust provider that contains all the relevant

information about the file from which a signature should be extracted. Here is an example dump

of the structure passed to pwrshsip!PsGetSignature (the CryptSIPDllGetSignedDataMsg

component for the PowerShell SIP):

0:017> dt -r urlmon!SIP_SUBJECTINFO @rcx

 +0x000 cbSize : 0x80

 +0x008 pgSubjectType : 0x0000021a`95cfce10 _GUID {603bcc1f-4b59-

4e08-b724-d2c6297ef351}

 +0x000 Data1 : 0x603bcc1f

 +0x004 Data2 : 0x4b59

 +0x006 Data3 : 0x4e08

 +0x008 Data4 : [8] "???"

 +0x010 hFile : 0x00000000`00000a0c Void

 +0x018 pwsFileName : 0x0000021a`9ad8c0d4 "C:\Program

Files\WindowsPowerShell\Modules\Pester\4.0.3\Pester.psd1"

 +0x020 pwsDisplayName : 0x0000021a`9ad8c0d4 "C:\Program

Files\WindowsPowerShell\Modules\Pester\4.0.3\Pester.psd1"

 +0x028 dwReserved1 : 0

 +0x02c dwIntVersion : 0

 +0x030 hProv : 0x0000021a`ae7089e0

 +0x038 DigestAlgorithm : _CRYPT_ALGORITHM_IDENTIFIER

 +0x000 pszObjId : (null)

 +0x008 Parameters : _CRYPTOAPI_BLOB

 +0x000 cbData : 0

 +0x008 pbData : (null)

 +0x050 dwFlags : 0

 +0x054 dwEncodingType : 0

 +0x058 dwReserved2 : 0

 +0x05c fdwCAPISettings : 0x23c00

 +0x060 fdwSecuritySettings : 1

 +0x064 dwIndex : 0

 +0x068 dwUnionChoice : 0

 +0x070 psFlat : (null)

 +0x070 psCatMember : (null)

 +0x070 psBlob : (null)

 +0x078 pClientData : (null)

- 20 -

2. pdwEncodingType: Upon retrieving the digital signature from the file specified in

pSubjectInfo, this argument instructs the calling function (the trust provider “Message”

component) how to properly decode the return digital signature. This will most often be

PKCS_7_ASN_ENCODING and X509_ASN_ENCODING binary OR’ed together.

3. dwIndex: This parameter should be zero but in theory, your SIP can have the ability to contain

multiple embedded signatures and dwIndex would indicate which digital signature to extract

from the specified file.

4. pcbSignedDataMsg: The length of the digital signature (in bytes) returned via

pbSignedDataMsg.

5. pbSignedDataMsg: The encoded digital signature that’s returned to the calling trust

provider.

So if an attacker were to implement this function and use it, as an example, to overwrite the

CryptSIPDllGetSignedDataMsg component of the portable executable SIP (C689AAB8-8E78-11D0-8C47-

00C04FC295EE), any digital signature of the attackers choosing could be returned for any PE file.

Imagine the following fictional attack scenario:

1. An attacker implements the CryptSIPDllGetSignedDataMsg component of the portable

executable SIP and hijacks it in the registry.

2. The implementation simply consists of returning the same Microsoft certificate for any

executable file whether it has an embedded Authenticode signature or not.

3. In order to ensure that a digital signature of the appropriate format is returned, it is best to set a

breakpoint on the legitimate CryptSIPDllGetSignedDataMsg in a debugger prior to hijacking it.

Doing so confirms that Authenticode PKCS #7 signed data is always returned.

a. In a PowerShell script, this involves base64 decoding the “SIG # Begin signature block”.

b. In a PE file with an embedded Authenticode signature, Authenticode PKCS #7 signed

data is present in the bCertificate field of the embedded WIN_CERTIFICATE structure as

documented in the PE Authenticode specification.

c. A catalog file itself is Authenticode PKCS #7 signed data (which can actually be used in

an embedded PE Authenticode signature).

4. Now, the attacker implementation simply needs to return the correct encoding, signature data

length, and signature data.

In this attack scenario, the hijacked CryptSIPDllGetSignedDataMsg will return the bytes of a catalog file

used to sign many system components like notepad.exe. To easily determine the catalog file associated

with a signed file, sigcheck.exe can be used:

● sigcheck -i C:\Windows\System32\notepad.exe

In this instance, it returns the following catalog file path:

● C:\WINDOWS\system32\CatRoot\{F750E6C3-38EE-11D1-85E5-

00C04FC295EE}\Microsoft-Windows-Client-Features-Package-

AutoMerged-shell~31bf3856ad364e35~amd64~~10.0.15063.0.cat

https://msdn.microsoft.com/en-us/library/windows/desktop/dn582059(v=vs.85).aspx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx

- 21 -

Now, the attacker implementation need only to return the bytes from that catalog file to have any PE

file appear to be signed using the same certificate as notepad.exe. A modular design approach might be

to embed the desired signature content in an embedded resource in the attacker-supplied SIP DLL.

What follows is an illustration showing how the PowerShell SIP CryptSIPDllGetSignedDataMsg

component is hijacked using a custom, malicious SIP that will always return the same, legitimate

Microsoft certificate for PowerShell files:

Demonstration of a PowerShell CryptSIPDllGetSignedDataMsg Hijack

It can be seen that prior to the hijack, as expected, test.ps1 shows up as not signed. After the hijack

occurs, however, test.ps1 appears to be signed with a Microsoft certificate:

An unsigned PowerShell script that appears to all of a sudden be signed by Microsoft

- 22 -

While the unsigned PowerShell script appears to be signed by Microsoft, it's hash will fail to validate accordingly.

So the hijack was successful but with one caveat - the signature fails to validate because the computed

hash doesn’t match with that of the signed hash in the digital signature. An additional side effect of this

hijack is that any PowerShell code will have the same digital signature applied which would lead to hash

mismatches in most cases.

In order to prevent trust validation from failing due to hash mismatches, the

CryptSIPDllVerifyIndirectData also requires hijacking.

SIP Hijack #2: CryptSIPDllVerifyIndirectData

As was explained in the previous hijack scenario, hijacking the CryptSIPDllGetSignedDataMsg component

of a registered SIP enables otherwise unsigned code to give the appearance of being signed. Considering

the hash will not match, however, the digital signature will fail to validate on attacker-supplied code.

Hijacking CryptSIPDllVerifyIndirectData will get the job done, however.

