
1/4

October 5, 2017

SYSCON Backdoor Uses FTP as a C&C Channel
blog.trendmicro.com/trendlabs-security-intelligence/syscon-backdoor-uses-ftp-as-a-cc-channel/

Malware

Bots can usually establish communication with their C&C server via HTTP or other TCP/IP connections. However, we recently encountered a
botnet that uses a more unusual method: an FTP server that, in effect, acts as a C&C server.

By: Jaromir Horejsi October 05, 2017 Read time: (words)

Bots can use various methods to establish a line of communication between themselves and their command-and-control (C&C) server.
Usually, these are done via HTTP or other TCP/IP connections. However, we recently encountered a botnet that uses a more unusual method:
an FTP server that, in effect, acts as a C&C server.

Using an FTP server has some advantages. It is less common, and this fact may allow it to slip unnoticed by administrators and researchers.
However, this also leaves the C&C traffic open for monitoring by others, including security researchers. In addition, thanks to a coding mistake
by the attackers, this particular backdoor does not always run the right commands.

Infection ChainThe infection chain starts with a malicious document with macros. The examples of delivery documents are shown below. The
documents suggest that targeted individuals may be connected to the Red Cross and the World Health Organization. All the documents
mention North Korea as well. We detect these delivery documents as W2KM_SYSCON.A.

Figures 1-3. Delivery documents with macros (Click to enlarge)

Each document contains two long strings, with Base64 encoding using a custom alphabet. This same technique was used to deliver the Sanny
malware family in late 2012.

Figure 4. Base64 decoded function with custom alphabet highlighted

Its similarities with the earlier Sanny attack are interesting. Both attacks used relatively unusual techniques for their C&C server, their structure
is similar, and the encoding key is identical. Documents somehow tied to North Korea were also used. We cannot eliminate the possibility that
both Sanny and this new malware family were the work of the same threat actor.

Decoding each Base64 string results in a cabinet file. One string contains a 32-bit version of the malware; the other contains a 64-bit version.
The appropriate version (based on OS version) is extracted using the expand command into the %Temp% folder, and uacme.exe (one of the
files in the cabinet file) is executed. (We detect the malicious files in these cabinet files under the following detection names: BAT_SYSCON.A,
BKDR_SYSCON.A, and TROJ_SYSCON.A.)

Figure 5. Command to extract cabinet archive and execute its contents (Click to enlarge)

Figure 6. Listing of all files in cabinet archive

http://blog.trendmicro.com/trendlabs-security-intelligence/syscon-backdoor-uses-ftp-as-a-cc-channel/
http://www.ifrc.org/what-we-do/health/cbhfa/about-cbhfa/
http://www.who.int/pmnch/about/continuum_of_care/en/
http://blog.trendmicro.com/trendlabs-security-intelligence/files/2017/10/syscon1.png
http://blog.trendmicro.com/trendlabs-security-intelligence/files/2017/10/syscon2.png
http://blog.trendmicro.com/trendlabs-security-intelligence/files/2017/10/syscon3.png
https://www.theregister.co.uk/2012/12/12/russian_cyberespionage_attack/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa367841(v=vs.85).aspx
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/BKDR_SYSCON.A
http://blog.trendmicro.com/trendlabs-security-intelligence/files/2017/10/syscon5.png

2/4

UAC bypass and installationUacme.exe, as the name suggests, determines the operating system version. Based on that information, it
either directly executes install.bat (for older Windows versions) or injects dummy.dll into the taskhost(ex) process, which attempts to
execute install.bat without a UAC prompt appearing.

Figure 7. uacme.exe and UAC bypass

Install.bat copies two files: ipnet.dll (the main file) and ipnet.ini (configuration file) into %Windows%\System32, configures new
malicious COMSysApp service using the sc command line utility, adds the service parameters into the registry, starts the malicious service,
and deletes all previously created files in the %Temp% directory. This does two things: it sets up the backdoor’s autostart routine, and deletes
some traces of its previous activity, making detection more difficult.

Figure 8. Service installation

Important parameters for the service configuration are “type=own”, which according to MSDN documentation means that it has its
own svchost.exe process in which the ipnet.dll runs. The parameter “start = auto” starts the service every time the computer is restarted.

Ipnet.ini is a text file encoded in the same way as the two cabinet files.

Figure 9. Configuration file

Decoding the configuration reveals a URL for the byethost free FTP service provider, as well as a set of login credentials.

