
1

HPE Security Research
Cyber Risk Report 2016

2

Table of contents

4 Introduction
4 About Hewlett Packard Enterprise Security Research
5 Our data
5 Key themes
5 Theme #1: The year of collateral damage
5 Theme #2: Overreaching regulations push research underground
5 Theme #3: Moving from point fixes to broad impact solutions
5 Theme #4: Political pressures attempt to decouple privacy and security efforts
5 Theme #5: The industry didn’t learn anything about patching in 2015
5 Theme #6: Attackers have shifted their efforts to directly attack applications
5 Theme #7: The monetization of malware

6 The business of bugs
6 Hacking Team exposes the gory details
6 20 years and counting
7 ZDI@10
8 Different types of bounties
8 White/Gray/Black
11 Pros and cons of market participation
11 Wassenaar impacts on research
11 Overview of what it is
11 How it’s already impacted research
11 Speculation on the impact to future research
12 Moving forward

13 The fragility of privacy
14 The swamping of Safe Harbor
15 Surveillance
16 Encryption
17 Information sharing
17 Spotlight: three tech giants
18 Spotlight: Google
18 Spotlight: Microsoft
18 Spotlight: Facebook
19 Legislation and regulation
20 Breaches in the news
22 Déjà vu again
23 A look ahead
25 Conclusion

3

26 Vulnerability methods, exploits, and malware
26 Take it to the source: vulnerability-specific mitigations
26 What else can be done?
27 New mitigation strategy
27 New industry norms
28 Logical abuses of implicit calls
30 The need for wide-reaching fixes
30 Exploits
34 Malware: still dangerous, still pervasive
37 Windows malware in 2015
38 OS X malware in 2015
39 Linux malware in 2015
41 Mobile malware in 2015
44 Spotlight: significant malware of note
44 ATM malware prevalence and trends
49 Banking Trojan takedowns do little to stem the scourge
51 Ransomware
51 Hiding in plain sight
53 Conclusion

54 Software analysis
55 Why and how we do this analysis
55 Application results
56 Mobile results
57 Top vulnerabilities in applications
59 Top five vulnerability categories in applications
60 Mobile vulnerabilities
61 Top five vulnerability categories in mobile
62 Vulnerabilities in open source software
63 Distribution by kingdom: applications
65 Distribution by kingdom: libraries
66 Open source vulnerabilities
68 Open source
68 Risk analysis of external components
68 Reliance on open source components
74 Remediation
74 Number of vulnerabilities fixed
75 Remediation: How the process works
75 Scan results
79 Conclusion

80 Defense and defenders
80 The security state of defenders
82 Four blocks to implementation
84 OpSec: detection in the real world
85 Direct defense and automation
86 Conclusion

87 Trends in security: the conference scene
89 Gram analysis

90 Summary

92 Authors and contributors

93 Glossary

4

Introduction
Welcome to the Hewlett Packard Enterprise
(HPE) Cyber Risk Report 2016. In this report
we provide a broad view of the 2015 threat
landscape, ranging from industry-wide data
to a focused look at different technologies,
including open source, mobile, and the
Internet of Things. The goal of this report is
to provide security information leading to a
better understanding of the threat landscape,
and to provide resources that can aid in
minimizing security risk.

About Hewlett Packard
Enterprise Security Research

HPE Security Research conducts innovative
research in multiple focus areas, delivering
security intelligence across the portfolio
of HPE security products. In addition, our
published research provides vendor-agnostic
insight and information freely to the public
and private security ecosystems.

 HPE Security Research brings together data
and research to produce a detailed picture
of both sides of the security coin—the state
of the vulnerabilities and threats composing
the attack surface, and the ways adversaries
exploit those weaknesses to compromise
targets. Our continuing analysis of threat
actors and the methods they employ guides
defenders to better assess risk and choose
appropriate controls and protections.

HPE Security Research publishes detailed research and findings
throughout the year, but our annual Risk Report stands apart from the
day-to-day opportunities and crises our researchers and other security
professionals face.

Just as HPE has evolved to stay ahead of the challenges brought on by
growing frequency and sophistication in enterprise attacks, the threat
landscape and how we protect the digital enterprise has also transformed.
Taking a retrospective look at this changing landscape provides critical
insights into the most prominent cyber risks while offering intelligence to
enterprises looking to focus security investments and resources.

In 2015, we saw a continued rise in attackers’ success at infiltrating
enterprise networks, making it all the more critical for HPE’s cybersecurity
research team to provide this unique perspective on significant trends
in the marketplace. Just as attackers continue to evolve their techniques,
defenders must accelerate their approach to detection, protection,
response, and recovery.

Our research saw an increased sophistication of attacks, even as the
security world is encumbered by the same issues that have plagued
us for years. The work done by our research team shows that even as
regulations become more complex and attack surfaces continue to grow,
foundational problems exist that challenge even the best defender.
Our more sophisticated customers are responding to these threats,
but many small and mid-market customers are not, thus making them
an easier target.

Security practitioners from enterprises of all sizes must embrace the
rapid transformation of IT and ready themselves for both a new wave of
regulations and an increased complexity in attacks. The HPE Security
Research group continues to prepare for the challenges—and the
opportunities—the future will doubtless hold. It remains our fullest
intention to invest in driving our thought leadership throughout the
security community and to share our findings as they become available.

Sue Barsamian
Senior Vice President and General Manager
Hewlett Packard Enterprise Security Products

5

Our data

To provide a broad perspective on the nature
of the attack surface, the report draws on
data from HPE security teams, open source
intelligence, ReversingLabs, and Sonatype.

Theme #1: The year of collateral damage
If 2014 was the Year of the Breach, 2015 was
the Year of Collateral Damage as certain
attacks touched people who never dreamed
they might be involved in a security breach.
Both the United States Office of Personnel
Management (OPM) and the Ashley Madison
breaches affected those who never had
direct contact with either entity, and whose
information resided in their networks only as
it related to someone else—or, in the case of
the Ashley Madison breach, did not appear at
all but could be easily deduced from revealed
data. With the OPM breach, the true targets
of the breach may be people who never
themselves consented to inclusion in the
OPM database—and who may be in danger
thanks to its compromise. Data compromise
is no longer just about getting payment card
information. It’s about getting the information
capable of changing someone’s life forever.

Theme #2: Overreaching regulations
push research underground
When horrific events occur impacting the
lives of many, there is a natural reaction
to do something to try to prevent future
occurrences. Too often, the “something”
(legislation) incurs unwanted consequences
to go along with the intended result. This is
the case with various proposed regulations
governing cybersecurity. While the intent
to protect from attack is apparent, the
result pushes legitimate security research
underground and available only to those
denizens who dwell there. To be effective,
regulations impacting security must
protect and encourage research that
benefits everyone.

Theme #3: Moving from point fixes to
broad impact solutions
While it is laudable that Microsoft® and
Adobe® both released more patches than at
any point in their history, it remains unclear if
this level of patching is sustainable. It strains
resources of both the vendor developing
the patch and the customer deploying the
patch. Microsoft has made some headway
with defensive measures that prevent classes
of attacks. It and others must invest in these
broad, asymmetric fixes that knock out many
vulnerabilities at once.

Theme #4: Political pressures attempt to
decouple privacy and security efforts
A difficult and violent year on the global
scene, combined with lingering distrust
of American tech initiatives in the wake of
revelations by Edward Snowden and other
whistleblowers, led to a fraught year for
data privacy, encryption, and surveillance
worldwide. Many lawmakers in the US, UK,
and elsewhere claimed that security was
only possible if fundamental rights of privacy
and due process were abridged—even as,
ironically, the US saw the sunset of similar
laws passed in the wake of the September
11, 2001, attacks. This is not the first time
that legislators have agitated to abridge
privacy rights in the name of “security” (more
accurately, perceived safety), but in 2015
efforts to do so could easily be compared to
the low success of previous efforts made after
the attacks of 2001. Those evaluating the
security of their enterprises would do well
to monitor government efforts such as
adding “backdoors” to encryption and other
security tools.

Theme #5: The industry didn’t learn
anything about patching in 2015
The most exploited bug from 2014 happened
to be the most exploited bug in 2015 as
well—and it’s now over five years old. While
vendors continue to produce security
remediations, it does little good if they are
not installed by the end user. However, it’s not
that simple. Applying patches in an enterprise
is not trivial and can be costly—especially
when other problems occur as a result. The
most common excuse given by those who
disable automatic updates or fail to install
patches is that patches break things. Software
vendors must earn back the trust of users—
their direct customers—to help restore faith
in automatic updates.

Theme #6: Attackers have shifted their
efforts to directly attack applications
The perimeter of your network is no longer
where you think it is. With today’s mobile
devices and broad interconnectivity, the
actual perimeter of your network is likely in
your pocket right now. Attackers realize this
as well and have shifted their focus from
servers and operating systems directly to
applications. They see this as the easiest
route to accessing sensitive enterprise
data and are doing everything they can to
exploit it. Today’s security practitioner must
understand the risk of convenience and
interconnectivity to adequately protect it.

Theme #7: The monetization of malware
Just as the marketplace has grown for
vulnerabilities, malware in 2015 took on a new
focus. In today’s environment, malware needs
to produce revenue, not just be disruptive.
This has led to an increase in ATM-related
malware, banking Trojans, and ransomware.

Key themes

6

The business of bugs
In the modern world, having insecure software
and services can negatively impact the
bottom line of an enterprise. As breaches
become more prevalent, the tools and
techniques used in these breaches gain
legitimacy and a monetary value. Put more
simply, 2015 saw the culmination of the
monetization of vulnerabilities.

