
1/12

View all posts by marcoramilli March 19, 2020

Is APT27 Abusing COVID-19 To Attack People ?!
marcoramilli.com/2020/03/19/is-apt27-abusing-covid-19-to-attack-people/

Scenario

We are living hard time, many countries all around the world are hit by COVID-19 which happened to be a very dangerous disease.
Unfortunately many deaths, thousands of infected people, few breathing equipment, stock burned Billion of dollars and a lot of companies are
entering into a economic and financial crisis. Governments are doing their best to mitigate such a virus while people are stuck home working
remotely using their own equipment.

In that scenario, jackals are luring people using every dirty way to attack their private devices. At home it’s hard to have advanced protection
systems as we have in companies. For example it’s hard to have Intrusion Prevention Systems, proxies, advanced threat protection,
automated sandbox and again advanced end-point protections letting personal devices more vulnerable to be attacked. In this reality ruthless
attackers abuse of this situation to attack digitally unprotected people.

Today many reports are describing how infamous attackers are abusing such an emergency time to lure people by sending thematic email
campaign or by using thematic IM within Malware or Phishing links. Following few of them that I believe would be a nice reading:

Today I want to contribute to such a blog-roll analyzing a new spreading variant that hit my observatory. I want to “spoil” the conclusions now,
but it’s getting pretty sad if an APT group makes use of its knowledge to take advance from today’s situation.

Stage 1

The first stage is a fake PDF file. It looks like a real PDF, it has a hidden extension and a nice PDF icon, but it really isn’t a PDF, it’s actually a
.lnk file, or in other words a “Microsoft Linking File”.

Sha256 95489af84596a21b6fcca078ed10746a32e974a84d0daed28cc56e77c38cc5a8

Threat Dropper and Execution

Ssdeep 24576:2D9JuasgfxPmNirQ2dRqZJuH3eBf9mddWoX+KIKoIkVrI:2DzuOxPm0iZLKIKRkq

Description Fake PDF file used to run initial infection chain

Opening up the .lnk file we might appreciate a weird linking pattern. Two main sections: one is a kind of header where it is possible to observe
commands, and the other section is a big encoded payload.

https://marcoramilli.com/2020/03/19/is-apt27-abusing-covid-19-to-attack-people/
https://marcoramilli.com/cyber-threat-trends/

2/12

.lnk file
Once beautified the first section it looks easier to understand what it does. It basically copies itself into a temporary folder (through cmd.exe),
it extracts bytes from its body (from section two), it decodes such a bytes from Byte64 (through msoia.exe) and it places the extracted
content into the temporary user folder. It deflates the content (through expand) and it finally it executes a javascript file (through wscript)
which was included into the compressed content. The following image shows the beautified code section of the analyzed file.

Beautified .lnk file

It is quite nice to see how the attacker copied certutils from local system, by using (*ertu*.exe) in order to avoid command line
detection from public sandboxes. Indeed many sandboxes have signatures on certutils, since it’s quite a notorious tool used by some
attackers, so that avoiding the behavior signature match it would take a lower score from public sandboxes.

Stage 2

Stage 1 carved Stage 2 from its body by extracting bytes and decoding them using base64 encoding. The new stage is a Microsoft
compressed CAB file described in the following table.

Sha256 f74199f59533fbbe57f0b2aae45c837b3ed5e4f5184e74c02e06c12c6535f0f9

Threat Malware Carrier/Packer/Compressor

Ssdeep 24576:CkL6X/3PSCuflrdNZ4J00ZcmNh3wsAR36Mge:vLK/fS200ZcYh3kqpe

Description Microsoft CAB bringing contents

Extracting files from Microsoft CAB we observe 6 more files entering in the battlefield:

20200308-sitrep-48-covid-19.pdf . The original PDF from WHO explaining the COVID-19 status and how to fight it.
3UDBUTNY7YstRc.tmp . PE32 Executable file (DLL)
486AULMsOPmf6W.tmp . PE32 Executable (GUI)
9sOXN6Ltf0afe7.js . Javascript file (called by .lnk)
cSi1r0uywDNvDu.tmp . XSL StyleSheet Document
MiZl5xsDRylf0W.tmp . Text file including PE32 file

3/12

Stage 1 executes the Javascript included in the CAB file. 9sOXN6Ltf0afe7.js performs an ActiveXObject call to WScript.Shell in order
to execute Windows command lists. Once” deobfuscated” and beautified the command line looks like the following (9sOXN6Ltf0afe7.js
payload beautified) . The attacker creates a folder that looks like a “file” by calling it cscript.exe trying to cheat the analyst. Then the
attacker populates that folder with the needed files to follow the infection chain.

