
1/10

Vitali Kremez

How TrickBot Malware Hooking Engine Targets Windows
10 Browsers

labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers/

Vitali Kremez revealing how TrickBot’s hooking engine targets Chrome, Firefox, Explorer and
Edge in Windows 10.

What is TrickBot Malware? Background & Summary

TrickBot banking malware remains one of the more interesting and continually developing
malware on the financial crimeware landscape. It employs multiple means and methods to
exploit compromised machines of interest. The focus of this post is to cover in-depth some of
its Windows 10 Microsoft Edge and other browser hooking engine functionality. We will focus
on the internals, and how TrickBot leverages these browsers to set up hooks for API calls of
interest. The ultimate goal of the malware browser hooking is predominantly to intercept
online banking credentials before they become SSL encrypted. The stolen credentials can
subsequently be used for account takeover (ATO) fraud.

https://labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers/
https://www.sentinelone.com/blog/trickbot-technical-analysis-banking-trojan-malware/
https://www.sentinelone.com/blog/7-ways-hackers-steal-your-passwords/

2/10

3/10

Since Windows 10 came with a new browser, “Microsoft Edge”,� TrickBot operators needed
their banking malware to operate on that software. To implement form-grabbing and web
injections in the Windows 10 Edge browser, TrickBot’s rogue rtlbroker hooks the
microsoftedgecp.exe process. Normally, runtimebroker.exe is the parent process of

the Microsoft Edge browser on Windows 10 machines.

TrickBot Browser Process Injection Technique “Reflective Loader”�

In order to hook browser functions, TrickBot malware injects the payload into the browser of
choice via the so-called “ReflectiveLoader”� methodology.

The TrickBot process injection function targets four browsers from Microsoft Edge to Google
Chrome and one Microsoft Edge related process.

https://www.sentinelone.com/blog/32-security-reasons-to-move-to-windows-10/

4/10

TrickBot injects the malware targeting the following processes:

chrome.exe
iexplore.exe
firefox.exe
microsoftedgecp.exe
runtimebroker.exe

The malware also “relaxes”� browser security and write changes files locally before
injection occurs.

5/10

TrickBot’s reflective injection works as follows:

Open target process and allocate memory address in remote process via
VirtualAllocEx

Copy function WriteProcessMemory into the allocated memory space
Copy shellcode WriteProcessMemory into the allocated memory space
Call FlushInstructionCache API to make sure our changes are written right away
Call inject RemoteThread function call
Call ResumeThread
Else, call undocumented API function RtlCreateUserThread to start execution in the
remote process, using the offset address of the reflective loader function as the entry
point.

6/10

TrickBot Malware Hooking Engine

When the TrickBot banker hooks the API function, it enters the new hooked one and checks
to make sure the process is microsoftedgecp.exe while passing control to the original
one when the hooked function concludes.

The basic TrickBot banking API hooking template is as follows:

"CreateHook_API" Function Template ->

{ int CreateHook_API(LPCSTR DLL_name, int original_function_name,

int myHook_function, int address_of_original_function) }

By and large, TrickBot hooking engine works via overwriting the basic API with the redirect
functions with the 0xe9 opcode, which is the call for a jump with 32-bit relative offset.
TrickBot uses a trampoline function and the write hook call with the VirtualProtectEx API

http://jbremer.org/x86-api-hooking-demystified/#ah-trampoline

7/10

to make sure that the function has the 0x40 (PAGE_EXECUTE_READWRITE) property.
Additionally, it attempts to conceal detection of this hooking technique via prepending NOP
and/or RETN.