As a reminder, CryptSIPDllVerifyIndirectData implementations are stored in the following registry

values:

- 23 -

● HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\OID\EncodingTy

pe 0\CryptSIPDllVerifyIndirectData\{SIP Guid}

○ Dll

○ FuncName

This is its function prototype:

BOOL WINAPI CryptSIPVerifyIndirectData(

IN SIP_SUBJECTINFO *pSubjectInfo,

IN SIP_INDIRECT_DATA *pIndirectData);

Debugging legitimate implementations of CryptSIPVerifyIndirectData confirmed that when the

calculated Authenticode hash matches that of the signed hash value, CryptSIPVerifyIndirectData returns

TRUE. Therefore, all a malicious SIP needs to do is return TRUE resulting in the appearance of hash

validation producing a match for the respective SIP[s] that were hijacked. Continuing with the

PowerShell hijack example, a malicious SIP that simply returns true for the hash validation routine will

alleviate the issue of attacker-supplied code not validating properly.

The implementation of this function could not be more straightforward:

BOOL WINAPI AutoApproveHash(

 SIP_SUBJECTINFO *pSubjectInfo,

 SIP_INDIRECT_DATA *pIndirectData) {

 UNREFERENCED_PARAMETER(pSubjectInfo);

 UNREFERENCED_PARAMETER(pIndirectData);

 return TRUE;

}

Next, hijacking the hash verification handler (along with the previously hijack signature retrieval

function) will give pass all the checks of having unsigned PowerShell code pose as signed, Microsoft

code:

Hijacking the CryptSIPVerifyIndirectData component of the PowerShell SIP

https://msdn.microsoft.com/en-us/library/windows/desktop/bb736434(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736433(v=vs.85).aspx

- 24 -

Now, an unsigned PowerShell file appears signed and properly validated.

The "Digital Signatures" UI tab shows an unsigned PowerShell file that appears signed and properly validated.

- 25 -

Sysinternals sigcheck shows an unsigned PowerShell file that appears signed and properly validated.

A more ideal hijack scenario is to not even bother hijacking CryptSIPDllGetSignedDataMsg for the

targeted SIP. Rather, simply apply a legitimate Authenticode signature (e.g. from

C:\Windows\System32\WindowsPowerShell\v1.0\Modules\ISE\ise.psm1) to attacker-supplied code,

and to only hijack CryptSIPVerifyIndirectData. Doing so affords an attacker the following benefits:

1) There is less to hijack and clean up from.

2) Benign, legitimately signed code will have its respective signature applied properly.

3) Attacker-supplied code with a “legitimate” embedded Authenticode certificate is likely to

receive less scrutiny from a defender or security product.

test.ps1 has the same embedded Authenticode signature applied as ise.psm1. The matching SignerCertificate thumbprint

value confirms the match.

- 26 -

Note that while the examples up to this point have focused on the PowerShell SIP, these hijack

principles apply to all SIPs. Here is an example of a hijacked portable executable SIP (C689AAB8-8E78-

11D0-8C47-00C04FC295EE) that has a legitimate Microsoft digital signature applied to an attacker-

supplied binary:

notepad_backdoored.exe has the digital signature of notepad.exe (catalog-signed) applied to it.

The "Digital Signatures" UI tab also confirms that the attacker-suppled notepad_backdoored.exe validates as a signed

Microsoft file.

- 27 -

This hijack will convince any program that performs user-mode trust/signature validation including

Sysinternals Process Explorer:

notepad_backdoored.exe appears as a "verified signer" in Sysinternals Process Explorer.

Bypassing Device Guard UMCI Enforcement

In an application whitelisting scenario, hijacking the mechanism by which trust is validated using an

unsigned/unapproved binary poses a bit of a “chicken and the egg” problem whereby the trust of the

malicious SIP DLL needs to be validated per the deployed whitelisting policy. It turns out, with Device

Guard at least, that the system will fail to load the malicious SIP DLL which will subsequently cause trust

validation to fail in many cases. This understandably has the potential to cause system stability issues.

Ideally (for attackers) there would be a signed DLL that could serve the CryptSIPVerifyIndirectData role.

Fortunately, there is. Recall that CryptSIPVerifyIndirectData functions take on the following function

signature:

BOOL WINAPI CryptSIPVerifyIndirectData(

IN SIP_SUBJECTINFO *pSubjectInfo,

IN SIP_INDIRECT_DATA *pIndirectData);

Also, in order to pass the validation check, the function must return TRUE. So, one is faced with the

following requirements to produce a signed CryptSIPVerifyIndirectData function:

1) The DLL must be signed.

2) The function must accept two parameters.

3) The function must use the WINAPI/stdcall calling convention.

4) The function must return TRUE (which is most often interpreted as a non-zero and/or odd

number).

5) The function must not alter the arguments passed in as this would likely lead to memory

corruption.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb736434(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736433(v=vs.85).aspx

- 28 -

6) The function must ideally have no other unanticipated side effects other than returning “TRUE.”

7) The function must be exported.

While undoubtedly, such a process of finding candidate functions could be automated by translating

functions into an intermediate language for analysis, it didn’t take long to find a candidate export

function - ntdll!DbgUiContinue:

Annotated Disassembly of ntdll!DbgUiContinue

Simply setting the CryptSIPVerifyIndirectData registry key for the target SIP to

“C:\Windows\System32\ntdll.dll” and “DbgUiContinue” was sufficient to pass the hash validation check

for any code that has a legitimate embedded Authenticode signature applied to it. In practice, when

tested against the portable executable SIP on a Device Guard enforced system, attacker-supplied code

was blocked from executing. Hijacking the PowerShell SIP, however, enabled a constrained language

mode bypass, enabling arbitrary, unsigned code execution. At this point, it is unclear as to what

additional (likely kernel-backed) trust assertions are made with portable executables versus PowerShell

code. There are also likely to be better hijack functions than DbgUiContinue but it was sufficient to

demonstrate a hijack without required an unsigned, attacker-supplied SIP DLL.

The following examples demonstrate Device Guard-enabled constrained language mode in PowerShell

preventing the execution of Add-Type prior to the hijack followed by the subsequent bypass after the

CryptSIPVerifyIndirectData hijack occurs:

- 29 -

Prior to the hijack, the code in test.psm1 will be prevented from executing due to constrained language mode enforcement.

- 30 -

After the "signed code reuse" attack occurs, constrained language mode is circumvented.

Despite this form of hijack not representing a complete takeover of Device Guard user mode integrity

enforcement (UMCI), it does however pose a good hijacking method from a stealth perspective because

it doesn’t require an attacker to drop any malicious code to disk - i.e. the attacker supplied SIP.