Looking at the past year, it becomes clear
that security researchers play an increasingly
important role in identifying security
vulnerabilities and investigating state-
sponsored threats. As they do so, researchers
become increasingly misunderstood,
bordering on imperiled, by well-meaning
governments resorting to broad legislation
to protect themselves and their citizens
from attacks. The playing field on which the
information security community operates may
have undergone a major shift in 2015, but it’s
been a long time coming.

Hacking Team exposes the gory details

Hacking Team, a Milan-based company
selling offensive technology, found itself the
victim of a breach resulting in the release of
company emails, passwords, and documents.1
This breach gave everyone a rare look into
the inner workings of a zero-day exploits
vendor. Hacking Team began moving from a
traditional defensive information consultancy
to a surveillance business in 2009 with the
cultivation of relationships with zero-day
vendors. It began purchasing exploit packs
but was not impressed with the quality.2

In 2013 it made several new contacts and
continued to grow external relationships with
zero-day providers.3 The exposure of detailed
exploit deals and Hacking Team’s customer
list has allowed us to check assumptions
about the zero-day marketplace, revealing
pricing, exploit quality, and limiters to the
surveillance business, such as the
Wassenaar Arrangement.

20 years and counting

Incentivizing security researchers to find
critical vulnerabilities in software has been a
tactic employed by software vendors, security
companies, and—more recently—B2B/B2C
entities for two decades. Netscape initiated
its rewards program in 1995 and is most
commonly credited with establishing the
concept of “bug bounties.” Rewarding skilled
researchers for identifying potential avenues
to the enterprises’ crown jewels has taken
many forms, from public recognition to money,
and everything in between. Over the past
couple of years there has been growth in the
number of organizations outside of high tech
running bug-bounty programs. There has also
been an increase in the number of third-party
platforms (e.g., Bugcrowd, Crowdcurity, and
HackerOne) as they manage the operational
end of the program, saving their customers
significant expense in doing so themselves.
The Zero Day Initiative (ZDI), at the time a
part of Hewlett Packard Enterprise (HPE),
operated a hybrid version of a bug-bounty
program, which accepted critical vulnerabilities
in enterprise software including that offered
by HPE.

Over the course of 2014 and 2015 there has
been an observable increase in vendors
launching programs—either through third-
party platforms as mentioned above—
or doing so themselves. Bugsheet, a
community-curated list of bug-bounty and
disclosure programs, is currently tracking
more than 350 programs4 with varying
rewards (bounties, acknowledgements, or
swag).5 Bugcrowd also tracks a list of bug-
bounty and disclosure programs as reported
by their researcher community and lists over
450 programs, noting whether they pay a
reward, give acknowledgements, or provide
swag to the participating researchers.6 Many
companies appear on both lists. Historically,
the vendors offering bug bounties have been
in the high-tech industry, but we are starting
to see a growth in non-IT industries joining in,
especially as they look to breach risks related
to their online presence.

Consistent security at scale is incredibly hard
to achieve alone. Running a bug-bounty
program expands a company’s available
resources more affordably. Some of the
most notable programs in the past 20 years
(Figure 1) can attest to this fact. Engaging the
community returns many high value bugs the
vendor may never learn about or only learn
of through an attack in the wild (i.e., used
in active attacks). None of the bug-bounty
programs are about silencing the researcher.
While some may view it as hush money, the
research community sees it as payment for
its work—especially when it reports a clever
edge case.

1 http://www.forbes.com/sites/thomasbrewster/2015/07/06/hacking-
team-hacked/.
2 https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/.

3 https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/.
4 http://bugsheet.com/directory.

5 This list is only reporting vendor programs and not those run by third-
party platforms.
6 https://bugcrowd.com/list-of-bug-bounty-programs.

7

Figure 1. Timeline of notable bug-bounty programs, 1995-2015

Figure 2. ZDI core principles

ZDI@10

One of the oldest bug-bounty programs
around, the ZDI was founded in 2005 to
protect the IT ecosystem by compensating
independent researchers for submitting their
finds to the program. Since that launch and
since its purchase by Hewlett Packard in 2010,
ZDI grew into the world’s largest vendor-
agnostic bug-bounty program. In the fall of
2015, Hewlett Packard Enterprise announced
the signing of a definitive agreement to
divest the TippingPoint business and ZDI to
Trend Micro. Throughout the lifespan of the
program, the core principles established
at the beginning have remained in force
(Figure 2).

The ZDI follows iDefense’s middleman
model. In fact, the ZDI was originally founded
at TippingPoint by the same people that
created iDefense’s program.7 In 2007, Dragos
Ruiu started the Pwn2Own contest to run at
his CanSecWest security conference.8 The
initial contest prize was a laptop, but later
upgraded to a $10,000 reward provided by
ZDI. Pwn2Own proved to be a great success
and became a recurring event at CanSecWest.
In 2012, the ZDI and Dragos teamed up to
launch Mobile Pwn2Own (mPwn2Own)
at the EUSec conference in Amsterdam.
It later moved to Tokyo and the PacSec
conference. In 2014, the event paid out
$850,000 in rewards to skilled security
researchers for more than 30 vulnerabilities,
the highest contest payout to date.9 In
10 years, the ZDI program has paid more
than $12M and disclosed more than 2000
vulnerabilities, with another 300+ with
vendors awaiting patch.

7 http://community.hpe.com/t5/Security-Research/HP-Zero-Day-
Initiative-Life-begins-at-10/ba-p/6770464.

8 http://seclists.org/dailydave/2007/q1/289. 9 http://community.hpe.com/t5/Security-Research/HP-Zero-Day-
Initiative-Life-begins-at-10/ba-p/6770464.

Encourage the reporting of zero-day vulnerabilities responsibly to a�ected vendors

Fairly compensate and credit the participating researchers

Protect our customers and the broader ecosystem

1995:
Netscape

2002:
iDefense

2005:
Zero Day
Initiative

2010:
Google, Barracuda
Networks,
Deutche Post

2013:
Tesla

2015:
United Airlines,
F-Secure

2004:
Mozilla,
Firefox

2007:
Pwn20wn

2011:
Facebook

2014:
Etsy, Microsoft,
GitHub

8

In 2010, Google™ entered the fray with a
rewards program for Chromium followed by
one for its web properties, thus launching the
trend toward bug-bounty programs for web
applications.10 Over the years, Google has also
co-sponsored Pwn2Own and mPwn2Own
with the ZDI.

As attackers expand their focus to include
nearly anything connected to the Internet,
we see a corresponding response from
non-software, non-IT companies entering
the bug-bounty community. In 2013, Tesla
Motors created a bug-bounty program, later
expanding it and handing it over to Bugcrowd
to manage.11 Earlier this year, the first airline
joined the community. United Airlines
focuses on vulnerabilities reported against its
websites, applications, and online portals and
rewards researchers in a rather unique way—
with 50,000 to one million air miles.12

While working to gain researcher interest
and loyalty on the one hand, a successful
bug-bounty program must also establish
contacts with the affected vendors. Gaining
their trust is crucial to long-term success.
Not surprisingly, conversations between
vendors and ZDI have been both congenial
and contentious—often during the same
conversation. Ultimately, most have come to
trust that the program is helping them and
our collective customers.

Different types of bounties
White/Gray/Black

At its core, a bug bounty is a cooperative
relationship with the intent of identifying and
correcting application vulnerabilities before
they are exploited in the wild. Identifying
application vulnerabilities has become a
lucrative business with its own marketplace
and players. When talking about the

various players in this market, their ethics
and motivations are often the first thing
questioned, with categorization by the color
of a hat (black, gray, or white) following close
behind. The things that actually differentiate
the players are the marketplace and the
government under which each of them finds
himself operating. Let’s start with a look at the
marketplace.

10 https://cobalt.io/blog/the-history-of-bug-bounty-programs. 11 https://bugcrowd.com/tesla. 12 https://www.united.com/web/en-US/content/Contact/bugbounty.aspx.

Figure 3. Vulnerability marketplace options

WHITE MARKET GRAY MARKET BLACK MARKET

Flaws can be sold to
highest bidder, used to
disrupt private or public
individuals and groups.

SECURITY RESEARCHERS and HACKERS now have
a multitude of options available to sell their BUGS

Some legitimate companies
operate in a legal gray zone
within the zero-day market,
selling exploits to
governments and law
enforcement agencies in
countries across the world.

Bug-bounty programs,
hacking contests, and direct
vendor communication
provide opportunities for
responsible disclosure.

9

Both vendor programs and the previously
mentioned third-party programs operate
in the white market. Security researchers
submit the vulnerability to either and receive
a reward, recognition, or both in trade for
their promise to not disclose it—publicly or
privately—until the vendor has fixed the flaw.
It is understood that the fix should happen in
a timely fashion, but ideas differ on just what
timely means (Figure 4).

Figure 4. The vulnerability white market

Option 1 Result 1

Submit flaw to third-party
bug-bounty programs like ZDI,
HackerOne, or Bugcrowd.

Researcher gets paid. Flaw is
submitted to vendor to get
fixed in timely fashion.

Option 2 Result 2

Enter bug in hacking contest
like Pwn2Own or GeekPwn, which
encourages researchers to
demonstrate the latest hacking
techniques.

Researcher gets fortune and fame;
Pwn20wn has evolved to one of
the most well-known security
contests, with prizes of up to
$150,000 o ered for the
most challenging exploits.