9sOXN6Ltf0afe7.js payload “deobfuscated”

A special thought goes to WINRM.VBS which helped the attacker to execute Signed Script Proxy Execution (T1216). According to Microsoft:
“WINRM is the CLI interface to our WS-MGMT protocol. The neat thing about this is that you can call it from PowerShell to manage remote
systems that don’t have PowerShell installed on them (including Server Core systems and Raw hardware).” The attacker also places a file
called Wordcnvpxy.exe on the OFFICE12 folder. We will analyze it in a few steps but at that stage we might observe that is the “last call”
before luring the victim by showing the good PDF file (also included in the CAB). But according with 9sOXN6Ltf0afe7.js the first run is on
WsmPty.xsl which is the renamed version of cSi1r0uywDNvDu.tmp .

Stage 3

Stage 3 is run by stage 2 and it is a XSL (StleSheet Office file) wrapping a VBScript object.

Sha256 9d52d8f10673518cb9f19153ddbe362acc7ca885974a217a52d1ee8257f22cfc

Threat Payload Extractor and Command Executor

Ssdeep 96:46Pdv3fOYCeeapSCDIKufYS2VGsBu746WJCSmCZyAcGghF:fh3fOYneaLDIgnNEFCZyAcGsF,

Description Decode Additional Stage by using coding charsets and XOR

The following VBScript is run through cscript.exe , It’s an obfuscated and xor-encrypted payload. The encryption is performed by a simple
xor having as key the single byte 0 while the encoding procedure is a multi conversion routine which could be summarized as follows:

chr(asc(chr(“&h”&mid(x,y,2))))

https://devblogs.microsoft.com/powershell/winrm/

4/12

VBScript Stage3
The attacker tried to confuse the analyst by reusing variable names in private or local contexts, but after a couple of minutes, you might
eventually come out with the following decryption loop.

Decryption Loop

If you run it against the embedded payload you will eventually see a new stage: Stage 4. A brand new script targeting old version of MSOffice.

Stage 4

Stage 4 is decoded and run by Stage 3. That stage runs an attacker version of MSOSTYLE.exe copied from Stage 2. It hijacks method on an
old office 2007 component (Office Data Provider for – MSOSTYLE.exe).

Sha356 7f230a023a399b39fa1994c3eaa0027d6105769fffaf72918adebf584edc6fe0

Threat Persistence and Execution

Ssdeep 48:zKxYaDzzXRrVHyMqHeIyJwlLGvTlGrbaTFGNT93TPTxGVhTG6TWWWsKj390C9nEm:zKxjDRt+e1sGvJG3aRGNNDtGLLqP5j3

Description Set persistence on the target system (Script File)

The following image shows the decrypted and decoded Stage. It’s quite clear the attacker wants to get persistence on the target machine and
to run additional payload by abusing MSOSTYLE.exe (old component) placed in the “right folder” from stage 2. The persistence is guaranteed
by adding a link called Accessories.lnk inside the startup windows folder pointing to: MiZl5xsDRylf0W.tmp .

5/12

Powershell

Stage 4

Stage 5

Stage 5 is activated by Stage 2 but only after the execution of Stage 3 and Stage 4. Stage 5 is a multi-step session composed by the following
additional artifacts: (i) 3UDBUTNY7YstRc.tmp renamed by Stage 2 into OINFO12.OCX and (ii) MiZl5xsDRylf0W.tmp renamed by Stage 2
into Wordcnvpxy.exe . Every single artifact is available after the execution of Stage 2 into the crafted folder called: OFFICE12 from the user
home.

Sha256 604679789c46a01aa320eb1390da98b92721b7144e57ef63853c3c8f6d7ea85d

Threat Remote Control, depending on usage

Ssdeep 536:/4yuzgQ5WugrQ+SccIp1t4xO67y5qHae:gyuzgKwr9bB1t4xO67y5j,

Description Office Data Provider for WBEM, not malicious but accountable.

MSOSTYLE.EXE is an old Microsoft Office Data Provider for WBEM. Web-Based Enterprise Management (WBEM) comprises a set of
systems-management technologies developed to unify the management of distributed computing environments. So it could not be considered
malicious, but it could be considered accountable of the entire infection chain.

