
1/11

January 23, 2018

A Walk-Through Tutorial, with Code, on Statically
Unpacking the FinSpy VM: Part One, x86 Deobfuscation

msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-
part-one-x86-deobfuscation

January 23, 2018 Rolf Rolles

1. Introduction

Normally when I publish about breaking virtual machine software protections, I do so to
present new techniques. Past examples have included:

Today's document has a different focus. I am not going to be showcasing any particularly
new techniques. I will, instead, be providing a step-by-step walk-through of the process I
used to analyze the FinSpy VM, including my thoughts along the way, the procedures and
source code I used, and summaries of the notes I took. The interested reader is
encouraged to obtain the sample and walk through the analysis process for themselves.

I have three motives in publishing this document:

1. I think it's in the best interest of the security defense community if every malware
analyst is able to unpack the FinSpy malware VM whenever they encounter it (for
obvious reasons).

2. Reverse engineering is suffering from a drought of hands-on tutorial material in
modern times. I was fortunate to begin reverse engineering when such tutorials were
common, and they were invaluable in helping me learn the craft. Slides are fine for
large analyses, but for smaller ones, let's bring back tutorials for the sake of those that
have followed us.

http://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df

2/11

3. Publications on obfuscation, especially virtualization obfuscation, have become
extremely abstruse particularly in the past five years. Many of these publications are
largely inaccessible to those not well-versed in master's degree-level program
analysis (or above). I want to demonstrate that easier techniques can still produce
surprisingly fast and useful results for some contemporary obfuscation techniques. (If
you want to learn more about program analysis-based approaches to deobfuscation,
there is currently a public offering of my SMT-based program analysis training class,
which has over 200 slides on modern deobfuscation with working, well-documented
code.)

Update: the rest of this document, the second and third parts, are now available online at
the links just given.

2. Initial Steps

The first thing I did upon learning that a new FinSpy sample with VM was publicly
available was, of course, to obtain the sample. VirusTotal gave the SHA256 hash; and I
obtained the corresponding sample from Hybrid-Analysis.

The next step was to load the sample into IDA. The navigation bar immediately tipped me
off that the binary was obfuscated:

The first half of the .text section is mostly colored grey and red, indicating data and
non-function code respectively.
The second half of the .text section is grey in the navigation bar, indicating data turned
into arrays.

A normal binary would have a .text section that was mostly blue, indicating code within
functions.

3. Analysis of WinMain: Suspicions of VM-Based Obfuscation

IDA's auto-analysis feature identified that the binary was compiled by the Microsoft Visual C
compiler. I began by identifying the WinMain function. Normally IDA would do this on my
behalf, but the code at that location is obfuscated, so IDA did not name it or turn it into a
function. I located WinMain by examining the ___tmainCRTStartup function from the Visual
C Run-Time and finding where it called into user-written code. The first few instructions
resembled a normal function prologue; from there, the obfuscation immediately began.

http://www.msreverseengineering.com/training-classes/
http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
http://www.msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization
https://securelist.com/blackoasis-apt-and-new-targeted-attacks-leveraging-zero-day-exploit/82732/
https://www.virustotal.com/en/file/16070014b86f2254dcf273bbce78fb6eca43df9a6fc3c6ab85ec8f06a4063b06/analysis/
https://www.hybrid-analysis.com/sample/16070014b86f2254dcf273bbce78fb6eca43df9a6fc3c6ab85ec8f06a4063b06?environmentId=100