Trust Provider “FinalPolicy” Hijack

As was described in the trust provider architecture section, the final trust decision is made by the

FinalPolicy component of the trust provider. This is the function signature for FinalPolicy:

HRESULT WINAPI FinalPolicyFunction(_Inout_ struct _CRYPT_PROVIDER_DATA

*pProvData);

The FinalPolicy implementing function for the respective trust provider is located here:

- 31 -

HKLM\SOFTWARE\[WOW6432Node\]Microsoft\Cryptography\Providers\Trust\Fin

alPolicy\{trust provider GUID}

While an attacker could choose to implement their own trust provider DLL to subvert FinalPolicy, this

would require dropping attacker-supplied, malicious code to disk. Additionally, the implementation of a

trust provider is sufficiently complex to fully implement compared to that of a SIP. As was described

previously however, signed code can be used to hijack FinalPolicy as a means of getting it to simulate

passing all of its checks. A candidate signed hijack function would need to meet the following

requirements:

1. The DLL must be signed.

2. The function must accept one parameter.

3. The function must use the WINAPI/stdcall calling convention.

4. The function must return 0 (S_OK) which indicates success as an HRESULT.

5. The function must not alter the arguments passed in as this would likely lead to memory

corruption.

6. The function must ideally have no other unanticipated side effects other than returning 0.

7. The function must be exported.

The unimplemented export function wintrust!SoftpubCleanup meets all the requirements to perform a

hijack.

Annotated SoftpubCleanup Disassembly

Written in C, this function is equivalent to the following:

HRESULT WINAPI SoftpubCleanup(CRYPT_PROVIDER_DATA *data)

{

 return S_OK;

}

- 32 -

As an example, setting the FinalPolicy component of WINTRUST_ACTION_GENERIC_VERIFY_V2

(00AAC56B-CD44-11D0-8CC2-00C04FC295EE) will cause many signature validation tools to consider

unsigned code, or code with a legitimate signature applied, as trusted (e.g. Get-AuthenticodeSignature,

sigcheck, signtool, etc.). In practice, performing this hijack with SoftpubCleanup causes Process Explorer

(procexp) to reliably crash.

Hiding from Autoruns

A side effect of applying a legitimate Microsoft Authenticode digital signature to attacker-supplied code

hijacking the CryptSIPVerifyIndirectData component of a targeted SIP is that it will hide from Autoruns

by default which does not display “Microsoft” or “Windows” entries by default.

With the portable executable SIP hijack in place, a persistent, attacker-supplied EXE does not show up by

default:

notepad_backdoored.exe is hidden from the default view in Autoruns.

When “Hide Microsoft Entries” and “Hide Windows Entries” are both deselected however, the malicious

entry in the Run key becomes visible:

Confirmation that notepad_backdoored.exe only appears upon deselecting "Hide Windows Entries"

- 33 -

Persistence and Code Execution

With knowledge of how to hijack SIPs and trust providers, it should be clear that beyond subverting

trust, these hijack attacks also permit persistent code execution in the context of any application that

performs code signing or signature validation. By implementing a SIP or trust provider, code execution is

possible in the following non-exhaustive list of programs:

1) DllHost.exe - When the “Digital Signatures” tab is displayed in file properties

2) Process Explorer - When the “Verified Signer” tab is displayed

3) Autoruns

4) Sigcheck

5) consent.exe - Any time a UAC prompt is displayed

6) signtool.exe

7) smartscreen.exe

8) Get-AuthenticodeSignature

9) Set-AuthenticodeSignature

10) Security vendor software that performs certificate validation based on calls to WinVerifyTrust.

Additional persistence and code execution opportunities exist and can be discovered by filtering off the

following registry key paths in Process Monitor:

1) HKLM\SOFTWARE\Microsoft\Cryptography\Providers

2) HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\Providers

3) HKLM\SOFTWARE\Microsoft\Cryptography\OID

4) HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\OID

When hijacking a trust provider using attacker-supplied code, one possible stability consideration would

be to implement malicious logic as part of the “DiagnosticPolicy” component so as to not interfere with

legitimate trust functionality.

When attempting to gain code execution in the context of a SIP, one possible code execution

consideration might be to implement malicious logic in a “CryptSIPDllIsMyFileType” component and to

return “FALSE” indicating that other “CryptSIPDllIsMyFileType” and “CryptSIPDllIsMyFileType2”

components should be called to determined which SIP represents the file in question. Do be mindful

however that any weaponization scenario comes with it its own unique set of indicators or compromise

that can be signatured.

One final consideration is that SIP and trust provider DLLs need not have their full path specified in the

registry. If just the SIP or trust provider filename is specified, it is loaded via the standard DLL load order.

This gives an attacker the ability to hijack existing SIP/trust provider DLLs without needing to modify the

registry. For example in Windows 10, the Microsoft Office SIP VBA macro SIP (9FA65764-C36F-4319-

9737-658A34585BB7) is registered (WoW64 only) using only its file name: mso.dll. Additionally, with

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://msdn.microsoft.com/en-us/powershell/reference/5.0/microsoft.powershell.security/get-authenticodesignature
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.security/set-authenticodesignature
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

- 34 -

only the filename of “mso.dll” specified, there is a potential for a generic DLL load order hijacking

vulnerability to present itself in any code that performs user-mode trust validation.

Subverting CryptoAPI v2 (CAPI) Event Logging

While not enabled by default, enabling the Microsoft-Windows-CAPI2/Operational event log can be a

valuable source of contextual information related to failed trust validation. Any time WinVerifyTrust is

called, EID 81 is generated and events will be populated as error if signature or trust validation fails as a

result of the call. For example, here are the event details associated with a failed trust validation of

“notepad_backdoored.exe” which has a legitimate Microsoft Authenticode digital signature applied to it

(most relevant portions bolded):

- WinVerifyTrust

 ActionID {00AAC56B-CD44-11D0-8CC2-00C04FC295EE}

 - UIChoice WTD_UI_NONE

 [value] 2

 - RevocationCheck

 [value] 0

 - StateAction WTD_STATEACTION_VERIFY

 [value] 1

 - Flags

 [value] 80000000

 [CPD_USE_NT5_CHAIN_FLAG] true

 - FileInfo

 [filePath] C:\Test\notepad_backdoored.exe

 [hasFileHandle] true

 - DigestInfo

 [digestAlgorithm] SHA256

 [digest]