Sha256 a49133ed68bebb66412d3eb5d2b84ee71c393627906f574a29247d8699f1f38e

Threat PlugX, Command Execution

6/12

Ssdeed 768:jxmCQWD+TAxTRh40XfEDDnFt4AczonsT:MC5bw+zosT

Description A runner plus Command Execution, Pluging Manager

At the time of writing only three AVs detect OINFO12.OCX as a malicious file. Rising AV is actually the only company which attributes it to a
well-known PlugX sample. According with Trend Micro, the PlugX malware family is well known to researchers having samples dating back to
as early as 2008. PlugX is a fully featured Remote Access Tool/Trojan (RAT) with capabilities such as file upload, download, and modification,
keystroke logging, webcam control, and access to a remote cmd.exe shell.

OINFO12.OCX VT coverage
Taking it on static analysis it will expose three callable functions: DeleteOfficeData (0x10001020), GetOfficeData (0x10001000) and
EntryPoint 0x100015ac).

Both of the methods DeleteOfficeData and GetOfficeData looks like recalling a classic method to hijacking old Office Parser (take a look to
here and figure 3 in here) to execute commands.

DeleteOfficeData (0x10001020)

GetOfficeData (0x10001000)

Indeed if run from its Entry Point, the DLL executes Wordcnvpxy.exe (as it is the default plugin component). The executable DLL must be in
the same path of Wordcnvpxy.exe and it needs to have such a filename (imposed by Stage 2 and hardcoded into the library). On the other
side of the coin if commands are passed through stdin, it executes the given parameters as commands.

http://mailcenter.rising.com.cn/filecheck_en/
https://blog.trendmicro.com/trendlabs-security-intelligence/plugx-new-tool-for-a-not-so-new-campaign/#
https://marcoramilli.com/2019/01/30/spreading-csv-malware-over-google-sheets/
https://www.appsecconsulting.com/blog/csv-formula-injection

7/12

No Input Commands, Wordcnvpxy

execution
The following image shows when parameters are given and Commands are executed.

Commands Execution
Finally we have Wordcnvpxy.exe which is run in the same stage (Stage 5) by OINFO12.OCX . At the time of writing, it is well-known from
static engines, it looks like a standard backdoor beacon-ing to own command and control installed as PlugX module.

8/12

Sha256 002c9e0578a8b76f626e59b755a8aac18b5d048f1cc76e2c12f68bc3dd18b124

Threat PlugX, Backdoor

Ssdeep 1536:9/dlJMLIU94EYayTdHP6rUkn16O41yWCzB:93JsZxePUAFgWCz

Description Probably one of the last stages, beaconing VS C2 and executing external commands

Wordcnvpxy VT coverage
The sample uses dynamic function loading avoiding static enumeration and guessing. It grabs information on the victim, PC-name, username,
IP-location and send them to C2 as a first beacon.

Dynamic Loading function calls

The used Command and Control resolves to the following URL hxxp://motivation[.]neighboring[.]site/01/index.php

Command and Control

Unfortunately the attacker has shut down everything few hours after I started my analysis, so that I do not have more information about
network, commands and additional Plugins. However the overall structure reminds me PlugX RAT as nicely described here.

Attribution

According to MITRE (BTW thank you @Arkbird_SOLG for the great suggestions on attribution) PlugX is a well known RAT attributed to
China’s APT. APT27 (aka Emissary Panda) are the mostly notable APT group that used it. Moreover (thanks to @Arkbird_SOLG) “[…] on
China culture, hijacking method are a mandatory knowledge for a job like pentesting […]” which could enforce the theory of APT27

https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://twitter.com/Arkbird_SOLG
https://malpedia.caad.fkie.fraunhofer.de/actor/emissary_panda

9/12

UPDATE: I am aware that PlugX is today an opensource RAT, and I am aware that this is not enough for attribution. Indeed the intent of the
title is to put doubts on that attribution by the usage of “?” (question mark). On one hand PlugX historically has been attributed to APT27 but on
the other hand it’s public. So it’s hard to say Yes or Not, for such a reason the intent of this blog post is: Is APT27 Abusing COVID-19 To Attack
People ?!. It’s an Open question not a position.

We all are passing a bad time. COVID-19 caused many death and is threatening entire economies. Please, even if you are an attacker and
you gain profit from you infamous job, stop cyber attacks against peoples that are suffering this pandemic and rest. Ethics and compassion
should be alive – even behind you monitors.