The exact TrickBot hook pseudo-code is as follows:

8/10

//
/////////////// TrickBot Hook Install Function ///////////////////////
///
signed int __cdecl TrickBot_Hook_Install(int myHook_function, int *function_address)
{

char *original_function;
char *current_func_id_thread;
int v5;
char jump_len;
signed int result;
SIZE_T v8;
void *trampoline_lpvoid;
int v10;
int v11;
unsigned __int8 jmp_32_bit_relative_offset_opcode;
int relative_offset;
DWORD flOldProtect;
original_function = func_name;
current_func_id_thread = func_name + 0x24;
iter_func(func_name + 0x24, 0x90, 0x23);
if (function_address) // Attempts to prepend "0x90" (nop) or "0xC3"

(retn) to jump length to avoid basic hooking detect
 jump_len = walker_byte_0(*(_BYTE **)(original_function + 1),

(int)current_func_id_thread, v5);
else
 jump_len = 5; // jump_length_trampoline -> 5

original_function[5] = jump_len;

if (!jump_len)
 goto LABEL_12; // Setting up the trampoline buffer
 write_hook_iter((int)(original_function + 6), *(_BYTE **)

(original_function + 1), (unsigned __int8)jump_len);

if (function_address)
 *function_address = (int)current_func_id_thread;

relative_offset = myHook_function - *(_DWORD *)(original_function + 1) - 5;
v8 = (unsigned __int8)original_function[5];
trampoline_lpvoid = *(void **)(original_function + 1);
jmp_32_bit_relative_offset_opcode = 0xE9u; // "0xE9" -> opcode

for a jump with a 32bit relative offset

if (VirtualProtectEx((HANDLE)0xFFFFFFFF, trampoline_lpvoid, v8, 0x40u,
&flOldProtect)) // Set up the function for "PAGE_EXECUTE_READWRITE" w/
VirtualProtectEx

{
 v10 = *(_DWORD *)(original_function + 1);
 v11 = (unsigned __int8)original_function[5] -

(_DWORD)original_function - 0x47;
 original_function[66] = 0xE9u;
 *(_DWORD *)(original_function + 0x43) = v10 + v11;
 write_hook_iter(v10, &jmp_32_bit_relative_offset_opcode, 5); // ->

Manually write the hook
 VirtualProtectEx(// Return to original protect state

9/10

 (HANDLE)0xFFFFFFFF,
 *(LPVOID *)(original_function + 1),
 (unsigned __int8)original_function[5],
 flOldProtect,
 &flOldProtect);
result = 1;

For instance, TrickBot malware sets up its own custom myCreateProcessA function
prototype after the hook on CreateProcessA . The idea is to catch any instance of
microsoftedgecp.exe execution to intercept it for subsequent injection. This function

ultimately returns the flow back to CreateProcessA after intercepting and collecting
necessary process execution information.

The following four API calls being hooked are in the child Microsoft Edge via rogue
rtlbroker.dll , allowing TrickBot operators to intercept and manipulate Microsoft Edge

calls:

CreateProcess
CreateProcessW
CreateProcessAsUserA
CreateProcessAsUserW

10/10

TrickBot hooks Internet Explorer and Microsoft Edge in wininet.dll library API calls:

HttpSendRequestA
HttpSendRequestW
HttpSendRequestExA
HttpSendRequestExW
InternetCloseHandle
InternetReadFile
InternetReadFileExA
InternetQueryDataAvailable
HttpQueryInfoA
InternetWriteFile
HttpEndRequestA
HttpEndRequestW
InternetQueryOptionA
InternetQueryOptionW
InternetSetOptionA
InternetSetOptionW
HttpOpenRequestA
HttpOpenRequestW
InternetConnectA
InternetConnectW

The malware hooks Mozilla Firefox Browser in nspr4.dll library API calls:

PR_OpenTCPSocket
PR_Connect
PR_Close
PR_Write
PR_Read

It hooks Chrome in chrome.dll library API calls:

ssl_read
ssl_write

Reference

injectDll32.dll C546D40D411D0F0BB7A1C9986878F231342CDF8B

rtlbrokerDll.dll 0785D0C5600D9C096B75CC4465BE79D456F60594

testnewinj32Dll.dll D5F98BFF5E33A86B213E05344BD402350FC5F7CD