4B2392D71DC2C44236EFD9861CACCE54CB53FB68AE0BB29FF467E98DB27FEE80

 - RegPolicySetting

 [value] 23C00

 [WTPF_OFFLINEOK_IND] true

 [WTPF_OFFLINEOK_COM] true

 [WTPF_OFFLINEOKNBU_IND] true

 [WTPF_OFFLINEOKNBU_COM] true

 [WTPF_IGNOREREVOCATIONONTS] true

 - SignatureSettingsFlags

 [value] 20000000

 [WSS_OUT_FILE_SUPPORTS_SEAL] true

 - SignerInfo

 - DigestAlgorithm

 [oid] 2.16.840.1.101.3.4.2.1

 [hashName] SHA256

- 35 -

 - CertificateChain

 [chainRef] {8C6B5132-F22D-49F4-B8C7-75B096E56AE5}

 - TimestampInfo

 [format] RFC 3161

 - DigestAlgorithm

 [oid] 2.16.840.1.101.3.4.2.1

 [hashName] SHA256

 SignTime 2017-03-18T20:02:03.777Z

 - TimestampChain

 [chainRef] {4BB8BB1B-8C68-4A12-87F1-1781D796CE20}

 - StepError

 [stepID] 32

 [stepName] TRUSTERROR_STEP_FINAL_OBJPROV

 - Result The digital signature of the object did not verify.

 [value] 80096010

 - EventAuxInfo

 [ProcessName] powershell.exe

 - CorrelationAuxInfo

 [TaskId] {114F8A0E-3E22-4395-872A-4CD5A857B34C}

 [SeqNumber] 9

 - Result The digital signature of the object did not verify.

 [value] 80096010

The above event is an “Error” event. In this example, if the CryptSIPVerifyIndirectData component of the

portable executable SIP were hijacked, the WinVerifyTrust event would still be logged but as an

“Information” event indicating that trust validation was successful:

- WinVerifyTrust

 ActionID {00AAC56B-CD44-11D0-8CC2-00C04FC295EE}

 - UIChoice WTD_UI_NONE

 [value] 2

 - RevocationCheck

 [value] 0

 - StateAction WTD_STATEACTION_VERIFY

 [value] 1

 - Flags

 [value] 80001080

 [WTD_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT] true

 [WTD_CACHE_ONLY_URL_RETRIEVAL] true

 [CPD_USE_NT5_CHAIN_FLAG] true

 - FileInfo

 [filePath] C:\Test\notepad_backdoored.exe

 [hasFileHandle] true

 - DigestInfo

- 36 -

 [digestAlgorithm] SHA256

 [digest]

4B2392D71DC2C44236EFD9861CACCE54CB53FB68AE0BB29FF467E98DB27FEE80

 - RegPolicySetting

 [value] 23C00

 [WTPF_OFFLINEOK_IND] true

 [WTPF_OFFLINEOK_COM] true

 [WTPF_OFFLINEOKNBU_IND] true

 [WTPF_OFFLINEOKNBU_COM] true

 [WTPF_IGNOREREVOCATIONONTS] true

 - SignatureSettingsFlags

 [value] 20000000

 [WSS_OUT_FILE_SUPPORTS_SEAL] true

 - SignerInfo

 - DigestAlgorithm

 [oid] 2.16.840.1.101.3.4.2.1

 [hashName] SHA256

 - CertificateChain

 [chainRef] {BFF90ED0-0277-48F4-9217-DD3A39F331E2}

 - TimestampInfo

 [format] RFC 3161

 - DigestAlgorithm

 [oid] 2.16.840.1.101.3.4.2.1

 [hashName] SHA256

 SignTime 2017-03-18T20:02:03.777Z

 - TimestampChain

 [chainRef] {9A4340F3-6A10-47E7-ACB6-BC3F9F565249}

 - EventAuxInfo

 [ProcessName] powershell.exe

 - CorrelationAuxInfo

 [TaskId] {2B21CD36-7A9C-4636-91CE-33FBA0B81D08}

 [SeqNumber] 11

 - Result

 [value] 0

So while the Microsoft-Windows-CAPI2/Operational event can provide valuable attack context

(primarily file path and the name of the verifying process), its expected behavior is subverted by

employing a trust validation attack.

Offensive Operational Considerations

The following suggestions are intended to help reduce/mitigate detection when implementing a

malicious SIP:

- 37 -

● If the SIP is being used to hijack existing SIP functionality, implement the same function names

as that of the functions you’re hijacking. This will prevent the need to change “FuncName”

registry values.

● While it is not advised to replace legitimate SIP binaries on disk with those of your own (e.g.

wintrust.dll), it is ideal to have your SIP DLL have the same name as the DLL you’re hijacking.

With the exception of SIP registrations with relative paths (e.g. WoW64 mso.dll), you will need

to change “Dll” registry values. The least suspicious method of changing “Dll” values is to change

strip the file path from “Dll” and plant your SIP DLL in the current directory of the target

application if such a scenario is feasible. For example, change

“C:\Windows\System32\WINTRUST.dll” to just “WINTRUST.dll.” Note that wintrust.dll is not

present in KnownDlls.

● If implementing a full SIP (e.g. with proper registration/deregistration functionality), be mindful

that functions related to SIP operations are relatively easy to build Yara signatures for. Consider

performing SIP registration/hijacks directly through the registry. For example, the following

imports would make for a good Yara rule:

○ CryptSIPAddProvider

○ CryptSIPRemoveProvider

○ CryptSIPLoad

○ CryptSetOIDFunctionValue

○ CryptRegisterOIDFunction

● If your SIP DLL is operating on “Microsoft\Cryptography\OID” key directly in the registry,

obfuscate the subkey paths.

● For the legitimate DLL that you plan to hijack with your SIP DLL, apply its Authenticode signature

to your binary. While a hash mismatch will be present, ideally, you’re hijacking the

CryptSIPVerifyIndirectData SIP component anyway to alleviate this issue. Note that many system

binaries are catalog signed. You can apply a catalog signature as an embedded Authenticode

signature, however. Applying the same certificate will produce an identical thumbprint

calculation and bypass some simple checks that security products might perform.