IoC

95489af84596a21b6fcca078ed10746a32e974a84d0daed28cc56e77c38cc5a8 (original .lnk)
f74199f59533fbbe57f0b2aae45c837b3ed5e4f5184e74c02e06c12c6535f0f9 (Stage 2)
9d52d8f10673518cb9f19153ddbe362acc7ca885974a217a52d1ee8257f22cfc (Stage 3)
7f230a023a399b39fa1994c3eaa0027d6105769fffaf72918adebf584edc6fe0 (Stage 4)
a49133ed68bebb66412d3eb5d2b84ee71c393627906f574a29247d8699f1f38e (Stage 5/a)
002c9e0578a8b76f626e59b755a8aac18b5d048f1cc76e2c12f68bc3dd18b124 (Stage 5/b)
hxxp://motivation[.]neighboring[.]site/01/index.php (C2)

Yara (auto)

10/12

import "pe"

rule MiZl5xsDRylf0W {
 meta:
 description = "yara - file MiZl5xsDRylf0W.tmp"
 date = "2020-03-17"
 hash1 = "b578a237587054f351f71bd41bede49197f77a1409176f839ebde105f3aee44c"
 strings:
 $s1 = "%ls\\%S.exe" fullword wide
 $s2 = "%XFTpX7m5ZvRCkEg" fullword ascii
 $s3 = "SK_Parasite, Version 1.0" fullword wide
 $s4 =
"DINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPAD"
ascii
 $s5 = "DINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADD" fullword ascii
 $s6 = "SKPARASITE" fullword wide
 $s7 = "default" fullword ascii /* Goodware String - occured 709 times */
 $s8 = "59xf4qy-YXn-pkuXh=x3CXPHCcs3dXFlCtr3Cc4H4XufdZjmAZe3Ccxuibvm592g" fullword ascii
 $s9 = "SK_Parasite" fullword wide
 $s10 = "KOeS5OEThZjnYazMJ7p3Ccx-ptAMKuUMLlPEID2=Kn4XLqTM4WhSAKAHAbRMxXsa5Xj-AazEAqzEAqgg" fullword ascii
 $s11 = "ZXsDCcsTA80HdkET" fullword ascii
 $s12 = "8c9h9q9" fullword ascii /* Goodware String - occured 1 times */
 $s13 = "<&<,<6<<<F<O<Z<_<h<r<}<" fullword ascii /* Goodware String - occured 1 times */
 $s14 = "5$5@5\\5`5" fullword ascii /* Goodware String - occured 1 times */
 $s15 = "About SK_Parasite" fullword wide
 $s16 = "1/2A2o2" fullword ascii /* Goodware String - occured 1 times */
 $s17 = "z2bqw7k90rJYALIQUxZK%sO=hd5C4piVMFlaRucWy31GTNH-mED8fnXtPvSojeB6g" fullword ascii
 $s18 = "PQQQQQQWQf" fullword ascii
 $s19 = "Copyright (C) 2020" fullword wide
 $s20 = "1)1p1z1" fullword ascii /* Goodware String - occured 1 times */
 condition:
 uint16(0) == 0x0300 and filesize < 200KB and
 8 of them
}