Option 3 Result 3

Submit flaw directly to vendor.
Researchers can submit flaws
directly to vendors or through
their bug-bounty programs.

Bugs get fixed.

Berkeley research
found that rewarding
external bug hunters

was up to 100
times more
cost effective.

Security researcher
Arul Kumar was paid

$12,500 by
Facebook
after discovering and
reporting a bug.

Bug doesn't get fixed in time,
go to Option 6

WHITE MARKET

GRAY MARKET

Used to spy on
private citizens
suspected of
crimes

Used to shut down
suspected terrorist
operations

Option 4 Result 4

Implications
Sell vulnerability to
private broker

Examples of what can happen

It is unclear where the flaw
will end up and what it will
be used for. Some gray
market brokers have policies
stating that they will only

sell to ethical and
approved sources.

In the gray market, the researcher sells
the vulnerability to a private broker. It’s
often unclear where the flaw will end up
and what it will be used for. Some brokers
have policies that state they will only sell to
ethical and approved sources. Of course,
what they consider to be ethical may be
different than what others consider to be
ethical. Vulnerabilities on the gray market may
ultimately be used to spy on private citizens
suspected of criminal activities or used to
shut down terrorist operations (Figure 5).

Figure 5. The vulnerability gray market

10

Historically, the black market has been
a method for researchers to sell the
vulnerability to the highest bidder with the
understanding that it will be used at the sole
discretion of the purchaser and likely not for
the greater good. Typical outcomes include
cybercrime (used to exploit companies in
order to steal data or money) and spying
(used for political gain or for corporate
espionage). More recently, there have been
private brokers operating openly on the black
market. They pay top dollar for critical wares,
such as jailbreaks of the latest version of iOS,
and only make these exploits available to their
paying customers—never to the software
vendor.13, 14 (Figure 6)

There’s always a way to avoid the market
altogether by dropping zero days outside of
any vendor reporting, an option known as
full disclosure (Figure 7). Even in these cases,
researchers still monetize the bug by being
invited to conferences and increasing their
reputational standing in the community.

Figure 6. The vulnerability black market

Figure 7. Opting out of the market altogether

BLACK MARKET

Flaw is

sold to highest
bidder,
and will be used to
disrupt private or public
individuals and groups.

Cybercrime:
used to steal money from
individuals or groups

Spying:
used for political gain or
to steal corporate secrets

Option 5 Result 5

Implications Examples of what can happen

OPT OUT

Public disclosure is often a
result if vendors are

unresponsive or slow
to fix issues that have
been disclosed to them by
independent researchers.

“After having its security
disclosure go ignored since
August, Gibson Security has
published Snapchats previously
undocumented developer
hooks (APRO) and code for
two exploits that allow mass
matching of phone number
with names and mass creation
of bogus accounts.” (ZDNet)

Option 6 Result 6

Disclose flaw publicly
(full disclosure).

If disclosed publicly, vendors are
pressured to respond faster.

13 http://motherboard.vice.com/read/controversial-zero-day-exploits-
seller-launches-new-premium-bug-bounty-program.

14 http://www.techweekeurope.co.uk/security/zero-day-ios-9-
hack-179897.

11

Pros and cons of market participation

The fundamental elements of trade are
buyers and sellers, along with the actual
exchange of goods and services.
As in any market, if the number of buyers
increases, the number of sellers tends to
increase as well. In the case where there
are incentives for criminal activities, a black
or underground market often appears. As
long as there is someone willing to pay,
there will be someone willing to sell. Security
researchers and threat actors seek out
vulnerabilities to improve their opportunity
for financial gain through the monetization
of bugs. What differentiates the two is
the market they operate in, as discussed
previously. It is assumed that those selling
vulnerabilities in the gray and black markets
do not execute the exploits themselves out
of concern for their own safety. As more and
more legislation is being implemented, the risk
of prosecution increases. Generally, there are
two considerations for selling vulnerabilities
on the black market: the financial gain and
the risk of being caught by law enforcement.
A third possible outcome, in all three markets,
is “failure,” which occurs if others find and sell/
report the same bug. For the researcher—
regardless of motivation—it comes down
to risk tolerance. All three markets offer
increasing rates of return with a correlating
increase in risk of running afoul of the law.

Wassenaar effect on
security research
Overview

The Wassenaar Arrangement, implemented by
more than 40 countries, uses export controls
as a means to combat terrorism.15
The Wassenaar Arrangement means
to promote transparency and greater
responsibility in the transfer of conventional
arms and dual-use technology. The goal
in doing so is to prevent destabilizing
accumulations of both. Whether or not a
transfer is permitted or denied rests with the
participating state and not with the governing
body. Each participant implements Wassenaar
in accordance with its national legislation
and policies.16

How it already affects research

Where researchers operate in the marketplace
is often driven by the country and laws they
live under. This is also true for customers in
the marketplace. Customers have become
wary of the potential consequences of
engaging with surveillance companies such
as Hacking Team and Gamma International
which sell to repressive countries.17 The
recent inclusion of “intrusion software” under
the Wassenaar Arrangement seems to be a
backlash to offensive security offerings. In
May 2015 the US Department of Commerce’s
Bureau of Industry and Security (BIS)
stepped into the fray by offering its proposed
implementation of the December 2013
changes for public comment. The proposed
implementation of the 2013 changes amended
dual-use technologies to include security
systems—including intrusion software—for
the first time.18 The BIS proposal included
an incredibly broad set of controls related
to intrusion software, so broad as to make
much of today’s defensive cybersecurity
research untenable—if not criminal—under
the revision. The outcry from the community
helped sway BIS into withdrawing its
proposed changes and vowing to issue new
language in the future.19

As an example of the complexities
Wassenaar introduces, in 2015 the ZDI
worked closely with a number of trade
lawyers and government officials to ensure
Canada’s implementation of the Wassenaar
Arrangement was not violated during
the annual Pwn2Own contest held at the
CanSecWest conference. To do so took
many months of security research and
communication. With mere weeks to navigate
the complexity of obtaining real-time import/
export licenses in countries that participate
in the Wassenaar Arrangement, the ZDI was
unable to sponsor mPwn2Own at PacSecWest
in November 2015.

Speculation on the impact to
future research

The Wassenaar Arrangement affects the
security research community today, and the
effects will only increase in the coming years.
As the number of cyber-attacks continues
to grow, there will likely be a corresponding
response by governments to implement
laws on how the information security
industry operates. Considering the law of
unintended consequences—the actions of
people/governments always have effects
that are unanticipated20—we can expect
to see increased implementation of the
Wassenaar Arrangement and other legislation
resulting in decreased efficacy in the security
community. The end result means creating
a better protection solution becomes harder
and takes more time. This, in turn, increases
the likelihood of successful breaches as the
environment favors those operating in the
black market.

15 http://www.wassenaar.org/introduction/overview.html.
16 http://www.wassenaar.org/introduction/index.html.
17 https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/.

18 https://www.eff.org/deeplinks/2015/05/we-must-fight-proposed-us-
wassenaar-implementation.
19 http://www.privsecblog.com/2015/09/articles/cyber-national-security/
pardon-the-intrusion-cybersecurity-worries-scuttle-wassenaar-
changes/.

20 http://www.econlib.org/library/Enc/UnintendedConsequences.html.

12

Moving forward

During the past 20 years, we have watched
the world change quite a bit. Just a decade
ago, most of the population didn’t know what
a breach was or that there were careers in
cybersecurity. We’ve seen researchers step
into the spotlight and we’ve seen them shun
publicity. There have been laws around
research, copyrights, exports, and many other
topics. Today, with the “Year of the Breach”
just past us, there is more legislation in the

US congressional pipeline than ever before,
all trying to define “good hackers”
and “bad hackers.” The vulnerability white
market has had a tremendous positive
effect in securing the landscape by bringing
researchers and vendors together and setting
the standard for coordinated disclosure. We
expect the white market will continue to
evolve as more and more vendors announce
their own programs to incentivize research.

We also anticipate regulations and legislation
to impact the nature of disclosure. While
the environment in which the information
security community operates evolves, it is in
all of our best interest to continue to find and
disclose security bugs in popular software so
vendors can fix things in a timely manner. The
increasing complexity aside, it continues to be
an endeavor we consider worth doing.

“Infosec has become incredibly important, as
recent news amply demonstrates. As a society
that depends heavily on technology we need
to do much more to ensure that vendors ship
securely designed products and are responsive
to reports of vulnerabilities.” 21

21 http://community.hpe.com/t5/Security-Research/HP-Zero-Day-Initiative-Life-begins-at-10/ba-p/6770464.

13

22 https://iapp.org/conference/iapp-europe-data-protection-
congress-2015/.

23 https://www.washingtonpost.com/news/morning-mix/wp/2015/11/19/
founder-of-app-used-by-isis-once-said-we-shouldnt-feel-guilty-on-
wednesday-he-banned-their-accounts/.

24 http://www.cato.org/events/second-annual-cato-surveillance-
conference.

The fragility of privacy
There was perhaps no clearer sign of privacy’s
fragile situation in 2015 than the notice on
the International Association of Privacy
Professionals (IAPP) website in November,
immediately after the Paris, Kenya, and
Beirut bombings.22

The IAPP Europe Data Protection Congress
2015, which was scheduled to be held in
Brussels during the first week of December,
is not an insignificant conference. The
topics on its plate this year were mighty:
the then-recent upending of the US-EU
Safe Harbor agreement; the continuing
fallout from Edward Snowden’s surveillance
revelations in 2013; the role of encryption; and
conversations concerning such rising topics
as metadata, data localization, the Internet
of Things (IoT), data sharing and breach
reporting, and more.