3/11

.text:00406154 mov edi, edi ; Normal prologue

.text:00406156 push ebp ; Normal prologue

.text:00406157 mov ebp, esp ; Normal prologue

.text:00406159 sub esp, 0C94h ; Normal prologue

.text:0040615F push ebx ; Save registers #1

.text:00406160 push esi ; Save registers #1

.text:00406161 push edi ; Save registers #1

.text:00406162 push edi ; Save registers #2

.text:00406163 push edx ; Save registers #2

.text:00406164 mov edx, offset byte_415E41 ; Obfuscation - #1

.text:00406169 and edi, 0C946B9C3h ; Obfuscation - #2

.text:0040616F sub edi, [edx+184h] ; Obfuscation - #3

.text:00406175 imul edi, esp, 721D31h ; Obfuscation - #4

.text:0040617B stc ; Obfuscation

.text:0040617C sub edi, [edx+0EEh] ; Obfuscation - #5

.text:00406182 shl edi, cl ; Obfuscation

.text:00406184 sub edi, [edx+39h] ; Obfuscation - #6

.text:0040618A shl edi, cl ; Obfuscation

.text:0040618C imul edi, ebp ; Obfuscation

.text:0040618F mov edi, edi ; Obfuscation

.text:00406191 stc ; Obfuscation

.text:00406192 sub edi, 0A14686D0h ; Obfuscation

; ... obfuscation continues ...

.text:004065A2 pop edx ; Restore registers

.text:004065A3 pop edi ; Restore registers

The obfuscation in the sequence above continues for several hundred instructions, nearly
all of them consisting of random-looking modifications to the EDI register. I wanted to know
A) whether the computations upon EDI were entirely immaterial junk instructions, or
whether a real value was being produced by this sequence, and B) whether the memory
references in the lines labeled #1, #3, #5, and #6 were meaningful.

As for the first question, note that the values of the registers upon entering this sequence
are unknown. We are, after all, in WinMain(), which uses the __cdecl calling convention,
meaning that the caller did not pass arguments in registers. Therefore, the value computed
on line #2 is unpredictable and can potentially change across different executions. Also, the
value computed on line #4 is pure gibberish -- the value of the stack pointer will change
across runs (and the modification to EDI overwrites the values computed on lines #1-#3).

As for the second question, I skimmed the obfuscated listing and noticed that there were no
writes to memory, only reads, all intertwined with gibberish instructions like the ones just
described. Finally, the original value of edi is popped off the stack at the location near the
end labeled "restore registers". So I was fairly confident that I was looking at a sequence of
instructions meant to do nothing, producing no meaningful change to the state of the
program.

Following that was a short sequence:

4/11

.text:004065A4 push 5A403Dh ; Obfuscation

.text:004065A9 push ecx ; Obfuscation

.text:004065AA sub ecx, ecx ; Obfuscation

.text:004065AC pop ecx ; Obfuscation

.text:004065AD jz loc_401950 ; Transfer control elsewhere

.text:004065AD ; ---

.text:004065B3 db 5 dup(0CCh)
.text:004065B8 ; ---

.text:004065B8 mov edi, edi
.text:004065BA push ebp
.text:004065BB mov ebp, esp
.text:004065BD sub esp, 18h

; ... followed by similar obfuscation to what we saw above ...

By inspection, this sequence just pushes the value 5A403Dh onto the stack, and transfers
control to loc_401950. (The "sub ecx, ecx" instruction above sets the zero flag to 1,
therefore the JZ instruction will always branch.)

Next we see the directive "db 5 dup(0CCh)" followed by "mov edi, edi". Reverse engineers
will recognize these sequences as the Microsoft Visual C compiler's implementation of hot-
patching support. The details of hot-patching are less important than the observation that I
expected that the original pre-obfuscated binary contained a function that began at the
address of the first sequence, and ended before the "db 5 dup(0CCh)" sequence. I.e. I
expect that the obfuscator disassembled all of the code within this function, replaced it with
gibberish instructions, placed a branch at the end to some other location, and then did the
same thing with the next function.

This is a good sign that we're dealing with a virtualization-based obfuscator: namely, it looks
like the binary was compiled with an ordinary compiler, then passed to a component that
overwrote the original instructions (rather than merely encrypting them in-place, as would
normal packers).