● If you are registering a new SIP GUID, use a historically defined one that isn’t currently

registered and apply the same filename and export function names as the SIP GUID used. For

example, Silverlight has a SIP with the following GUID: BA08A66F-113B-4D58-9329-

A1B37AF30F0E

○ Filename: xapauthenticodesip.dll

○ Exports:

XAP_CryptSIPCreateIndirectData,XAP_CryptSIPGetSignedDataMsg,XAP_CryptSIPPutSign

edDataMsg,XAP_CryptSIPRemoveSignedDataMsg,XAP_CryptSIPVerifyIndirectData,XAP_I

sFileSupportedName

https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/

- 38 -

Windows Trust Architecture Defenses

What follows is practical mitigation and detection guidance for enterprise defenders, threat hunters,

and security product developers.

Enterprise Defender Guidance

Baseline, Trim, and Normalize SIPs and Trust Providers

1. Baseline: It is recommended to sweep your environment for registered SIPs and trust providers

and determine what is normal. Note that in the course of this research, there does not appear

to exist any non-Microsoft SIP or trust provider. A list of known good SIPs and trust providers are

listed in the appendix.

2. Trim: Remove unnecessary SIPs. For example, consider removing the registered Microsoft Office

VBA WOW64 SIP – mso.dll (GUID: 9FA65764-C36F-4319-9737-658A34585BB7). On Windows 10,

this is a stale artifact and is also subject to DLL load order hijacking due to its lack of a full file

path in the registry. Only consider SIP removal when you are confident that you do not need

signing support for a particular SIP. Removing the registration artifacts from the registry will

suffice without needing to call CryptSIPRemoveProvider.

3. Normalize: Identify all SIPs and trust providers that utilize relative paths and supply them with

full file paths to eliminate any possibility of a load order hijack attack. An example of a SIP that

doesn’t register with a full file path is the following:

● 9FA65764-C36F-4319-9737-658A34585BB7 (WoW64) - mso.dll

The following trust providers do not specify full file paths:

● A7F4C378-21BE-494e-BA0F-BB12C5D208C5

● 4ECC1CC8-31B7-45CE-B4B9-2DD45C2FF958

● 31D1ADC1-D329-11D1-8ED8-0080C76516C6

Registry Value SACL Auditing

Considering the majority of the trust subversion attacks accounted for in this whitepaper involve

modifying registry values, SACL registry object auditing should be enabled for the following registry keys

and all subkeys for “Set Value” access and success and failures:

● HKLM\SOFTWARE\Microsoft\Cryptography\OID

● HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\OID

● HKLM\SOFTWARE\Microsoft\Cryptography\Providers\Trust

● HKLM\SOFTWARE\WOW6432Node\Microsoft\Cryptography\Providers\Trust

Registry values for subkeys of the keys listed above will rarely change, if ever, meaning that triggered

events will be high value and easily deconflicted from a rare, benign modification. With SACL auditing

- 39 -

enabled, a registry value change will generate a 4657 (“A registry value was modified”) event. Here is an

example entry:

A registry value was modified.

Subject:

 Security ID: DESKTOP-TEST\TestUser

 Account Name: TestUser

 Account Domain: DESKTOP-TEST

 Logon ID: 0x70920

Object:

 Object Name:

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType

0\CryptSIPDllVerifyIndirectData\{C689AAB8-8E78-11D0-8C47-00C04FC295EE}

 Object Value Name: FuncName

 Handle ID: 0x468

 Operation Type: Existing registry value modified

Process Information:

 Process ID: 0x2de8

 Process Name: C:\Windows\regedit.exe

Change Information:

 Old Value Type: REG_SZ

 Old Value: CryptSIPVerifyIndirectData

 New Value Type: REG_SZ

 New Value: DbgUiContinue

Information on Registry key auditing can be found here and here.

Sysmon

As an alternative to registry SACL auditing, those using sysmon should include rules to detect changes to

the key listed above as well as any subkeys. This sysmon ruleset should serve as a great resource for

building sysmon registry rules.

Code Integrity Event Log Events

The Microsoft-Windows-CodeIntegrity/Operational event log can be an extremely valuable indicator for

detecting malicious SIP or trust provider loads. Considering it does not appear as though the attacks

described in this whitepaper can be used to bypass protected processes, any protected process that

performs user mode trust validation may inadvertently attempt to load your malicious SIP or trust

https://support.microsoft.com/en-us/help/324739/how-to-use-group-policy-to-audit-registry-keys-in-windows-server-2003
https://technet.microsoft.com/en-us/library/dd941614(v=ws.10).aspx
https://github.com/SwiftOnSecurity/sysmon-config

- 40 -

provider DLL. As a result, the image load will fail and an EID 3033 event will be generated. Here is an

example:

Code Integrity determined that a process

(\Device\HarddiskVolume2\Windows\System32\SecurityHealthService.exe)

attempted to load

\Device\HarddiskVolume2\Users\TestUser\Desktop\Trust\SIP\MySIP.dll

that did not meet the Windows signing level requirements.

EventData

 FileNameLength 66

 FileNameBuffer

\Device\HarddiskVolume2\Users\TestUser\Desktop\Trust\SIP\MySIP.dll

 ProcessNameLength 66

 ProcessNameBuffer

\Device\HarddiskVolume2\Windows\System32\SecurityHealthService.exe

 RequestedPolicy 12

 ValidatedPolicy 1

 Status 3221226536

The “RequestPolicy” and “ValidatedPolicy” fields refer to the signing level of the host process and DLL,

respectively.

Note that this event will only generated if an attacker-supplied SIP or trust provider DLL is used. These

vents will not be generated using the signed code reuse attack. Those attacks are detected via registry

monitoring, however.

The Microsoft-Windows-CodeIntegrity/Operational is also an extremely valuable source of event data

when running Device Guard in audit mode or enforcement mode or by enabling hypervisor code

integrity (HVCI).

Threat Hunting/Intel and Incident Response Guidance

Threat Intel Research

Those interested in hunting for potentially malicious and/or benign instances of SIP and trust provider

DLLs using VirusTotal Retrohunt might want to use these basic Yara rules written by Joe Desimone at

Endgame.

rule sip_key

{

 strings:

 $str1 = "CryptSIPDllGetSignedDataMsg" nocase

http://www.alex-ionescu.com/?p=146
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-device-guard-enable-virtualization-based-security
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-device-guard-enable-virtualization-based-security
https://twitter.com/dez_
https://www.endgame.com/our-experts/joe-desimone

- 41 -

 $str2 = "CryptSIPDllVerifyIndirectData" nocase

 condition:

 any of them

}

rule final_policy_key

{

 strings:

 $str1 = "Providers" nocase

 $str2 = "Trust" nocase

 $str3 = "FinalPolicy" nocase

 condition:

 all of them

}

rule sip_api

{

 strings:

 $str1 = "CryptSIPAddProvider"

 $str2 = "WintrustAddActionID"

 $str3 = "CryptRegisterDefaultOIDFunction"

 $str4 = "CryptRegisterOIDFunction"

 condition:

 any of them

}

These Yara rules could certainly be tweaked to be slightly more targeted but upon initial inspection, of

the 6500 binaries/files returned, there appeared to be no malicious, fully-implemented SIP or trust

providers other than a PoC malicious SIP developed by the author of this whitepaper.