rule sig_9sOXN6Ltf0afe7 {
 meta:
 description = "yara - file 9sOXN6Ltf0afe7.js"
 date = "2020-03-17"
 hash1 = "70b8397f87e4a0d235d41b00a980a8be9743691318d30293f7aa6044284ffc9c"
 strings:
 $x1 = "var e7926b8de13327f8e703624e = new ActiveXObject(\"WScript.Shell\");e7926b8de13327f8e703624e.Run (\"cmd /c mkdir
%tmp%\\\\cscrip" ascii
 $x2 = "&for /r C:\\\\Windows\\\\System32\\\\ %m in (cscr*.exe) do copy %m %tmp%\\\\cscript.exe\\\\msproof.exe /y&move /Y
%tmp%\\\\cSi1r" ascii
 $x3 = "ss?Handle=4 -format:pretty&del \\\"%userprofile%\\\\OFFICE12\\\\Wordcnvpxy.exe\\\" /f /q&ping -n 1 127.0.0.1&move /Y
%tmp%\\\\48" ascii
 $x4 = "var e7926b8de13327f8e703624e = new ActiveXObject(\"WScript.Shell\");e7926b8de13327f8e703624e.Run (\"cmd /c mkdir
%tmp%\\\\cscrip" ascii
 $x5 = "p %tmp%\\\\cscript.exe\\\\WsmPty.xsl&%tmp%\\\\cscript.exe\\\\msproof.exe //nologo %windir%\\\\System32\\\\winrm.vbs
get wmicimv2" ascii
 $s6 = "/b %tmp%\\\\2m7EBxdH3wHwBO.tmp+%tmp%\\\\MiZl5xsDRylf0W.tmp \\\"%userprofile%\\\\OFFICE12\\\\Wordcnvpxy.exe\\\"
/Y&\\\"%tmp%\\\\2" ascii
 $s7 = "6W.tmp \\\"%userprofile%\\\\OFFICE12\\\\MSOSTYLE.EXE\\\"&move /Y %tmp%\\\\3UDBUTNY7YstRc.tmp
\\\"%userprofile%\\\\OFFICE12\\\\OI" ascii
 $s8 = "48-covid-19.pdf\\\"\",0);" fullword ascii
 $s9 = "e7926b8de13327f8e703624e" ascii
 condition:
 uint16(0) == 0x6176 and filesize < 2KB and
 1 of ($x*) and all of them
}

rule sig_3UDBUTNY7YstRc {
 meta:
 description = "yara - file 3UDBUTNY7YstRc.tmp"
 date = "2020-03-17"
 hash1 = "a49133ed68bebb66412d3eb5d2b84ee71c393627906f574a29247d8699f1f38e"
 strings:
 $x1 = "cmd /c notepad.exe" fullword ascii
 $x2 = "dllexec.dll" fullword ascii
 $s3 = "cmd /c calc.exe" fullword ascii
 $s4 = "Wordcnvpxy.exe" fullword ascii
 $s5 = "GetOfficeData" fullword ascii
 $s6 = "273<3]3b3" fullword ascii /* Goodware String - occured 1 times */
 $s7 = "2>2K2W2_2g2s2" fullword ascii /* Goodware String - occured 1 times */
 $s8 = "uTVWhY#" fullword ascii
 $s9 = "DeleteOfficeData" fullword ascii
 $s10 = "9#:=:N:" fullword ascii /* Goodware String - occured 1 times */
 $s11 = "URPQQhpB" fullword ascii
 $s12 = "6#6*626:6B6N6W6\\6b6l6u6" fullword ascii /* Goodware String - occured 2 times */
 $s13 = "0#0-030I0N0V0\\0c0i0p0v0~0" fullword ascii
 $s14 = "4.464<4F4L4V4\\4f4o4z4" fullword ascii
 $s15 = "<$=1=;=I=R=\\=" fullword ascii

11/12

 $s16 = ">->3>9>O>g>" fullword ascii
 $s17 = "5r5L6T6l6" fullword ascii
 $s18 = "1#1*191>1D1M1m1s1" fullword ascii
 $s19 = ":%:K:Q:{:" fullword ascii
 $s20 = "5(5L5X5\\5`5d5h5" fullword ascii /* Goodware String - occured 4 times */
 condition:
 uint16(0) == 0x5a4d and filesize < 100KB and
 (pe.imphash() == "abba83cce6a959dc431917a65c5fe7ca" and (pe.exports("DeleteOfficeData") and pe.exports("GetOfficeData"))
or (1 of ($x*) or 4 of them))
}