4. Learning More About the VM Entrypoint and VM Pre-Entry

Recall again the second sequence of assembly code from the previous sequence:

.text:004065A4 push 5A403Dh ; Obfuscation - #1

.text:004065A9 push ecx ; Obfuscation

.text:004065AA sub ecx, ecx ; Obfuscation

.text:004065AC pop ecx ; Obfuscation

.text:004065AD jz loc_401950 ; Transfer control elsewhere

Since -- by supposition -- all of the code from this function was replaced with gibberish,
there wasn't much to meaningfully analyze. My only real option was to examine the code at
the location loc_401950, the target of the JZ instruction on the last line. The first thing I
noticed at this location, loc_401950, was that there were 125 incoming references, nearly

5/11

all of them of the form "jz loc_401950", with some of the form "jmp loc_401950". Having
analyzed a number of VM-based obfuscators in my day, this location fits the pattern of
being the part of the VM known as the "entrypoint" -- the part where the virtual CPU begins
to execute. Usually this location will save the registers and flags onto the stack, before
performing any necessary setup, and finally beginning to execute VM instructions. VM
entrypoints usually require a pointer or other identifier to the bytecode that will be executed
by the VM; maybe that's the value from the instruction labeled #1 in the sequence above?
Let's check another incoming reference to that location to verify:

.text:00408AB8 push 5A7440h ; #2

.text:00408ABD push eax

.text:00408ABE sub eax, eax

.text:00408AC0 pop eax

.text:00408AC1 jz loc_401950

The other location leading to the entrypoint is functionally identical, apart from pushing a
different value onto the stack. This value is not a pointer; it does not correspond to an
address within the executable's memory image. Nevertheless, we expect that this value is
somehow responsible for telling the VM entrypoint where the bytecode is located.

5. Analyzing the VM Entrypoint Code

So far we have determined that loc_401950 is the VM entrypoint, targeted by 125 branching
locations within the binary, which each push a different non-pointer DWORD before
branching. Let's start analyzing that code:

.text:00401950 loc_401950:

.text:00401950 0F 82 D1 02 00 00 jb loc_401C27

.text:00401956 0F 83 CB 02 00 00 jnb loc_401C27

Immediately we see an obvious and well-known form of obfuscation. The first line jumps to
loc_401C27 if the "below" conditional is true, and the second line jumps to loc_401C27 if
the "not below" conditional is true. I.e., execution will reach loc_401C27 if either "below" or
"not below" is true in the current EFLAGS context. I.e., these two instructions will transfer
control to loc_401C27 no matter what is in EFLAGS -- and in particular, we might as well
replace these two instructions with "jmp loc_401C27", as the effect would be identical.

Continuing to analyze at loc_401C27, we see another instance of the same basic idea:

.text:00401C27 loc_401C27:

.text:00401C27 77 CD ja short loc_401BF6

.text:00401C29 76 CB jbe short loc_401BF6

Here we have an unconditional branch to loc_401BF6, split across two instructions -- a
"jump if above", and "jump if below or equals", where "above" and "below or equals" are
logically opposite and mutually exclusive conditions.

6/11

After this, at location loc_401BF6, there is a legitimate-looking instruction (push eax),
followed by another conditional jump pair to loc_401D5C. At that location, there is another
legitimate-looking instruction (push ecx), followed by a conditional jump pair to loc_4019D2.
At that location, there is another legitimate-looking instruction (push edx), followed by
another conditional jump pair. It quickly became obvious that every legitimate instruction
was interspersed between one or two conditional jump pairs -- there are hundreds or
thousands of these pairs throughout the binary.

Though an extremely old and not particularly sophisticated form of obfuscation, it is
nevertheless annoying and degrades the utility of one's disassembler. As I discussed in a
previous entry on IDA processor module extensions, IDA does not automatically recognize
that two opposite conditional branches to the same location are an unconditional branch to
that location. As a result, IDA thinks that the address following the second conditional
branch must necessarily contain code. Obfuscation authors exploit this by putting junk bytes
after the second conditional branch, which then causes the disassembler to generate
garbage instructions, which may overlap and occlude legitimate instructions following the
branch due to the variable-length encoding scheme for X86. (Note that IDA is not to blame
for this conundrum -- ultimately these problems are undecidable under ordinary Von
Neumann-based models of program execution.) The result is that many of the legitimate
instructions get lost in the dreck generated by this process, and that, in order to follow the
code as usual in manual static analysis, one would spend a lot of time manually undefining
the gibberish instructions and re-defining the legitimate ones.