The backdoorThe malware first gets the computer name, which it uses as the affected machine’s identifier. It then logs into the FTP server
using the credentials in the configuration file, enters the /htdocs/ directory, and monitors existing .txt file names. If the file name contains “To
EVERYONE”, it means that the file should be processed by everyone. If it contains “to computer_name”, then the file should be processed
(and later deleted) only by the victim computer with the matching computer_name.

After the backdoor processes the command, it lists all the currently running processes by calling “cmd /c tasklist >%ws”, which is then packed,
encoded and uploaded to FTP under following name pattern “From %s (%02d-%02d %02d-%02d-%02d).txt”, i.e. computer name followed by
date and time of the task execution.

Figure 10. Construction of name of the uploaded file

This shows that the communication between the victim’s computer and the bot master is done via uploaded files. However, the files are
generally zipped and encoded with the same custom Base64 encoding used earlier.

Compression of the files is done using the Shell Automation Service, which is part of Windows itself. No external library is needed. The
malware first creates a 22-byte long empty .zip file by executing the instructions below. The content of the newly created .zip file in hex is
“504b0506000000000000000000000000000000000000”, which is basically an empty .zip archive.

Figure 11. Instructions creating empty .zip file

Figure 12. Empty .zip file opened in Explorer

The malware then uses the Folder.CopyHere method to copy files into the empty .zip archive, so these files are compressed by the operating
system. According to MSDN documentation, these are the flags used while copying:

0x1000 = Only operate in the local directory. Do not operate recursively into subdirectories.
0x0400 = Do not display a user interface if an error occurs.
0x0010 = Respond with “Yes to All” for any dialog box that is displayed.
0x0004 = Do not display a progress dialog box.

Figure 13. Flags used by Folder.CopyHere method

These flags ensure that no dialog box appears and no errors are shown to the victim. All these operations remain hidden in the background.
After compression is finished, the compressed files are encoded with Base64 and uploaded to the FTP server. For downloading files from FTP
server, the reverse operations would be performed by the threat actor.

C&C communication protocolBots listen to and can process several supported commands:

https://msdn.microsoft.com/en-us/library/cc505883.aspx
https://technet.microsoft.com/en-us/library/bb490995.aspx
https://byet.host/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776890(v=vs.85).aspx

3/4

Command Meaning of command

cmd /c pull /f
<file_name>

copy <file_name> to temp.ini, pack it to temp.zip, encode and upload

cmd /c pull
<file_name>

pack <file_name> to temp.zip, encode and upload

cmd /c chip
<string>

delete config file, write <string> to the new config file

cmd /c put
<new_file_name>

put file from #<content># to the given path on infected system

cmd /c
<command> >
<file>

execute command and redirect its output to file, file gets zipped, encoded, uploaded

cmd /c
<command>

execute command; do not report about it back to c2

<parameters> parameters to previously downloaded <file>, called <file> <parameters> using Winexec API, flag Show=SW_HIDE

/user
<parameters>

execute previously downloaded <file>, called <file> <parameters>; do not report about it back to c2;
use CreateProcessAsUser

/user
<parameters>
/stext

execute previously downloaded <file>, called <file> <parameters> /stext “%APPDATA%\Temp\Temp.ini“, result gets
zipped, encoded, uploaded; misuses parameters from Nirsoft’s utilities; use CreateProcessAsUser

#<content># <file>, which is unzip(base64decode (<content>))

Table 1. C&C commands

Figure 14. Processing C&C commands

Here are some examples of commands that could be issued using this method: Example 1 Command:

Encoded as:

IxXDK=NK2KKQK=zK2KXxKB-K0KXTKUKKIxKeKPxKINX8KBNK0xXpKBWKnNX6KUjKIWXZKBNK

Result:

-yT/XXNKKKKKKyD8J6G=UtS6=KKKKXWKKKKzKKKKIVSH0hSjnbz1IFPH-OSi2yR80b8M2=nA0=-WnFYJ2yM-SORi-
yTXKZNKPKKKKKKKu4VtdTI2AbzIKKKK=KKKKKxKKKKKKKKKKNKWKKKKKKKKK=P8C=Ypr=S6LF9ZCPXLXNIKKKKKKNKXK/7KKKXUK

This result contains the contents of the autoexec.bat file. Example 2 Command:

Encoded as:

IxXDK=NK2KKQK=zK2KX6K=NK2KKQK=NK2KX/K/7KVKKWKUIK9WKWK=NKwNXJKUKKLxXQKUHKnKKQKBzK2KK5KUjKtWKWK/jKKKK

Result:

-yT/XXNKKKK2KyHRLOQ26PNrulo0KPtgJWK2KKKKC=SDoUMA0FczVC81jHAJQpYW4j=VU-LAYKl……..