And yet it did not happen, and some who
had previously cited privacy as their reason
for offering certain services used by (among
others) the Islamic State/IS terrorists were
ceding their ground and changing their
services in the face of outrage over their
use.23 By the end of 2015, privacy issues
seemed dangerously close to decoupling
from security issues in the mind of legislators,
the industry, and the public. At what would
become a prophetic keynote talk during the
Cato Institute’s second annual Surveillance
Conference in October, Senator Patrick
Leahy remarked:

“There are some in Congress who want to
give our national security agencies a blank
check. They think any attempt to protect our
privacy somehow makes us less safe. I hear
members accept a framework of ‘balancing’
privacy rights and national security. But
privacy rights are pre-eminent. Protecting
our basic privacy rights and protecting our
country are not part of a zero-sum equation.
We can do both. But we have to keep in mind:
If we don’t protect Americans’ privacy and
Constitutional liberties, what have we given
up? Frankly I think far too much. And I think
this great nation is hurt if we do.”24

Privacy issues gave the security world much
to discuss and ponder throughout 2015.

Figure 8. Posting on the IAPP website

14

The swamping of Safe Harbor

For enterprises, international data-privacy
issues years in the making came to a head in
October when Europe’s highest court struck
down the pact that allowed US and European
interests to share data that has privacy
considerations, specifically data that includes
consumers’ personally identifiable information
(PII).25 The EU has safe-harbor relationships
with various nation-states; the agreement in
effect with the US had been in place
since 2000.26

The US-EU privacy climate has been tepid
since well before Edward Snowden’s data
releases in June 2013, but the case that
tipped the EU justices’ scales was a result of
Snowden revelations about the Planning Tool
for Resource Integration, Synchronization,
and Management program, better known as
PRISM, a program launched by the National
Security Agency (NSA) in 2008.27 Among
the data PRISM gathers is “audio, video and
image files, email messages and web searches
on major U.S. Internet company websites,” 28
including the likes of Google and Facebook.

Austrian Facebook user Max Schrems filed
a complaint stating that Facebook’s Irish
subsidiary transferred data to the US and thus
passed it through PRISM, in contravention
of Europe’s rigorous privacy protections.
The Irish court agreed to look at the matter,

and ultimately asked the European Court of
Justice whether privacy watchdogs are bound
to accept the original declaration that the
US is adherent to the standard set for Safe
Harbor relationships. The EU court found that
the current Safe Harbor arrangement indeed
did not adequately protect user privacy rights,
because it allowed US officials to gain access
to user data even when European law would
forbid it and allowed for data to move to third-
party nations with which the Safe Harbor
agreement was not in force.29 The Irish data
regulator was therefore free to investigate
whether the data transfer was properly
handled, and Safe Harbor was
thus trumped.30

Companies on both sides of the Atlantic
were in an uproar, scrambling to put together
alternate data-transfer mechanisms (that
is, mechanisms that are protected by
legal devices, such as contractual data-
protection clauses, other than the Safe
Harbor agreement) even as regulators
came knocking.31 Specialized sectors such as
healthcare wondered if they would be able to
exchange certain kinds of security research
data, while Internet titans such as Google and
Facebook were warned32 by representatives
of the Article 29 Working Party, the entity
that oversees privacy matters in the EU,
not to get “too creative”33 when plotting end
runs around the ruling. Ironically, among the
activities planned for the IAPP conference was

a lighthearted “S*fe H*rbor Naming Contest”
to pre-christen the new arrangement.34 While
this contest drew some creative entries,35
it was later announced that the group was
recommending that the new arrangement
be called “The Transatlantic Data Protection
Framework.”36

The US Department of Commerce, with
which the original agreement was negotiated
and which had been working for two years
prior to nail down a stronger agreement,
termed itself “deeply disappointed” and
vowed to work for a rapid upgrade to the
problematic frameworks.37 The US House of
Representatives passed the Judicial Redress
Act giving certain foreign citizens the right
to sue over US privacy violations related to
shared law enforcement data, which chief
sponsor Jim Sensenbrenner said explicitly
could help to mend US-EU fences.38

As this Risk Report went to press,
the target date for a new framework was
January 31, 2016. If no solution is found
by then, “EU data protection authorities
are committed to take all necessary and
appropriate actions, which may include
coordinated enforcement actions.”39 According
to at least one European official, the likelihood
of a solution in that time frame was not
good,40 in which case business slowdowns and
even very large fines would ensue.

25 https://www.washingtonpost.com/world/national-security/eu-
court-strikes-down-safe-harbor-data-transfer-deal-over-privacy-
concerns/2015/10/06/2da2d9f6-6c2a-11e5-b31c-d80d62b53e28_story.
html.
26 Op. cit.
27 http://uspolitics.about.com/od/antiterrorism/a/What-Is-Prism-In-
The-National-Security-Agency.htm.
28 Op. cit.
29 http://www.law360.com/privacy/articles/711346.

30 http://www.law360.com/privacy/articles/716286.
31 http://www.law360.com/privacy/articles/711385.
32 http://www.dataprotectionreport.com/2015/10/wp29-issues-post-
safe-harbor-guidance/.
33 http://www.law360.com/privacy/articles/716493/eu-watchdog-says-
creativity-not-answer-to-data-pact-demise.
34 https://iapp.org/news/a/and-the-winner-is/.
35 https://iapp.org/news/a/sfe-hrbor-naming-contest-the-final-round.

36 https://iapp.org/news/a/and-the-winner-is/.
37 https://www.commerce.gov/news/press-releases/2015/10/statement-
us-secretary-commerce-penny-pritzker-european-court-justice.
38 http://judiciary.house.gov/index.cfm/2015/10/goodlatte-
sensenbrenner-and-conyers-praise-house-passage-of-legislation-to-
strengthen-privacy-protections-for-individuals.
39 https://www.technologyslegaledge.com/2015/10/breaking-news-
safe-harbor-g29-issues-its-first-statement-on-schrems/.
40 http://www.theregister.co.uk/2015/12/01/safe_harbor_solution_
not_soon/.

15

Surveillance

Ironically, the beginning of 2015 promised
positive privacy developments, as observers
awaited the sunsetting of NSA bulk data
collection authority originally granted by
2001’s Patriot Act.41 The powers granted by
Congress in the wake of 9/11 were vast. In the
years after 9/11, the tide of judicial and public
opinion had turned against what many saw
as vast overreach and even vaster failure to
perform. In May, the US Second Circuit Court
ruled that the program to systemically collect
Americans’ phone records—specifically, the
clause known as Section 21542—had never
been properly authorized.43 The Patriot Act
expired on June 1, and Section 215 with it. On
June 2, Congress approved the USA Freedom
Act, which included a ban on those collection
activities.44 Various Congressional attempts45
to restore the program were unsuccessful, and
the ban took effect on November 29.46

Even as the NSA has struggled to give the
public and Congress more transparency
into its workings,47 evaluations indicate that
the bulk-collection program was a failure. A
number of investigations48 by various
government committees49 and other

observers50 described a broken program
with no provable success at pinpointing
data applicable to the stated task—that is,
protecting Americans from attack. The most
successful case spotted in the data—that of
a Somali man convicted of sending $8500
to a group in his home country—involved no
threat of attack against the US.51

Even the agencies themselves seemed
nonplussed by the results of bulk data
collection. At a Cato Institute event, senior
fellow John Mueller speaking on the efficacy
of the programs (“Surveilling Terrorists:
Assessing the Costs and Benefits”) noted
that the data has been proven remarkably
ineffectual at spotting terrorists.52 Moreover,
he said, the very facts of the tidal wave of
data, coupled with the “9/11 Commission
Syndrome” expectation that every lead must
be followed up regardless of implausibility,
has led to high levels of conflict between
agencies, which resent the low-quality and
irrelevant leads derived from the data.53 He
noted a troubling brain-drain cost as good
investigators become increasingly hopeless
and paranoid as a byproduct of pointless
“protection” efforts.54

41 http://thehill.com/blogs/pundits-blog/homeland-security/243169-a-
beautiful-sunset-provision-for-nsa-surveillance.
42 http://www.nytimes.com/2015/05/08/us/nsa-phone-records-
collection-ruled-illegal-by-appeals-court.html.
43 http://pdfserver.amlaw.com/nlj/NSA_ca2_20150507.pdf.
44 http://judiciary.house.gov/index.cfm/usa-freedom-act.
45 http://www.theguardian.com/us-news/2015/jun/03/nsa-
surveillance-fisa-court.

46 http://www.npr.org/sections/thetwo-way/2015/11/29/457779757/
nsa-ends-sept-11th-era-surveillance-program.
47 https://www.nsa.gov/public_info/declass/
IntelligenceOversightBoard.shtml.
48 https://www.propublica.org/article/whats-the-evidence-mass-
surveillance-works-not-much.
49 https://www.washingtonpost.com/world/national-security/
nsa-shouldnt-keep-phone-database-review-board-
recommends/2013/12/18/f44fe7c0-67fd-11e3-a0b9-249bbb34602c_
story.html.