6. Deobfuscating the Conditional Branch Obfuscation: Theory and
Practice

Manually undefining and redefining instructions as just described, however, would be a
waste of time, so let's not do that. Speaking of IDA processor modules, once it became
clear that this pattern repeated between every legitimate non-control-flow instruction, I got
the idea to write an IDA processor module extension to remove the obfuscation
automatically. IDA processor module extensions give us the ability to have a function of
ours called every time the disassembler encounters an instruction. If we could recognize
that the instruction we were disassembling was a conditional branch, and determine that the
following instruction contains its opposite conditional branch to the same target as the first,
we could replace the first one with an unconditional branch and NOP out the second branch
instruction.

Thus, the first task is to come up with a way to recognize instances of this obfuscation. It
seemed like the easiest way would be to do this with byte pattern-recognition. In my
callback function that executes before an instruction is disassembled, I can inspect the raw
bytes to determine whether I'm dealing with a conditional branch, and if so, what the
condition is and the branch target. Then I can apply the same logic to determine whether

http://www.msreverseengineering.com/blog/2015/6/29/transparent-deobfuscation-with-ida-processor-module-extensions

7/11

the following instruction is a conditional branch and determine its condition and target. If the
conditions are opposite and the branch targets are the same, we've found an instance of
the obfuscation and can neutralize it.

In practice, this is even easier than it sounds! Recall the first example from above,
reproduced here for ease of reading:

.text:00401950 0F 82 D1 02 00 00 jb loc_401C27

.text:00401956 0F 83 CB 02 00 00 jnb loc_401C27

Each of these two instructions is six bytes long. They both begin with the byte 0F (the x86
two-byte escape opcode stem), are then followed by a byte in the range of 80 to 8F, and are
then followed by a DWORD encoding the displacement from the end of the instructions to
the branch targets. As a fortuitous quirk of x86 instruction encodings, opposite conditional
branches are encoded with adjacent bytes. I.e. 82 represents the long form of JB, and 83
represents the long form of JNB. Two long branches have opposite condition codes if and
only if their second opcode byte differs from one another in the lowest bit (i.e. 0x82 ^ 0x83
== 0x01). And note also that the DWORDs following the second opcode byte differ by
exactly 6 -- the length of a long conditional branch instruction.

That's all we need to know for the long conditional branches. There is also a short form for
conditionals, shown in the second example above and reproduced here for ease of reading:

.text:00401C27 77 CD ja short loc_401BF6

.text:00401C29 76 CB jbe short loc_401BF6

Virtually identical comments apply to these sequences. The first bytes of both instructions
are in the range of 0x70 to 0x7F, opposite conditions have differing lowest bits, and the
second bytes differ from one another by exactly 2 -- the length of a short conditional branch
instruction.

7. Deobfuscating the Conditional Branch Obfuscation:
Implementation

I started by copying and pasting my code from the last time I did something like this. I first
deleted all the code that was specific to the last protection I broke with an IDA processor
module extension. Since I've switched to IDA 7.0 in the meantime, and since IDA 7.0 made
breaking changes vis-a-vis prior APIs, I had to make a few modifications -- namely,
renaming the custom analysis function from deobX86Hook::custom_ana(self) to
deobX86Hook::ev_ana_insn(self, insn), and replacing every reference to idaapi.cmd.ea with
insn.ea. Also, my previous example would only run if the binary's MD5 matched a particular
sum, so I copied and pasted the sum of my sample out of IDA's database preamble over
the previous MD5.

http://www.msreverseengineering.com/blog/2015/6/29/transparent-deobfuscation-with-ida-processor-module-extensions

8/11

From there I had to change the logic in custom_ana. The result was even simpler than my
last processor module extension. Here is the logic for recognizing and deobfuscating the
short form of the conditional branch obfuscation:

b1 = idaapi.get_byte(insn.ea)
if b1 >= 0x70 and b1 <= 0x7F:
 d1 = idaapi.get_byte(insn.ea+1)
 b2 = idaapi.get_byte(insn.ea+2)
 d2 = idaapi.get_byte(insn.ea+3)
 if b2 == b1 ^ 0x01 and d1-2 == d2:
 # Replace first byte of first conditional with 0xEB, the opcode for "JMP
rel8"
 idaapi.put_byte(insn.ea, 0xEB)
 # Replace the following instruction with two 0x90 NOP instructions
 idaapi.put_word(insn.ea+2, 0x9090)

Deobfuscating the long form is nearly identical; see the code for details.