This results in a file with a list of all files in C:\, sorted from newest to oldest. Example 3 Command:

#…encoded file…#LxX8KBzKnNXJKUKKLxXhK=-oWX3K=OK0xX1KUKKzNKHKUKKLxX3KBNKnNXjKBNKKKKv

Decoded as:

Result:
In this case, attacker sent an encoded version of Nirsoft’s utility mailpv.exe, which was then executed with parameters above.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx
http://www.nirsoft.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx
http://www.nirsoft.net/
http://www.nirsoft.net/utils/mailpv.html

4/4

Mistakes in malware codeThe command processing loop contains what appears to be a typo or mistake. The malware treats the command-
and-control commands as strings in wide character format. The second wsprintfA function in the snippet below has the first format
parameter “%s”, which should actually be “%ws”. Because of this, only the first character of lpExistingFileName is propagated
into &CommandLine, preventing the process from executing because of the incorrect file name.

Figure 15. Code snippet with a typo (Click to enlarge)

ConclusionIt is interesting to see something atypical, like C&C communication via FTP. While the malware authors probably used this method
in an attempt to avoid security solutions inspection and/or blocking, they may not have realized this would make it very easy to monitor their
actions and victims’ data.

IT administrators should be aware that connections to external FTP servers can signify not just data extraction, but C&C activity as well. Either
way, if this kind of network activity is not necessary for business functions, blocking it should be considered.

Indicators of CompromiseFiles with the following SHA256 hashes are connected to this attack, and are detected as W2KM_SYSCON.A:

34e968c067f6a360cc41a48b268c32a68421567f0329d4f9f8e2850fb4e27c8c
63ca182abb276e28aec60b9ef1eab5afc10bfb5df43f10a11438d8c0f7550c5c
a07251485a34dd128d80860737b86edd3eb851f57797f2f8fb6891a3cb7a81b3
cff8d961f3287f9ca75b65303075343bdbe63bb171d8f5b010bbf4fa30450fc4
f4987d127320cb5bfb8f49fc26435e01312bdd35a4e5e60db13546046584bd4e

Files with the following SHA256 hashes are detected as BAT_SYSCON.A:

2c958cd3838fcae410785acb0acf5a542d281524b7820d719bb22ad7d9fcdc7c
e4226645bad95f20df55ef32193d72c9dafcf060c3360fd4e50b5c08a986a353
f01e440764b75b72cab8324ba754d89d50d819a1b2db82ca266f1c307541a2b0

Files with the following SHA256 hashes are detected as BKDR_SYSCON.A:

1f9afb142827773cefdb29f06ed90e0476c0185d4c8b337439b3be27e61ed982
65e4212507bb52e72e728559df5ad38a4d3673b28104be4b033e42b1c8a264e8
9b62a013b579f01e3c4c3caf3c9bc02eb338ce9859496e02016ba24b8908d59a
9be95f5954202d7b159c5db928851102f23eae88c087892663781cf8edc0753a
bec437d1979d16505ca8fc896fa8ce9794f655abd39145a82330343b59c142c5
cfb2161b5aebf0c674c845e2428e24373edd4c74a2fb15de527d6763a62dd74e

Files with the following SHA256 hashes are detected as TROJ_SYSCON.A:

25c08d5e77fada975f31a0e0807b7ea1064aae80f5de43790f6ada16159ae1c2
2d261eb478bafaabd7dc12752b1c0aadba491d045573fe2e24cdac5588e2c96b
2f6df307dbe54b8a62a35ea2941a7d033bfdfbb545a7872cb483aea77ec6a10b
3319a156c84e85a4447fa40b0f09aabb84092b5c3a152ad641ee5692741b9194
3fcda66e87eec4f90b50f360460fa46448249e6e177de7ff8f35848353acfaaa
65380ab72bb6aa6ffcd2ea781fe2fa4f863a1b4a61073da7da382210c163b0f9
7daec65f8fee86227d9f9c81ed00d07c46b44e37968bd2894dc74bf311c63651
b7c970f1f65850fa859549f2cf3c2284b80ec464496b34f09bc53c4456e10d1f
d495295466428a52263c8725070a9cf7c2446c6115bddc2de662949afd39f9a9

https://msdn.microsoft.com/en-us/library/z207t55f.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms647550(v=vs.85).aspx
http://blog.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2017/10/syscon6.png