50 https://www.newamerica.org/international-security/do-nsas-bulk-
surveillance-programs-stop-terrorists/.
51 https://www.washingtonpost.com/world/national-security/nsa-
phone-record-collection-does-little-to-prevent-terrorist-attacks-
group-says/2014/01/12/8aa860aa-77dd-11e3-8963-b4b654bcc9b2_
story.html.
52 http://www.cato.org/events/second-annual-cato-surveillance-
conference.
53 Op. cit.
54 Op. cit.

“Protecting our privacy rights and protecting our
country are not part of a zero-sum equation.
We can do both.”

- Sen. Patrick Leahy (D-VT)

16

But the attacks in Paris and the proximity
of an American election year were powerful
enough to bring bulk-collection surveillance
proposals back to “life.” While Paris struggled
back to normalcy, one Republican (GOP)
candidate was already backing a call by
an Arkansas senator to reinstate bulk
collection through January 2017.55 The
proposal drew heavy fire from others on
the GOP slate, with Rand Paul choosing
particularly strong language to express his
opposition.56 Elsewhere in Congress, one
Democratic senator attempted57 to add
provisions to the high-profile Cybersecurity
Information Sharing Act (CISA) bill that
would add unvetted new “capabilities” for
law enforcement seeking data access.58 A
long-running Federal Bureau of Investigation
(FBI) program utilizing National Security
Letters that allows for mass warrantless
seizure of data was revealed late in the year.59
Most concerning is a report by The New York
Times that the NSA has, after all, found a
way around the sunsetting—and the limited
judicial oversight provided in the Patriot Act—
and is gathering all the data it wants simply
by mass foreign collection.60

It should be understood that surveillance
is not only on the rise in America.
The next section details various international
developments, but it would be unfair to leave
our surveillance section without mentioning
recent work by entities looking to monitor
and engage on the issues worldwide. Notably,
July saw the release of AccessNow’s excellent
“Universal Implementation Guide for the
International Principles on the Application
of Human Rights to Communications
Surveillance,” 61 which provides implementation
guidance for the information set forth in 2014
on the Necessary and Proportionate site.62
That site, an Electronic Frontier Foundation
project, documents ongoing efforts to
reconcile existing human rights law to modern
surveillance technologies. It’s all very relevant
as governments worldwide trend toward
greater surveillance of citizens.

Encryption

If surveillance manages time and again
to seem like a white knight after terrorist
incidents, encryption is often the dragon.
In the days after the Paris attacks, various
simmering encryption-related debates were
back on the boil, despite early evidence
(still under investigation) that encryption
played no role in the terrorists’ planning.63

The United Kingdom was already dealing
with rushed64 calls by legislators for
Internet providers and social-media sites
to provide unencrypted access and/or
backdoors to encrypted communications
to law enforcement and spy agencies.65
By the end of the year some American
legislators were making similar calls,66 stating
that law enforcement is unable to access
necessary data. Those arguments were
countered by equally venerable arguments
by crypto experts67 about the certainty
that backdoors—or, worse, giant stores of
unencrypted data—are a recipe for unwanted,
sustained, and ultimately catastrophic
attention from attackers.68 At the time of this
Report’s writing, Senator Ron Wyden (D-OR)
was brushing off his proposed 2014 Secure
Data Act,69 which seeks to ban government-
mandated tech backdoors.70 One hardware
manufacturer left an entire market rather than
bend to government demands for unfettered
backdoor access, as BlackBerry prepared
to leave the Pakistan market at year’s end
rather than expose its BlackBerry Enterprise
Service (BES) traffic to wholesale traffic
monitoring.71

55 http://www.vnews.com/news/nation/world/19713942-95/arkansas-
senator-trying-to-extend-bulk-phone-data-collection.
56 http://blogs.rollcall.com/wgdb/rand-paul-surveillance-rubio-cruz-
cotton/.
57 http://www.law360.com/privacy/articles/716526/groups-slam-bid-
to-use-cybersecurity-bill-to-expand-cfaa.
58 http://www.law360.com/privacy/articles/715474.
59 http://www.zdnet.com/article/fbi-can-force-companies-to-turn-
over-user-data-without-a-warrant/.
60 http://www.nytimes.com/2015/11/20/us/politics/records-show-
email-analysis-continued-after-nsa-program-ended.html.

61 https://s3.amazonaws.com/access.3cdn.net/a8c194225f95db00e9_
blm6ibrri.pdf.
62 https://necessaryandproportionate.org/.
63 https://www.techdirt.com/articles/20151118/08474732854/
after-endless-demonization-encryption-police-find-paris-attackers-
coordinated-via-unencrypted-sms.shtml.
64 http://www.theregister.co.uk/2015/11/26/mps_and_peers_have_just_
weeks_to_eyeball_uk_govs_supersnoop_bid/.
65 http://www.telegraph.co.uk/news/uknews/terrorism-in-the-
uk/11970391/Internet-firms-to-be-banned-from-offering-out-of-reach-
communications-under-new-laws.html.

66 http://techcrunch.com/2015/11/24/the-encryption-debate-isnt-
taking-a-thanksgiving-break/.
67 http://passcode.csmonitor.com/influencers-paris.
68 http://www.thedailybeast.com/articles/2015/11/30/feds-want-
backdoor-into-phones-while-terrorists-walk-through-front-door.html.
69 https://www.wyden.senate.gov/news/press-releases/wyden-
introduces-bill-to-ban-government-mandated-backdoors-into-
americans-cellphones-and-computers.
70 https://medium.com/backchannel/encryption-is-not-the-enemy-
b5c1652e30b8#.vmnu2lnj1.
71 http://mashable.com/2015/11/30/blackberry-pakistan-exit/.

17

72 http://www.law360.com/articles/621688.
73 http://stixproject.tumblr.com/post/119254803262/a-history-of-
stixtaxiicyboxmaec-news-media.
74 http://www.law360.com/publicpolicy/articles/728705.

75 http://www.law360.com/privacy/articles/716526/groups-slam-bid-
to-use-cybersecurity-bill-to-expand-cfaa.
76 https://fcw.com/articles/2015/11/09/information-sharing-isao.aspx.
77 http://www.law360.com/privacy/articles/645293.

78 http://www.law360.com/articles/699517/dhs-grants-ut-san-antonio-
11m-for-info-sharing-standards?article_related_content=1.
79 http://www.theguardian.com/technology/2015/nov/03/data-
protection-failure-google-facebook-ranking-digital-rights.

Information sharing

There are positive ways of sharing threat
information, of course, and some progress
was made to build those systems. In February,
President Obama signed Executive Order
13691,72 which details a framework to expand
both private sector and public-private sharing
of information on threats and attacks. Such
programs have long been the goal of a
number of public and private efforts. The STIX
and TAXII framework standards, for instance,
have been around for years,73 while several
commercial entities have attempted to build
the infrastructure and attract the critical
mass necessary to make such entities a going
concern. Over the course of the year, the
House and Senate worked on legislation74 that
would protect companies engaged in such
sharing, though as mentioned above at least
one senator made an attempt to piggyback a
surveillance project onto the Senate offering.75
By the end of the year, the Information
Sharing and Analysis Organization (ISAO)
standards group was holding public meetings
to discuss next steps,76 and various state77 and
local78 entities were examining how they might
participate, whether by standing up their own
ISAO groups as suggested by the Executive
Order or via some other means.

Spotlight: three tech giants

Many of the issues discussed so far in this
section center on broad, nation-state-type
entities, but these issues also tended to touch
the largest technology businesses. The 2015
corporate accountability index published by
Ranking Digital Rights found that none of
the world’s highest-profile tech firms were
particularly trusted by their users. According
to the results of the survey, the customers
found them lacking in transparency,
inconsistent in their privacy disclosures,
and generally ranging from not-great to
just awful.79

In previous years, such companies as
Microsoft, Google, and Facebook had various
incidents in privacy, and 2015 brought new
variations on that theme. We will touch on
how other sectors were affected (mainly by
regulation and legislation) in the next section,
but for now let’s take a look at some of the
issues these three corporate giants faced
in 2015.

18

80 http://curia.europa.eu/juris/document/document.
jsf?docid=152065&doclang=en.
81 http://www.google.com/transparencyreport/removals/
europeprivacy/.
82 http://www.law360.com/privacy/articles/731696.
83 http://www.google.com/transparencyreport/removals/
europeprivacy/.
84 http://www.law360.com/articles/737289/3rd-circ-denies-rehearing-
bid-in-google-tracking-suit.

85 http://www.law360.com/privacy/articles/699043.
86 https://www.washingtonpost.com/news/volokh-conspiracy/
wp/2015/07/23/does-it-matter-who-wins-the-microsoft-ireland-
warrant-case/.
87 http://www.law360.com/privacy/articles/723008.
88 http://www.independent.co.uk/life-style/gadgets-and-tech/news/
facebook-to-tweak-real-name-policy-after-backlash-from-lgbt-groups-
and-native-americans-a6717061.html.
89 http://spectrum.suntimes.com/news/10/155/5716/facebook-real-
name-policy-lgbt-community.

90 https://nakedsecurity.sophos.com/2015/11/03/facebook-finally-
changes-real-name-policy/.
91 http://money.cnn.com/2015/11/11/news/companies/facebook-
germany-hate-posts/
92 http://www.natlawreview.com/article/facebook-seeks-dismissal-
illinois-facial-recognition-biometric-privacy-suit.
93 http://www.law360.com/privacy/articles/703969.
94 http://www.law360.com/privacy/articles/715863.