8. Admiring My Handiwork, Cleaning up the Database a Bit

Now I copied the processor module extension to %IDA%\plugins and re-loaded the sample.
It had worked! The VM entrypoint had been replaced with:

.text:00401950 loc_401950:

.text:00401950 jmp loc_401C27

Though the navigation bar was still largely red and ugly, I immediately noticed a large
function in the middle of the text section:

Looking at it in graph mode, we can see that it's kind of ugly and not entirely as nice as
analyzing unobfuscated X86, but considering how trivial it was to get here, I'll take it over
the obfuscated version any day. The red nodes denote errant instructions physically located
above the valid ones in the white nodes. IDA's graphing algorithm includes any code within
the physically contiguous region of a function's chunks in the graph display, regardless of
whether they have incoming code cross-references, likely to make displays of exception
handlers nicer. It would be easy enough to remove these and strip the JMP instructions if
you wanted to write a plugin to do so.

https://github.com/RolfRolles/FinSpyVM/blob/master/FinSpyDeob.py

9/11

Next I was curious about the grey areas in the .text section navigation bar held. (Those
areas denote defined data items, mixed in with the obfuscated code in the .text section.) I
figured that the data held there was most likely related to the obfuscator. I spent a minute
looking at the grey regions and found this immediately after the defined function:

.text:00402AE0 dd offset loc_402CF2

.text:00402AE4 dd offset loc_402FBE

; ... 30 similar lines deleted ...

.text:00402B60 dd offset loc_4042DC

.text:00402B64 dd offset loc_40434D

10/11

34 offsets, each of which contains code. Those are probably the VM instruction handlers.
For good measure, let's turn those into functions with an IDAPython one-liner:

for pFuncEa in xrange(0x00402AE0, 0x00402B68, 4):
 idaapi.add_func(idaapi.get_long(pFuncEa))

Now a large, contiguous chunk of the navigation bar for the .text section is blue. And at this
point I realized I had forgotten to create a function at the original dispatcher location, so I
did that manually and here was the resulting navigation bar:

Hex-Rays doesn't do a very good job with any of the functions we just defined, since they
were originally written in assembly language and use instructions and constructs not
ordinarily produced by compilers. I don't blame Hex-Rays for that and I hope they continue
to optimize for standard compiler-based use cases and not weird ones like this.

Lastly, I held PageDown scrolling through the text section to see what was left. The majority
of it was VM entrypoints like those we saw in section 3. There were a few functions that
appeared like they had been produced by a compiler.

So now we have assessed what's in the text section -- a VM with 34 handlers, 125+
virtualized functions, and a handful of unvirtualized ones. Next time we'll take a look at the
VM.

9. Preview of Parts 2 and 3, and Beyond

After this I spent a few hours analyzing the VM entrypoint and VM instruction handlers.
Next, through static analysis I obtained the bytecode for the VM program contained within
this sample. I then wrote a disassembler for the VM. That's part two.

From there, by staring at the disassembled VM bytecode I was able to write a simple
pattern-based deobfuscator. After that I re-generated the X86 machine code, which was not
extremely difficult, but it was more laborious than I had originally anticipated. That's part
three.

After that, I re-inserted the X86 machine code into the original binary and analyzed it. It
turned out to be a fairly sophisticated dropper for one of two second-stage binaries. It was
fairly heavy on system internals and had a few tricks that aren't widely documented, so I
may publish one or more of those as separate entries, and/or I may publish an analysis of
the entire dropper.

http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
http://www.msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization

11/11

Finally, I analyzed -- or rather, still am analyzing -- the second-stage binaries. They may or
may not prove worthy of publication.