Use of Signature Validation Utilities

By now, it should be clear that without first validating against trust subversion attacks, that signature

validation utilities like sigcheck, signtool, and Get-AuthenticodeSignature assume that the integrity of

the trust validation mechanisms has not been subverted. Therefore, as any threat hunter and DFIR

practitioner should know, using a single analysis tool/methodology to classify something as benign,

especially on a system that is assumed to be compromised, is insufficient. If signature validation tools

are to be used on a system assumed to be compromised, it would be best to validate that SIP and trust

provider registry keys have not been altered in addition to performing offline reputation validation of

their respective DLLs by calculating their file hashes.

https://virustotal.com/en/file/9f53f93762103f8dc3f3e99c85bbe0ed6406646fd537e206fd2824223415a17b/analysis/

- 42 -

Security Vendor Guidance

Security product developers should consider the following when building trust subversion attack

mitigations/detections:

1. Identify calls made to WinVerifyTrust in your codebase. If the user-mode trust architecture in

Windows is relied upon, ensure that registry keys have not been hijacked and that reputation

has been established for SIPs and the trust providers your code relies upon.

2. As has been stated previously, a trust hijack attack can serve as a means of getting code

execution in the context of code that calls WinVerifyTrust. One of the most effective means of

preventing untrusted DLLs from being loaded into your process is to register an ELAM driver and

run your product as a protected service. As was mentioned previously, any attempted loads into

a protected process will be prevented and generate a Microsoft-Windows-

CodeIntegrity/Operational log 3033 event.

3. Alert upon any change to SIP or trust provider registry keys.

4. Any signed code for which a signature does not validate should be treated as if it is not signed.

5. Non-Microsoft binaries that implement any of the following APIs should be treated with

additional suspicion:

a. CryptSIPAddProvider

b. CryptSIPRemoveProvider

c. CryptSIPLoad

d. CryptSetOIDFunctionValue

e. CryptRegisterOIDFunction

https://msdn.microsoft.com/en-us/library/windows/desktop/dn313124(v=vs.85).aspx

- 43 -

Appendix

Known Good SIP and Trust Provider Registrations

The following is a non-exhaustive list of known SIPs, trust providers, and their implementing DLLs (files

paths removed)/functions. These should be used as a reference point for baselining normal in your

environment.

Trust Providers

GUID: 7801EBD0-CF4B-11D0-851F-0060979387EA

Friendly Name: CERT_CERTIFICATE_ACTION_VERIFY

 Capability: CertCheck

 Dll: Cryptdlg.dll

 Function Name: CertTrustCertPolicy

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: Cryptdlg.dll

 Function Name: CertTrustCleanup

 Capability: FinalPolicy

 Dll: Cryptdlg.dll

 Function Name: CertTrustFinalPolicy

 Capability: Initialization

 Dll: Cryptdlg.dll

 Function Name: CertTrustInit

GUID: 00AAC56B-CD44-11D0-8CC2-00C04FC295EE

Friendly Name: WINTRUST_ACTION_GENERIC_VERIFY_V2

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubAuthenticode

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

- 44 -

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: D41E4F1D-A407-11D1-8BC9-00C04FA30A41

Friendly Name: COR_POLICY_PROVIDER_DOWNLOAD

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: FinalPolicy

 Dll: urlmon.dll

 Function Name: CORPolicyProvider

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: D41E4F1F-A407-11D1-8BC9-00C04FA30A41

Friendly Name: COR_POLICY_LOCKDOWN_CHECK

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: FinalPolicy

 Dll: ieframe.dll

 Function Name: CORLockDownProvider

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: C6B2E8D0-E005-11CF-A134-00C04FD7BF43

Friendly Name: WIN_SPUB_ACTION_PUBLISHED_SOFTWARE_NOBADUI

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

- 45 -

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubAuthenticode

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: F750E6C3-38EE-11D1-85E5-00C04FC295EE

Friendly Name: DRIVER_ACTION_VERIFY

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: DriverCleanupPolicy

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: DriverFinalPolicy

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: DriverInitializePolicy

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: A7F4C378-21BE-494e-BA0F-BB12C5D208C5

Friendly Name:

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: FinalPolicy

 Dll: mscorsecimpl.dll

- 46 -

 Function Name: CORPolicyEE

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 6078065b-8f22-4b13-bd9b-5b762776f386

Friendly Name: CONFIG_CI_ACTION_VERIFY

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: DriverCleanupPolicy

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: ConfigCiFinalPolicy

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: DriverInitializePolicy

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 31D1ADC1-D329-11D1-8ED8-0080C76516C6

Friendly Name: COREE_POLICY_PROVIDER

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: FinalPolicy

 Dll: mscorsec.dll

 Function Name: CORPolicyEE

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

- 47 -

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 573E31F8-DDBA-11D0-8CCB-00C04FC295EE

Friendly Name: WINTRUST_ACTION_TRUSTPROVIDER_TEST

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: DiagnosticPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubDumpStructure

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubAuthenticode

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 573E31F8-AABA-11D0-8CCB-00C04FC295EE

Friendly Name: HTTPSPROV_ACTION

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: HTTPSCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: HTTPSFinalProv

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

- 48 -

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: FC451C16-AC75-11D1-B4B8-00C04FB66EA0

Friendly Name: WINTRUST_ACTION_GENERIC_CHAIN_VERIFY

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: GenericChainCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: GenericChainFinalProv

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 189A3842-3041-11D1-85E1-00C04FC295EE

Friendly Name: WINTRUST_ACTION_GENERIC_CERT_VERIFY

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubAuthenticode

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubDefCertInit

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 64B9D180-8DA2-11CF-8736-00AA00A485EB