Spotlight: Google

Google spent much of its year addressing
requests to remove well over one million
URLs from search results in the wake of the
EU’s May 2014 “right to be forgotten” ruling
(Google Spain v AEPD and Mario Costeja
Gonzalez).80 At the time of this writing, the
company had received over 350,000 requests
and evaluated over 1.2 million URLs for
removal.81 The company has declined just
over half of those requests82 and publicly
documented its progress.83 Interestingly, the
domain most frequently cited in removal
requests appears to be Facebook. Google has
also been fighting privacy-violations claims in
a suit consolidating two dozen smaller, similar
suits. Plaintiffs in the case claim that the site
surreptitiously bypasses user privacy settings
and collects information to which it should
not be a party. The case has been dismissed
by a lower court and remained dismissed on
appeal to the Third Circuit.84

Spotlight: Microsoft

Microsoft started the year already embroiled
in a case involving customer emails stored
on a server in Ireland. In July 2014, the
company was requested to turn over data on
a customer whose data resided on its Irish
subsidiary’s servers. Microsoft resisted, saying
that the warrant did not apply to electronic
communications stored outside the US. The
company has been in court ever since and
presented its argument to the Second Circuit
in September.85 The outcome, especially with
Safe Harbor now in play, remains to be seen.86
In that suit, the company is arguing a position
that includes protection of its customers’ data.

 Spotlight: Facebook

Facebook is experiencing interesting
challenges with regard to its use of
information this year. Aside from Safe Harbor,
the company is respondent in a class-action
case in California in which users claim the
service scans information in private messages
for profit.87

Facebook’s “Real Name” policy of requiring
users to provide and display their legally
registered names appears to be controversial.
In October, more than six dozen activist
groups penned an open letter asking the
service to rethink its policy.88 The company
says it is in the process of reworking the
policy,89 but will retain it in some form.90

Germany contemplated legal action over
anti-migrant hate speech Facebook allowed
to remain on its Walls.91 Lawsuits are arising
around Facebook’s facial recognition system,
which may violate various jurisdictions’
rules about storing biometric data without
permission.92 In this situation, Facebook is not
alone. Illinois state law has been actively cited
in other possible violations of this law, most
notably by Shutterfly93 and by videogame
house Take-Two Interactive Software.94
In the latter case, the company is accused of
capturing and storing 3D scans of players’
faces and of making them visible to other
users online without permission—surely
a new dimension to the problem of
biometric privacy.

19

95 https://www.ftc.gov/news-events/blogs/business-blog/2015/08/
third-circuit-rules-ftc-v-wyndham-case.
96 http://www.natlawreview.com/article/third-circuit-sides-ftc-data-
security-dispute-wyndham.
97 http://www.gpo.gov/fdsys/pkg/USCODE-2011-title15/pdf/USCODE-
2011-title15-chap2-subchapI-sec45.pdf.
98 http://www.hldataprotection.com/2015/08/articles/consumer-
privacy/analysis-of-ftc-v-wyndham-third-circuit-affirms-ftc-authority-
to-regulate-data-security/.

99 http://www.reuters.com/article/us-wyndham-ftc-cybersecurity-idUS
KBN0TS24220151209#PRPyEFzQXsCj1q4P.97.
100 http://www.healthdatamanagement.com/news/FTC-data-security-
complaint-against-LabMD-dismissed-51615-1.html.
101 http://www.law360.com/articles/731134/labmd-sues-3-ftc-lawyers-
over-data-security-case.
102 http://www.law360.com/privacy/articles/733023.
103 http://www.law360.com/privacy/articles/731601.
104 http://www.law360.com/articles/727540/fcc-teaming-up-with-ftc-
on-consumer-protection.

105 http://www.law360.com/publicpolicy/articles/729885.
106 http://www.law360.com/articles/708010/ftc-still-top-privacy-cop-
despite-fcc-order-brill-says.
107 http://www.law360.com/privacy/articles/734946.
108 https://jonathanmayer.org/.
109 http://www.law360.com/privacy/articles/708001.
110 http://www.natlawreview.com/article/piercing-outsourcing-veil-ftc-
says-data-security-obligations-remain.

Legislation and regulation

The Federal Trade Commission (FTC), which
in 2014 made a strong play to lead on federal
cyber policy issues, had a busy year. The
high-profile FTC v Wyndham Worldwide
Corporation case95 that we discussed in this
space last year continued to rack up wins for
the Commission as the Third Circuit affirmed96
that the agency has the authority to regulate
cybersecurity as a function of the “unfairness
prong” of section 45 of The FTC Act.97, 98 In
mid-December, Wyndham agreed to settle
the charges and establish an information
security program compliant with the Payment
Card Industry Data Security Standard (PCI-
DSS) and to accept audits of the program for
the next 20 years. If the court accepts the
settlement proposal, the case will be a major
signal to businesses that the FTC is the

agency to watch when pondering enterprise
cyber-obligations.99 On the other hand, the
agency’s case against LabMD for insufficient
data protection was dismissed by a judge
for the US District Court for Washington,
D.C., in 2013.100 The CEO for the now-defunct
company immediately brought suit against
three FTC lawyers accusing them of, among
other things, building their case on “lies,
thievery and testimony” supplied by a third
party,101 which LabMD is also suing.102
The FTC at this writing had requested
internal review of the ruling.103

The agency has been forging a stronger
relationship with the Federal Communications
Commission’s (FCC) own security and privacy
teams,104 which, as one FTC commissioner

phrased it, have been a “brawnier cop on the
privacy beat” to this point.105 She also noted
the FTC is still leading the squad,106 though
not without internecine conflict. In other
words, don’t rule out that turf war just yet.107
The FTC also welcomed as its new chief
technologist Jonathan Meyer, highly regarded
in privacy circles for his research on online
tracking by such companies as Google and
Verizon, as well as for his development of
various anti-tracking browser mechanisms.108
Other strong FTC privacy concerns included
consumer tracking by marketers (particularly
when the tracking isn’t opt-in), trust in
advertising, unwanted data collection,109
and liability for companies that farm out
their data security.110

20

111 http://www.commlawblog.com/2014/04/articles/broadcast/drone-
even-go-there-on-newsgathering-drones-and-the-faa/.
112 http://www.chicagotribune.com/news/opinion/commentary/ct-
drones-privacy-laws-20150803-story.html.
113 http://www.law360.com/privacy/articles/705295.
114 http://www.law360.com/privacy/articles/721375/pentagon-finalizes-
cyber-risk-rule-for-sensitive-it-contracts.
115 http://www.theregister.co.uk/2015/07/30/us_to_rethink_wassenaar/.
116 http://www.wassenaar.org/publicdocuments/index.html.
117 http://www.law360.com/privacy/articles/702478.
118 https://s3.amazonaws.com/public-inspection.federalregister.
gov/2015-30545.pdf.
119 https://iapp.org/news/a/federal-government-announces-federal-
privacy-council/.

120 http://www.law360.com/privacy/articles/699125.
121 https://ustr.gov/tpp/.
122 http://www.law360.com/privacy/articles/698895.
123 http://shanghaiist.com/2015/12/03/china_hacks_australian_
weather_bureau.php.
124 http://atimes.com/2015/11/counterintelligence-chief-skeptical-that-
china-has-curbed-spying-on-us/.
125 http://arstechnica.com/tech-policy/2015/09/analysis-china-us-
hacking-accord-is-tall-on-rhetoric-short-on-substance/.
126 http://www.therecorder.com/id=1202743330885/Anthem-Fires-
Back-at-Data-Breach-Suit?slreturn=20151030065146.
127 http://mashable.com/2015/11/10/bank-data-breach-100-
million/#5TwzKTwTuOqh.

128 http://www.democratandchronicle.com/story/news/2015/09/09/
excellus-announces-august-breach-system/71949658/.
129 http://www.reuters.com/article/2015/12/02/us-china-usa-
cybersecurity-idUSKBN0TL0F120151202#dZk1fXJZmkx22AXh.97.
130 http://www.slate.com/articles/technology/users/2015/11/sony_
employees_on_the_hack_one_year_later.single.html.
131 http://www.ajc.com/news/news/state-regional-govt-politics/suit-
accuses-georgia-of-massive-data-breach-involv/npQLz/.
132 http://pastebin.com/Yh2muT9r.
133 http://www.law360.com/privacy/articles/703036.
134 https://www.htbridge.com/advisory/HTB23282.
135 http://www.theregister.co.uk/2015/11/25/dsdtestprovider.
136 http://www.theguardian.com/technology/2015/oct/19/cia-director-
john-brennan-email-hack-high-school-students.