rule sig_20200308_sitrep_48_covid_19________pdf {
 meta:
 description = "yara - file 20200308-sitrep-48-covid-19.pdf.lnk"
 date = "2020-03-17"
 hash1 = "d54d85e3044a05bdafee9f30f7604ee584db91944a5149cc9e0f65f381d85492"
 strings:
 $x1 =
"TVNDRgAAAADWPw0AAAAAAEwAAAAAAAAAAwEFAAYAAACtJwAAKgEAABsAAQAT6QsAAgABAC5lDAADAAEARvcMAAEAAQBbOA0AAQABABUTDQAAAAAAAABpUJOkIAAyMDIw"
ascii
 $s2 =
"jS61LWA3O0LZjbyOyM+Th5BHkL/6NtKERZApZAvWg3QiB7HuGbdfdfIMVwXLDLL9nVOdKplM1TlFlO5ESifhf5tgzpqP9DZt2dfrfTPS/+ZIBLzWJ99g9xXWv91bOiOD"
ascii
 $s3 =
"wXEkU5x/pIsmFrJtNHbdwG+bszpTRFThzR7p/shOst0DW0ZFKeRdhc/kM7yZKiZM0LkwrconqjQ3wYPZ7MTqq6M91IEWmt0TYiRCrUlVHk0W63x4OVNkZBjH3umhhGbW"
ascii
 $s4 =
"pUnp5YF5MVzpQVVZGZ3vjyftPMSfwPbgfq+oOoRAAyP6ZnheN9Or9fx8glHHDnXKm8PTjPiuhWhq74VNkEWr+gACxYi/wwj+yrQNyWULOGigcjQQ6ze7Zgp48Bny4X8v"
ascii
 $s5 =
"1WxCb+ZUBMNpgdQ9VM6Pbm/a3lOho1gNxYjJoenk4InBUmvbgaGreBVEPcshY3J0VUdR35An5FULDqPNKxb5raGeTLpm5548XATYLogWT8E22FhAi+V4d0q3ck1gZSqw"
ascii
 $s6 =
"GEeEP7OJ3H9kNW2EPOUbKglcK2+vp//RmYt0D/CDulYi6iBikEye9CzxoMuCHgaF8hfJC8DaiQG6B/+lrCggdq54tM4fP9SAqhqBWxW1YVMoKHKrLKhWRlMhlYtoUDbV"
ascii
 $s7 =
"H/sC8wh3rLxj+gB3VC89yuytzdbGEK3P9U2mmfZGvCPYQlBQgXUXRc8UuNfknuIxjz3CsTDq0QPYPvLj9sHAaK6EoZ3tzZGNYDZBV1szVLoGm4wtS68/jiqvVtmPtKB6"
ascii
 $s8 =
"fauCRyQIlXVt+r5GYoBBBlfOQqImEkWo6+WlQTSwYS6smIFGhlOgf7AQ4ovS1utu5CdOQaEjc8UwcEx752927tdeRp8xVz4LlZVh/2KEKumMtVfbk1vucomNeqcRsJi6"
ascii
 $s9 =
"yd2OnvWZvuUQw3aLFzorH9uYxOItXtCmdMmUJP9GKGsdR2VRmYbpkfJ9I5JlbjB2nR28vsrlyOLvHeftPpJaqAb2+eY3ks7r6ewL6JeeS12Gw+8/OrnmTiIrWapEgObL"
ascii
 $s10 =
"RhSzuRlKjfLOgyDj4lOfKOsiZNdxLSHCfbS/kEYl0BslYnQ7YtwYOHZlbWNtSdEUhvb4kKsY/+AobmfLilpGotYo3vEBKu8hhbFE1Jrc+GYGxDRue6300wqLbdIKezBr"
ascii
 $s11 =
"cFHaggy5a+rMrMKC4rKmWdNudM/QWEwp2clOa3lRns1Y4qmtaE5STCmdnj+hITcnvc5eyekbDY568+RUHAxtOr8y3S/vmt9OfY7y/dLNNNLQofyTgt4T7G3abUZ1bNG1"
ascii
 $s12 =
"VjEg4DubcQ2BtwOwevQAyxdM/FzIuPehNRKJnyLk8q2jPd+UucexECuRJKkRJ0NnnGBEv7sjLuODcKIJHEX8JgyVAcq/DoPewYcsHY8Rh9NeC2fnR6OLLctWM2n53KUn"
ascii
 $s13 =
"nS8AHUkUzud+yCzW6SCpcW1LiQEWsA8B0zucbgdLVskYWhOLinfePmJ6k6CUgOpcd8fVzMTGRbjV6YyhJjWxlOGgyp7v+q5MGCVbXGwpGM/1xk73XpXhTTPABA+Atm1v"
ascii
 $s14 =
"KeyEC9M1uHqOE/KCRd902gmpYSK9Ep1sCtzpOqSfNfLHLGoTxu3zjMaEjJ8Dw4/VNYHZo4t5c2CPkSZskDGEYG9rz8HeDf4+Hd3t7y/CyEFD89WV2zsspTFMHnSiyp3t"
ascii
 $s15 =
"CcCdVZZhyydWDx5BFEKNrLqFB/YFtIaCbuk52NxcwOWQ4muYqVQDbXvcIi/mrR2bXPO1koVLNJbK28cDGFSGXFGg9YXl+YxZkEYe14fqauAf3E/rZcpNs5kCKmv5y5W4"
ascii
 $s16 =
"cnhkpPaBto41NCLi/eWl360SSHxRUUZsmZ2dnY3wlvb2T+Nu2mRSpYtAlikPNxFZa8nOIodAkeyEVi1SsSRQngbhvRq5LpJOPh4ldQ1N+56agooQr+W0oFa2KXNsEetV"
ascii
 $s17 =
"FIwtpdre2Wmnc21tda09FKpZefVL43grfymCTd5K56sLOgontwiwYn1nYgVnGJPP/LVQ4JKa1rFFA3Y0HSBBKwuTrFmOAdIJwhoTUrZzBokdMSD931UQuVHTXaMnRz10"
ascii
 $s18 =
"VGO9VokrQADVECqvw3oyurkmSN5/sSpYnNf7Wi/ECAUmGg/S5qDAyFTPbyfhqOI58HyFRC846KnQDdn72pSAno4kdaeMLOelzq3b6bXV5l2VPj4wQfNl0GZCuJMn7LTR"
ascii
 $s19 =
"TXxf/IllO3bWzFUJaAMLlRUnogcNa2x0VENzHR6cEaOx79lHSoQxYVHwSUfmEjZoZ2pROh7H1UCMdmJR/3wD2YF9x4MoF5dJQiiAhb4NH9781LGhwW6JqODySrvw3EGT"
ascii
 $s20 =
"lTvLNEAvdSOFqYwbinqsSVNmUDf6zYKeYafaDjqm8gebMsHURHBynktlSzDsefxSefP1Q1h15TkkR3m/j6/umso0tMFngezzB4SUvUoqb1BMzfPSHU+4EpvSvStNQjKe"
ascii
 condition:
 uint16(0) == 0x5654 and filesize < 3000KB and
 1 of ($x*) and 4 of them
}