- 49 -

Friendly Name: WIN_SPUB_ACTION_PUBLISHED_SOFTWARE

 Capability: CertCheck

 Dll: WINTRUST.DLL

 Function Name: SoftpubCheckCert

 Capability: Certificate

 Dll: WINTRUST.DLL

 Function Name: WintrustCertificateTrust

 Capability: Cleanup

 Dll: WINTRUST.DLL

 Function Name: SoftpubCleanup

 Capability: FinalPolicy

 Dll: WINTRUST.DLL

 Function Name: SoftpubAuthenticode

 Capability: Initialization

 Dll: WINTRUST.DLL

 Function Name: SoftpubInitialize

 Capability: Message

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadMessage

 Capability: Signature

 Dll: WINTRUST.DLL

 Function Name: SoftpubLoadSignature

GUID: 4ECC1CC8-31B7-45CE-B4B9-2DD45C2FF958

Friendly Name:

 Capability: CertCheck

 Dll: mso.dll

 Function Name: MsoSoftpubCheckCert

 Capability: Certificate

 Dll: mso.dll

 Function Name: MsoWintrustCertificateTrust

 Capability: Cleanup

 Dll: mso.dll

 Function Name: MsoSoftpubCleanupPolicy

 Capability: DiagnosticPolicy

 Dll: mso.dll

 Function Name: MsoWintrustTestPolicy

 Capability: FinalPolicy

 Dll: mso.dll

 Function Name: MsoWintrustFinalPolicy

 Capability: Initialization

 Dll: mso.dll

 Function Name: MsoSoftpubInitialize

 Capability: Message

 Dll: mso.dll

 Function Name: MsoSoftpubLoadMessage

 Capability: Signature

 Dll: mso.dll

 Function Name: MsoSoftpubLoadSignature

- 50 -

Subject Interface Packages

GUID: 0AC5DF4B-CE07-4DE2-B76E-23C839A09FD1

Friendly Name: AppX

 Capability: CryptSIPDllCreateIndirectData

 Dll: AppxSip.dll

 Function Name: AppxSipCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxSipGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: AppxSip.dll

 Function Name: AppxSipIsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxSipPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxSipRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: AppxSip.dll

 Function Name: AppxSipVerifyIndirectData

GUID: C689AABA-8E78-11D0-8C47-00C04FC295EE

Friendly Name: Cabinet

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPVerifyIndirectData

GUID: 9BA61D3F-E73A-11D0-8CD2-00C04FC295EE

Friendly Name: CTL

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

- 51 -

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPVerifyIndirectData

GUID: 1A610570-38CE-11D4-A2A3-00104BD35090

Friendly Name: WSHWindowsScriptFile

 Capability: CryptSIPDllCreateIndirectData

 Dll: wshext.dll

 Function Name: CreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: wshext.dll

 Function Name: GetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: wshext.dll

 Function Name: IsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: wshext.dll

 Function Name: PutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: wshext.dll

 Function Name: RemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: wshext.dll

 Function Name: VerifyIndirectData

GUID: 000C10F1-0000-0000-C000-000000000046

Friendly Name: MSI

 Capability: CryptSIPDllCreateIndirectData

 Dll: MSISIP.DLL

 Function Name: MsiSIPCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: MSISIP.DLL

 Function Name: MsiSIPGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: MSISIP.DLL

 Function Name: MsiSIPIsMyTypeOfFile

- 52 -

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: MSISIP.DLL

 Function Name: MsiSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: MSISIP.DLL

 Function Name: MsiSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: MSISIP.DLL

 Function Name: MsiSIPVerifyIndirectData

GUID: 603BCC1F-4B59-4E08-B724-D2C6297EF351

Friendly Name: PowerShell

 Capability: CryptSIPDllCreateIndirectData

 Dll: pwrshsip.dll

 Function Name: PsCreateHash

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: pwrshsip.dll

 Function Name: PsGetSignature

 Capability: CryptSIPDllIsMyFileType2

 Dll: pwrshsip.dll

 Function Name: PsIsMyFileType

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: pwrshsip.dll

 Function Name: PsPutSignature

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: pwrshsip.dll

 Function Name: PsDelSignature

 Capability: CryptSIPDllVerifyIndirectData

 Dll: pwrshsip.dll

 Function Name: PsVerifyHash

GUID: 06C9E010-38CE-11D4-A2A3-00104BD35090

Friendly Name: WSHJScript

 Capability: CryptSIPDllCreateIndirectData

 Dll: wshext.dll

 Function Name: CreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: wshext.dll

 Function Name: GetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: wshext.dll

 Function Name: IsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: wshext.dll

 Function Name: PutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: wshext.dll

 Function Name: RemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: wshext.dll

 Function Name: VerifyIndirectData

- 53 -

GUID: CF78C6DE-64A2-4799-B506-89ADFF5D16D6

Friendly Name: AppXEncrypted

 Capability: CryptSIPDllCreateIndirectData

 Dll: AppxSip.dll

 Function Name: EappxSipCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxSipGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: AppxSip.dll

 Function Name: EappxSipIsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxSipPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxSipRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: AppxSip.dll

 Function Name: EappxSipVerifyIndirectData

GUID: D1D04F0C-9ABA-430D-B0E4-D7E96ACCE66C

Friendly Name: AppXEncryptedBundle

 Capability: CryptSIPDllCreateIndirectData

 Dll: AppxSip.dll

 Function Name: EappxBundleSipCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxBundleSipGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: AppxSip.dll

 Function Name: EappxBundleSipIsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxBundleSipPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: AppxSip.dll

 Function Name: EappxBundleSipRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: AppxSip.dll

 Function Name: EappxBundleSipVerifyIndirectData

GUID: 0F5F58B3-AADE-4B9A-A434-95742D92ECEB

Friendly Name: AppXBundle

 Capability: CryptSIPDllCreateIndirectData

 Dll: AppxSip.dll

 Function Name: AppxBundleSipCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxBundleSipGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: AppxSip.dll

- 54 -

 Function Name: AppxBundleSipIsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxBundleSipPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: AppxSip.dll

 Function Name: AppxBundleSipRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: AppxSip.dll