Some US federal agencies resisted calls to
promptly release guidance,111, 112 while others
stepped up in their various spheres. The
Department of Defense (DoD) in September
released new cybersecurity regulations in
the wake of the OPM breach. These new
regulations covered everything from breach
reporting to log retention to cloud-related
issues.113 Later in the fall, it updated rules
pertaining to how IT contractors are brought
into their supply chain and how sensitive
information may be shared with them.114 The
Department of Commerce (DoC) continued
to fine-tune proposed rules controlling the
export of hacking tools; an open-comment
period in May drew a large response115 from
security researchers and firms already
feeling a Wassenaar116-related chill in the
air. Commerce has so far given no date for
release of a revised ruleset.117 Meanwhile, the
Department of Homeland Security (DHS)
put out an end-of-year call for applicants
to three-year appointments to its Data
Privacy and Integrity Advisory committee.118
By year’s end, the federal Office of
Management and Budget announced a
Federal Privacy Council that will coordinate
privacy policies and strategies across multiple
government agencies.119

Beyond the US, international nation-specific
efforts to think about data privacy (and
surveillance, and encryption) continued
even as the US-EU Safe Harbor situation
unspooled, and a full recounting on them
is beyond the scope of this Risk Report.
Cross-border efforts to reach rule consensus120
increased as legislators and the general public
worldwide finally got a look at the text of the
Trans-Pacific Partnership,121 which will be a
major factor in 2016’s privacy story. However,
the trend toward data localization—that is,
to require citizens’ data to reside in territory
controlled by the nation of which they are
citizens—will likely affect privacy-protection
efforts in new ways.122 Earlier this year,
Australia accused China of hacking its Bureau
of Meteorology. Over the years Australia’s
media offices, power grids, and intelligence
headquarters have allegedly come under
attack from the same quarter.123 And to
complete our circumnavigation of
the globe, in September the US and China
signed a bilateral anti-cyber espionage
accord that raised eyebrows inside
government and beyond.124, 125

Breaches in the news

If 2014 was the Year of the Breach, 2015 was
the Year of Collateral Damage, as certain
attacks touched people who never dreamed
they might be present in, or identifiable from,
the data involved.

It was, as every year for years has been, a
year of new records. The January Anthem
breach drew headlines for affecting 80
million records.126 By November, a banking
breach affecting 100 million accounts passed
nearly without a trace in the headlines.127
Anthem was reduced to guest appearances
in other healthcare-related breach coverage128
and in background material on the OPM
breach, which has been attributed to the
same attackers.129 A recounting by someone
affected by last year’s Sony breach, ironically,
seemed to make the rounds far more widely.130
By year’s end, a weary observer could see
a headline about a potential breach of six
million voter records in Georgia and merely
think it was odd that the reporter described
it as “massive.”131 It seemed as if everyone was
getting hit, and repeatedly. Victims ranged
from the unsympathetic132 to the criminal133
to the complex but well-trod ethical middle
ground of “folks who ought to know
better.” 134, 135, 136

It was, as every year for years has been,
a year of new records.

21

137 http://techcrunch.com/2015/11/21/extortionists-are-threatening-to-
release-patreon-user-data/.
138 http://boingboing.net/2015/10/23/putting-your-kettle-on-the-int.
html.
139 https://securityledger.com/2015/11/green-light-or-no-nest-cam-
never-stops-watching/.
140 https://www.abiresearch.com/press/nest-cam-works-around-clock/.
141 http://www.theverge.com/2015/11/27/9807330/vtek-data-breach-
password-email-address.

142 http://arstechnica.com/security/2015/11/hacked-toymaker-leaked-
gigabytes-worth-of-kids-headshots-and-chat-logs/.
143 http://www.theguardian.com/technology/2015/mar/13/smart-
barbie-that-can-listen-to-your-kids-privacy-fears-mattel.
144 http://www.theguardian.com/technology/2015/nov/26/hackers-
can-hijack-wi-fi-hello-barbie-to-spy-on-your-children.
145 https://fcw.com/articles/2015/08/21/opm-breach-timeline.aspx.
146 http://www.nytimes.com/2015/08/01/world/asia/us-decides-to-
retaliate-against-chinas-hacking.html.
147 http://www.reuters.com/article/2015/12/02/us-china-usa-
cybersecurity-idUSKBN0TL0F120151202.

148 http://fortune.com/2015/08/26/ashley-madison-hack/.
149 Op. cit.
150 http://www.theverge.com/2015/8/19/9179037/ashley-madison-data-
hack-name-address-phone-birthday.
151 http://techcrunch.com/2015/08/31/ashley-madison-refutes-claims-
that-its-site-was-populated-with-fake-female-accounts/.
152 http://googlemapsmania.blogspot.com/2015/08/ashley-madison-
users-mapped.html.

Many consumers are inured these days
to breach notifications from credit-card
companies and the odd medical clinic,
but 2015 brought us attackers who tried
to extort crowdfunded artists137 and, more
benignly, found ways to turn our teakettles138
and “smart” homes139, 140 against us. And yet
these breaches in turn paled when attackers
breached V-Tech’s customer database,141 which
included images of customers and
their children.142 Predictably,143 others hijacked
a Wi-Fi-enabled incarnation of Barbie.144

Even these breaches were perhaps not the
most chilling of the year, even if they did
target children and musicians and other
relatively harmless folk—because even with all
that, the kid possesses the toy, the musician
benefits from the crowdfunding account,
the homeowner owns the thermostat. There

are, however, two 2015 breaches that best
demonstrate that personal privacy violations
can be perfectly impersonal: the OPM breach
and the notorious Ashley Madison hack and
data blast.

The OPM breach, which hijacked data of
over 21 million current and former federal
employees, took place in mid-2014 and was
revealed last spring.145 Reports indicate that a
specific nation-state is believed to have stolen
that data,146 though that nation-state denies147
the breach was state-sponsored. The bulk of
the action took place in a quiet, intense cat-
and-mouse game, with the affected parties
learning details after the fact. In contrast, the
Ashley Madison breach148 was deliberately
loud and messy—a previously unknown
hacker, claiming moral authority over both the
site’s customers and its business operations,149

unleashed a tidal wave of intensely personal
data150—in addition to the startling-to-most
fact that an adultery-matchmaking site had 32
million registered accounts, though perhaps
not all of them operated by actual humans.151

These breaches don’t initially look the same;
however, both breaches had terrible effects
on people who never had direct contact
with the keepers of the data, and whose
information appeared in it only as it related
to someone else—or, in the case of the
Ashley Madison breach, did not appear at all
but whose identity could be easily deduced
from revealed data (e.g., a spouse’s name
and address would be knowable to a nosy
neighbor if one spouse was registered on the
site under his or her true name152).

22

153 http://nypost.com/2015/12/06/ashley-madison-hack-steals-mans-
job-wife-and-mind/.
154 http://www.huffingtonpost.com/drs-bill-and-ginger-bercaw/the-
sad-irony-of-the-ashl_b_7868828.html.
155 http://fusion.net/story/185647/ashley-madison-hack-victims/.
156 http://money.cnn.com/2015/08/21/technology/ashley-madison-
ruined-lives/.
157 http://hollywoodlife.com/2015/09/09/ashley-madison-suicide-
married-baptist-pastor-john-gibson/.
158 Private conversation with retired military person who requests
anonymity.
159 http://www.nytimes.com/2013/02/02/technology/washington-
posts-joins-list-of-media-hacked-by-the-chinese.html.

160 http://www.theguardian.com/media/2013/jan/31/new-york-times-
chinese-hacked.
161 http://www.navytimes.com/story/military/2015/06/17/sf-86-
security-clearance-breach-troops-affected-opm/28866125/.
162 https://www.opm.gov/forms/pdf_fill/sf86.pdf.
163 http://fedscoop.com/opm-losses-a-40-year-problem-for-
intelligence-community.
164 http://arstechnica.com/tech-policy/2015/09/cia-officers-pulled-
from-china-because-of-opm-breach/.
165 http://www.pcworld.com/article/2925352/radioshack-us-states-
reach-agreement-on-sale-of-customer-data.html.
166 http://www.law360.com/privacy/articles/634393.
167 http://www.bobborst.com/popculture/top-100-songs-of-the-
year/?year=2004.

168 http://www.law360.com/privacy/articles/703542.
169 http://arstechnica.com/tech-policy/2015/11/the-national-security-
letter-spy-tool-has-been-uncloaked-and-its-bad./
170 http://www.law360.com/privacy/articles/715447/ex-kfi-recruiter-
takes-cfaa-charges-to-9th-circ-again.
171 https://www.ftc.gov/news-events/press-releases/2015/09/ftc-
approves-final-order-nomi-technologies-case.
172 http://www.law360.com/privacy/articles/733321.
173 https://en.wikipedia.org/wiki/Streisand_effect.
174 http://www.law360.com/privacy/articles/702982.
175 http://www.law360.com/media/articles/732112.
176 http://www.law360.com/media/articles/732112.
177 https://en.wikipedia.org/wiki/Requiem_for_a_Nun.

