
1/11

Security Lab June 12, 2020

Trickbot Malspam Leveraging Black Lives Matter as Lure
hornetsecurity.com/en/security-information/trickbot-malspam-leveraging-black-lives-matter-as-lure/

Summary

The Hornetsecurity Security Lab has observed a malspam campaign distribution TrickBot [1] that uses the Black Lives
Matter movement as a lure to entice victims to open a malicious attachment. The TrickBot downloader document first
injects shellcode into the WINWORD.EXE process. From that shellcode, it then spawns a cmd.exe process into which
it again injects more of the same shellcode. This cmd.exe process then downloads the TrickBot DLL and executes it
via rundll32.exe .

Background

The initial emails claim to be from a State office , Country authority , or Country administration :

https://www.hornetsecurity.com/en/security-information/trickbot-malspam-leveraging-black-lives-matter-as-lure/

2/11

The email tells the recipient they can Vote confidentially about "Black Lives Matter" or Tell your
government your opinion , Give your opinion , and Speak out confidentially about "Black Lives
Matter" .

Attached is a file named e-vote_form_0000.doc , further suggesting the email to be some sort of official means of
voting.

However, the document only displays an image announcing a fake Office update and instructions to “Enable Editing”
as well as to “Enable Content”:

3/11

If the instructions are followed, the malicious VBA macro in the document is executed and it downloads the TrickBot
malware.

Technical Analysis

The initial portion of the infection chain (until the TrickBot malware is deployed) is depicted in this flow graph:

In the following analysis we will walk through each stage of this chain.

4/11

VBA macro

The VBA macro is protected against viewing in Word:

However, this “protection” only prevents Word from showing the VBA macro without a password. The VBA macro code
is still accessible.

The first thing the VBA macro does is to display a fake error message:

Private Sub Document_Open()
 MsgBox "Error #80013123"

This results in the following pop-up:

5/11

This is likely an attempt to prompt user interaction in order to bypass sandbox detections. It could also be an attempt to
hide the fact that there is no document. A victim may be satisfied by receiving this error and assume the document to
be broken.

The macro uses VirtualProtectEx and CreateThread to inject shellcode into the WINWORD.EXE process. To this
end, the code assembles one large string:

 uriSubscriber = "i-j-[...]-a-a-a-"
 uriSubscriber = uriSubscriber & "i-l-[...]-a-a-"
 uriSubscriber = uriSubscriber & "g-k-a-a-p-p-h-f-p-i-[...]-o-g-c-c-p-k-h-c-g-j-h-d"

This string contains the encoded shellcode. It is then decoded via the following function:

 Dim f() As Byte
 ReDim f(0 To Len(uriSubscriber) / 2 - 1) As Byte
 Dim sSmart As Long, regOptimize As Long
 For Each destEnd In Split(uriSubscriber, "-")
 If sSmart Mod 2 Then
 regOptimize = sSmart - 1
 regOptimize = regOptimize / 2
 f(regOptimize) = (CByte(Asc(destEnd)) - CByte(Asc("a"))) + f((sSmart - 1) / 2)
 Else
 regOptimize = sSmart / 2
 f(regOptimize) = (CByte(Asc(destEnd)) - CByte(Asc("a"))) * 16
 End If
 sSmart = sSmart + 1
 Next

Finally, the decoded shellcode is set to PAGE_EXECUTE_READWRITE using VirtualProtectEx , which was previously
aliased to extensionsComment , and then a thread is started with the address of the shellcode as its start address
using CreateThread , previously aliased to sMail :

6/11

 Private Declare Function extensionsComment Lib "kernel32" Alias "VirtualProtectEx" (_
 iMail As Long, _
 bConsole As Long, _
 regFunction As Long, _
 tablePosition As Long, _
 colMail As Long) As Long
 Private Declare Function sMail Lib "kernel32" Alias "CreateThread" (_
 textTimer As Long, _
 uriMail As Long, _
 m As Long, _
 dateMembers As Long, _
 textTimer0 As Long, _
 lServer As Long) As Long
[...]
 sConsole = destN_ - angleTexture + UBound(f)
 q = extensionsComment(ByVal ipFunction, ByVal angleTexture, ByVal sConsole, ByVal PAGE_EXECUTE_READWRITE,
ByVal VarPtr(extensionsComment0))
 adsLogon = sMail(ByVal 0&, ByVal 0&, ByVal destN_, ByVal 2&, ByVal 0, ByVal 0&)
 adsScr 5000

The shellcode can most easily be extracted by breaking on CreateThread in a debugger:

Shellcode WINWORD.EXE

The shellcode running in the WINWORD.EXE process first resolves several library functions. Then uses
CreateProcessA to run a cmd.exe with the pause command, causing the cmd.exe to idle:

7/11

Next, the shellcode uses a classic OpenProcess , VirtualAllocEx , WriteProcessMemory , and
CreateRemoteThread sequence to do shellcode injection into the paused cmd.exe process:

The cmd.exe /c pause process is likely used to avoid detection. A common technique used in process injection is to
create a suspended (i.e., paused) process by setting the CREATE_SUSPENDED flag during process creation, to then
inject code into the created process, and resume it afterwards. In the case of the discussed shellcode, the code is
injected as a thread into the paused cmd.exe instead.

The injected shellcode is the same shellcode that was injected into the WINWORD.EXE process. However, the entry
point passed to CreateRemoteThread is different, resulting into a different execution flow for the shellcode within the
cmd.exe process.

Shellcode cmd.exe

The shellcode in the cmd.exe process also resolves several library functions. Additionally, it decodes the TrickBot
download URLs.

Next, the shellcode queries GetSystemMetrics(SM_CXSCREEN) and GetSystemMetrics(SM_CYSCREEN) to get the
display resolution. Then, GetCursorPos is queried twice, with a call to Sleep(0x1388) in between causing a 5
second delay.

This is likely done to verify mouse movement and thus avoid sandboxes.

The data is then encoded as a HTTP query string as follows: &scr=1280x1024&cur1=604x250&cur2=622x310

8/11

An ID query string &id=00000000 and the above system metrics query string are then appended to a URL to form the
final download URL which is then queried via InternetOpenUrlA :

In case the download is successful, the downloaded file is written to C:\\Users\\
<username>\\AppData\\Local\\system.rre and executed via rundll32.exe
%userprofile%/system.rre,Initialize using ShellExecuteA . The system.rre file is the TrickBot DLL.

In case the download is not successful, the downloader sleeps and then a second download URL is tried.

Conclusion and Remediation

The double shellcode injection is likely used to avoid behavioral detection as WINWORD.EXE does not usually
download files from the Internet or execute rundll32.exe . Hence, such anomalous behavior is more likely to be
detected than cmd.exe spawning the rundll32.exe process. The query for the systems display resolution as well
as the double query of the cursor position is also likely done to avoid delivering the TrickBot DLL to sandbox systems.

Hornetsecurity’s Spam Filtering Service with the highest detection rates on the market, has already detected and
blocked the malicious TrickBot document based on a detection signature.

In case the basic detection signatures would not have blocked the emails, Hornetsecurity’s Advanced Threat
Protection (ATP) would not have been impacted by the various anti-sandboxing mechanisms either. The human
interaction simulation of the ATP sandbox successfully clicks the fake error message away for a complete execution of
the malicious document:

https://www.hornetsecurity.com/en/services/spam-filter/
https://www.hornetsecurity.com/en/services/advanced-threat-protection/

9/11

It detects the processes being created by the document, as well as the process injections:

10/11

The human interaction simulation also results in the two queried cursor positions, sent as cur1 and cur2 to the
TrickBot download server, to differ:

This way, Hornetsecurity’s ATP sandbox is not fooled by the various anti-sandboxing techniques.

References

[1] https://malpedia.caad.fkie.fraunhofer.de/details/win.trickbot

Indicators of Compromise (IOCs)

Hashes

SHA256 Filename Description

https://malpedia.caad.fkie.fraunhofer.de/details/win.trickbot

11/11

SHA256 Filename Description

d6a44f6460fab8c74628a3dc160b9b0f1c8b91b7d238b6b4c1f83b3b43a0463d e-
vote_form_1967.doc

TrickBot
downloader
document

URLs

hxxps[:]//ppid.indramayukab.go[.]id/may.php?omz=1&pic=b&id=[0-9]{8}&scr=[0-9]{3,4}x[0-9]

{3,4}&cur1=[0-9]{3,4}x[0-9]{3,4}&cur2=[0-9]{3,4}x[0-9]{3,4}

hxxps[:]//www.inspeclabeling[.]com/wp-content/themes/processing/may.php?omz=1&pic=b&id=[0-9]

{8}&scr=[0-9]{3,4}x[0-9]{3,4}&cur1=[0-9]{3,4}x[0-9]{3,4}&cur2=[0-9]{3,4}x[0-9]{3,4}

DNSs

ppid.indramayukab.go.id

www.inspeclabeling.com