 Function Name: AppxBundleSipVerifyIndirectData

GUID: 9F3053C5-439D-4BF7-8A77-04F0450A1D9F

Friendly Name: ElectronicSoftwareDistribution

 Capability: CryptSIPDllCreateIndirectData

 Dll: EsdSip.dll

 Function Name: EsdSipCreateHash

 Capability: CryptSIPDllGetCaps

 Dll: EsdSip.dll

 Function Name: EsdSipGetCaps

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: EsdSip.dll

 Function Name: EsdSipGetSignature

 Capability: CryptSIPDllIsMyFileType2

 Dll: EsdSip.dll

 Function Name: EsdSipIsMyFileType

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: EsdSip.dll

 Function Name: EsdSipPutSignature

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: EsdSip.dll

 Function Name: EsdSipDelSignature

 Capability: CryptSIPDllVerifyIndirectData

 Dll: EsdSip.dll

 Function Name: EsdSipVerifyHash

GUID: C689AAB9-8E78-11D0-8C47-00C04FC295EE

Friendly Name: JavaClass

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

- 55 -

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPVerifyIndirectData

GUID: 1629F04E-2799-4DB5-8FE5-ACE10F17EBAB

Friendly Name: WSHVBScript

 Capability: CryptSIPDllCreateIndirectData

 Dll: wshext.dll

 Function Name: CreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: wshext.dll

 Function Name: GetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: wshext.dll

 Function Name: IsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: wshext.dll

 Function Name: PutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: wshext.dll

 Function Name: RemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: wshext.dll

 Function Name: VerifyIndirectData

GUID: DE351A42-8E59-11D0-8C47-00C04FC295EE

Friendly Name: Flat

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPVerifyIndirectData

- 56 -

GUID: 5598CFF1-68DB-4340-B57F-1CACF88C9A51

Friendly Name: AppXP7XSignature

 Capability: CryptSIPDllCreateIndirectData

 Dll: AppxSip.dll

 Function Name: P7SipCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: AppxSip.dll

 Function Name: P7xSipGetSignedDataMsg

 Capability: CryptSIPDllIsMyFileType2

 Dll: AppxSip.dll

 Function Name: P7xSipIsFileSupportedName

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: AppxSip.dll

 Function Name: P7xSipPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: AppxSip.dll

 Function Name: P7xSipRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: AppxSip.dll

 Function Name: P7xSipVerifyIndirectData

GUID: DE351A43-8E59-11D0-8C47-00C04FC295EE

Friendly Name: Catalog

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPVerifyIndirectData

GUID: C689AAB8-8E78-11D0-8C47-00C04FC295EE

Friendly Name: PortableExecutable

 Capability: CryptSIPDllCreateIndirectData

 Dll: WINTRUST.DLL

 Function Name: CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: WINTRUST.DLL

- 57 -

 Function Name: CryptSIPGetCaps

 Capability: CryptSIPDllGetSealedDigest

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSealedDigest

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: WINTRUST.DLL

 Function Name: CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: WINTRUST.dll

 Function Name: CryptSIPVerifyIndirectData

GUID: BA08A66F-113B-4D58-9329-A1B37AF30F0E

Friendly Name: SilverlightXAP

 Capability: CryptSIPDllCreateIndirectData

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_CryptSIPCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_CryptSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_CryptSIPPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_CryptSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_CryptSIPVerifyIndirectData

 Capability: CryptSIPDllIsMyFileType2

 Dll: XapAuthenticodeSip.dll

 Function Name: XAP_IsFileSupportedName

GUID: CB034CC7-4A2D-8E07-48E7-F82436FFA03E

Friendly Name: MicrosoftDynamicsNAV

 Capability: CryptSIPDllCreateIndirectData

 Dll: navsip.dll

 Function Name: NavSIPCreateIndirectData

 Capability: CryptSIPDllGetCaps

 Dll: navsip.dll

 Function Name: NavSIPGetCaps

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: navsip.dll

 Function Name: NavSIPGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: navsip.dll

 Function Name: NavSIPPutSignedDataMsg

- 58 -

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: navsip.dll

 Function Name: NavSIPRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: navsip.dll

 Function Name: NavSIPVerifyIndirectData

 Capability: CryptSIPDllIsMyFileType2

 Dll: navsip.dll

 Function Name: NavSIPIsFileSupportedName

GUID: 9FA65764-C36F-4319-9737-658A34585BB7

Friendly Name: MicrosoftOfficeVBA

 Capability: CryptSIPDllCreateIndirectData

 Dll: mso.dll

 Function Name: MsoVBADigSigCreateIndirectData

 Capability: CryptSIPDllGetSignedDataMsg

 Dll: mso.dll

 Function Name: MsoVBADigSigGetSignedDataMsg

 Capability: CryptSIPDllPutSignedDataMsg

 Dll: mso.dll

 Function Name: MsoVBADigSigPutSignedDataMsg

 Capability: CryptSIPDllRemoveSignedDataMsg

 Dll: mso.dll

 Function Name: MsoVBADigSigRemoveSignedDataMsg

 Capability: CryptSIPDllVerifyIndirectData

 Dll: mso.dll

 Function Name: MsoVBADigSigVerifyIndirectData

- 59 -

References

Prior to authoring this whitepaper, there was no information on the security implications of SIPs and

trust providers. The following references were helpful in completing this research, however:

1. SIP’s (Subject Interface Package) and Authenticode

2. Cryptography Functions

3. How To Get Information from Authenticode Signed Executables

4. Behind PowerShell Installer (for Windows XP / Windows Server 2003)

5. Microsoft Security Bulletin MS13-098

6. MSDN documentation

7. Windows SDK header files: mssip.h, wintrust.h, wincrypt.h, softpub.h

8. Subject Interface Packages - Part 1. Released after research was performed but this is a valuable

resource about SIP design principles.

9. Subject Interface Packages - Part 2.

https://blogs.technet.microsoft.com/eduardonavarro/2008/07/11/sips-subject-interface-package-and-authenticode/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx
https://support.microsoft.com/en-us/help/323809/how-to-get-information-from-authenticode-signed-executables
https://blogs.msdn.microsoft.com/powershell/2007/01/09/behind-powershell-installer-for-windows-xp-windows-server-2003/
https://technet.microsoft.com/library/security/ms13-098#ID0EDHAG
https://vcsjones.com/2017/08/10/subject-interface-packages/
https://vcsjones.com/2017/08/11/subject-interface-packages-part-2/

- 60 -

Acknowledgements

The following people performed a thorough review of this whitepaper and supplied invaluable feedback:

● Brian Reitz, Will Schroeder, and Lee Christensen at SpecterOps

● Casey Smith at Red Canary

● Daniel Schell and David Cottingham at Airlock Digital

● Joe Desimone at Endgame

https://twitter.com/brian_psu
https://twitter.com/harmj0y
https://twitter.com/tifkin_
https://www.specterops.io/
https://twitter.com/subTee
https://www.redcanary.com/
https://twitter.com/danonit
https://twitter.com/c0tts
https://www.airlockdigital.com/
https://twitter.com/dez_
https://www.endgame.com/