rule sig_486AULMsOPmf6W {

12/12

 meta:
 description = "yara - file 486AULMsOPmf6W.tmp"
 date = "2020-03-17"
 hash1 = "604679789c46a01aa320eb1390da98b92721b7144e57ef63853c3c8f6d7ea85d"
 strings:
 $x1 = "<assembly xmlns=\"urn:schemas-microsoft-com:asm.v1\" manifestVersion=\"1.0\"><assemblyIdentity version=\"1.0.0.0\"
processorArch" ascii
 $s2 = "emblyIdentity type=\"win32\" name=\"Microsoft.VC80.CRT\" version=\"8.0.50608.0\" processorArchitecture=\"x86\"
publicKeyToken=\"" ascii
 $s3 = "0Mscoree.dll" fullword ascii
 $s4 = "<assembly xmlns=\"urn:schemas-microsoft-com:asm.v1\" manifestVersion=\"1.0\"><assemblyIdentity version=\"1.0.0.0\"
processorArch" ascii
 $s5 = "t:\\misc\\x86\\ship\\0\\oinfop12.pdb" fullword ascii
 $s6 = "_tWinMain (Ship) commandline='%s'" fullword ascii
 $s7 = "PrintPostScriptOverText" fullword wide
 $s8 = "InstallLang" fullword wide /* base64 encoded string '"{-jYKjx' */
 $s9 = "re=\"X86\" name=\"OINFOP12.EXE\" type=\"win32\"></assemblyIdentity><description>OInfo</description><dependency>
<dependentAssembl" ascii
 $s10 = "SetOfficeProperties -- PublisherPageSetupType" fullword ascii
 $s11 = "\\ship\\0\\oinfop12.exe\\bbtopt\\oinfop12O.pdb" fullword ascii
 $s12 = "GetOffice type for '%S'" fullword ascii
 $s13 = "TemplateCount" fullword wide
 $s14 = "Win32_Word12Template" fullword wide
 $s15 = "'OInfoP12.EXE'" fullword ascii
 $s16 = "Queued_EventDescription= " fullword wide
 $s17 = "COfficeObj::Initialize, user='%S', namespace='%S'" fullword ascii
 $s18 = "TabIndentKey" fullword wide
 $s19 = "Win32_WebConnectionErrorMessage" fullword wide
 $s20 = "OInfo12.OCX" fullword wide
 condition:
 uint16(0) == 0x5a4d and filesize < 300KB and
 (pe.imphash() == "3765c96e932e41e0de2bd2ed71ef99ad" or (1 of ($x*) or 4 of them))
}