The Ashley Madison situation revealed
new levels of negative effect as individuals
reacted to having the information put on
blast. Stories of firings,153 grief,154 divorce,155
ruin,156 and suicide157 were all over the news,
thereby intensifying public scrutiny of many
people who had no business relationship
to Ashley Madison. One observer noted
that certain effects could be even more
cataclysmic, because active-duty members of
the military found in the database could be
subject to dishonorable discharge—meaning
that unemployment and loss of pension are
genuine possibilities.158

Despite the three years of credit counseling
offered to persons whose names were
revealed in the OPM hack, it’s a relatively
good bet that the stolen data wasn’t
meant for the hands of criminal gangs or
identity thieves. Instead, the OPM hack
bore a resemblance to a rash of hacks
against newspaper reporters a couple of
years ago159—hacks that sought the names
of reporters’ contacts, most likely those
contacts who are dissident to a particular
government.160 It is believed that within
the rich trove of data taken were tens of
thousands of Standard Form (SF)-86s, which
are filled out by any service member or
civilian who seeks a security clearance.161

As those who have gone through that
screening are aware, one provides a great
deal of information on the SF-86 about one’s
family, friends, and associates162—for security
and intelligence professionals, a delicate
situation. In other words, the true targets of
the breach may, again, be people who never
themselves consented to inclusion in the
OPM database—and who may be in danger
thanks to its compromise. (It is estimated
that the potential for damage could last
for over 40 years.163) In at least one case, it
was decided that a number of CIA officials
covertly stationed in a particular embassy
needed to be pulled precisely because they
did not appear in OPM files, as genuine state
employees would.164

 Déjà vu again

A handful of 2015 incidents seemed to have
returned from a previous calendar. Remember
when Radio Shack insisted on gathering too
much personal information at the register?165
This year it was a clothing retailer doing it
instead.166 Remember 2004, when the popular
karaoke jam was Outkast’s “Hey Ya!”167 and
Calyx Internet Access received a National
Security Letter it decided to fight in the
courts? That’s only just been settled.168 In the
meantime, a federal court ordered the release

of the information requested by an actual
NSL.169 How about 2008, when the economy
cratered and a recruiter ended up in court
for “hacking” a database to which he had a
legitimately acquired a password? Still in the
courts.170 Remember when we used to worry
that we were being tracked for marketing
purposes by the mobile phones in our
pockets? We were.171

Following the notorious Target breach, the
company was back this holiday season with
a $39 million settlement to be paid to all the
financial institutions that had to scramble
on sending new cards to their customers.
This also marks the first successful class-
action suit by financial institutions against
a breached company.172 A Massachusetts
jeweler risked the phenomenon known as the
Streisand Effect173 when it took Yelp to court to
demand the service reveal the name of a user
who submitted a particularly angry review.174
This keeps happening175 and petitioners will
keep looking for a venue that will throw out
the portion of the Communications Decency
Act that lets sites off the hook for allegedly
libelous statements by users.176 The past isn’t
dead; it isn’t even the past.177

23

178 http://www.law360.com/media/articles/724240.
179 https://www.cs.columbia.edu/~smb/talks/ip-metadata-cato.pdf.
180 http://www.cato.org/events/second-annual-cato-surveillance-
conference.
181 Op. cit.

182 http://www.law360.com/privacy/articles/714875.
183 http://www.law360.com/technology/articles/724382.
184 http://www.law360.com/technology/articles/724382.
185 https://jonathanmayer.org/.
186 http://www.law360.com/privacy/articles/715752.

187 https://iapp.org/news/a/can-data-minimization-be-the-answer-in-
the-internet-of-things/.
188 http://www.datamation.com/netsys/article.php/3865726/Trends-in-
Thin-Client-Computing.htm.
189 http://www.law360.com/privacy/articles/708682.

A look ahead

We will be contending with the events of
2015 for some time and 2016 will bring its
own excitements. In addition to the Safe
Harbor revamp, expect to see activity
around the meaning and uses of metadata,
the development of the Internet of Things,
continued controversy in the worlds of
encryption and security, fresh efforts to
contain certain kinds of online abuses, and
maybe progress in bringing what we’ve all
learned about data privacy to bear in the
wider world.

Expect to hear from people looking for a
more nuanced understanding of metadata
and how much it reveals. At Columbia
University, a team of researchers led by
Steven Bellovin and Stephanie Pell has been
examining whether our current concept of
metadata takes into proper account how
much actual information can be derived from
the means and paths of communications,
even when the observer is not privy to the
specific contents of the communication. For
example, if someone were to look at Alice’s
Internet history and see that she visited one

of the Ashley Madison breach data-search
sites, followed by web pages such as divorce-
that-loser.org, followed three months later by
Tinder and Zillow.com, a good guess could
be made as to what was going on with Alice
lately. As Bruce Schneier noted in his Cato
Institute keynote, “nobody here lies to their
search engine.” In our current system, it’s
relatively easy for surveilling entities to obtain
court permission to track certain kinds of
revealing activity because it’s classified as
“just metadata.” The Columbia paper is
due out next year. A recently passed
digital privacy

law in California, traditionally a leader in these
matters, also looks to an updated idea of
what we mean by, and learn from, data that
may not be so “meta” after all. An amicus
brief filed with the Ninth Circuit Court in
support of an appeal raised by Basaaly Saeed
Moalin—the Somali man convicted in the
sole successful Section 215 case mentioned
above—is also apt to shape our discussion of
metadata going forward. Jonathan Meyer, the
FTC chief technologist mentioned above, has
published on the topic as well.

The Internet of Things experienced significant
negative attention for privacy weaknesses
this year, and this will undoubtedly continue.
Observers predict a great deal of pain as
disparate industries attempt to harmonize
their approaches to security and privacy,
some of them very different from what the
traditional tech community might expect or
hope for. One potential solution involves
minimizing the data sent by individual devices
for processing in the cloud. This thought
may be anathema to hardline cloud fans, but
it would simply represent just another ebb
and flow in the great cycle of client-server
life. The legislative dam is expected to burst
at any moment on drone regulation, though
tech companies and would-be flyers are
expressing frustration over Federal Aviation
Administration (FAA) reluctance to tackle
privacy implications of these craft.189

24

190 http://www.law360.com/privacy/articles/715319.
191 http://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/.
192 http://www.law360.com/privacy/articles/696325.
193 http://www.nationaljournal.com/tech/2014/09/15/Fitbit-Hires-
Lobbyists-After-Privacy-Controversy.
194 http://www.law360.com/privacy/articles/710842.
195 http://www.law360.com/technology/articles/730181.

196 http://boingboing.net/2015/11/26/tiny-open-source-gadget-simula.
html.
197 http://www.nytimes.com/2015/11/29/magazine/the-serial-swatter.
html.
198 http://america.aljazeera.com/articles/2015/12/4/federal-bill-
attempts-to-address-swatting-phenomenon.html.
199 http://www.lawfuel.com/reprehensible-revenge-porn-site-operator-
gets-jailed-email-hacking.

200 http://www.christiantimes.com/article/revenge.porn.website.owner.
gets.18.year.jail.sentence/51964.htm.
201 http://www.dailymail.co.uk/news/article-2968929/Man-
controversial-revenge-porn-site-demands-Google-remove-links-
news-stories-critical-sleazy-empire-grounds-pictures-used-without-
authorisation.html.
202 http://www.economist.com/news/briefing/21677228-technology-
behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-
build-dependable.
203 Op. cit.

On the ground, expect more discussion on
the rights of security researchers to poke
at the inner workings of vehicles. Such
legislation so far looks somewhat promising,
because it would require auto manufacturers
to have and publish privacy policies covering
data collected by the car or shared by the
driver, but many are concerned that other
provisions in the legislation drafted so
far would criminalize vehicle hacking190—
especially after researchers in 2015 made it
clear191 that scrutiny is desperately needed.
In other fields, 2015 saw the first instance in
which the Federal Drug Administration (FDA)
recommended discontinuing use of a medical
device because of security concerns, but it is
unlikely Hospira’s situation will be the last of
that kind.192 It is hoped that greater familiarity
will lead to better privacy practices for Fitbit
Nation193 and thousands of other users of
applications transmitting personal medical
data.194 Developers of many types of mobile
applications will find themselves making

finer distinctions between “consumers” and
“subscribers” to balance privacy rights and
their need to get paid.195 And the US adoption
of chip-and-pin technology late in 2015 will
provide good hunting for attackers willing to
show us just how little we can trust the silicon
around us.196

The world has in the past few years become
more aware of the abuse tactic called
“swatting,” in which anonymous phone calls
are made to summon highly armed police
units to the homes of unwitting victims.197
The legal situation around swatting has been
murky, but it’s generally understood that
some sort of legal remedy is needed. It may
take one or more very bad incident outcomes
to raise swatting to the necessary level of
public debate, but the odds are excellent that
this will come to pass198—and with multiple big
wins in 2015 against owners of “revenge porn”
sites,199, 200, 201 perhaps there’s hope.

Fortunately, we can end this section on the
brighter note—a hope, even, that the things
we’ve learned in the online world can be
made helpful both online and off. Bitcoin, that
privacy-centered cryptocurrency, has gained
new attention from government authorities
in Honduras—not because of its financial
prowess, but because Bitcoin architects
figured out how to allow people who do not
know or trust each other to collaborate on
certain kinds of activity.202 Both Honduras and
Greece have expressed interest in using the
blockchain concept at the heart of Bitcoin as a
framework for handling land registries.203

25

Conclusion

Say what you will about privacy; there’s
always something interesting afoot. The Year
of the Breach was followed by 2015’s Year
of Collateral Damage, as hacks exposing
personal information of people with no direct
relationship to the sites breached caused
pain and mayhem for tens of thousands
of innocent bystanders. The US federal
government struggled with many privacy
issues, even as the European Union and other
entities pressed the accelerator on efforts
to bring US companies in line with norms
overseas. With geopolitical tensions worldwide
as the year closed, it seems as if privacy issues
will struggle in 2016 to keep their rightful
footing side by side with security efforts.

26

204 http://www.zerodayinitiative.com/advisories/published/. 205 http://blog.celerity.com/the-true-cost-of-a-software-bug.

Vulnerability methods,
exploits, and malware
The past year saw a record number of
advisories published by the ZDI.204 While
vendors continue to create patches to
address individual bugs, efforts have also
been taken to provide defenses for entire
classes of vulnerabilities.

Take it to the source:
vulnerability-specific mitigations

What happens when vulnerabilities are
discovered? If everything works, patches are
released. These patches typically comprise
point fixes that remediate the discovered
issue. It is a never-ending cycle of activities:

• Researcher uncovers zero-day
vulnerability; reports to vendor.

• Developers implement a fix.
• Vendor releases a patch.
• End user deploys a software update.

All of this activity costs a significant amount
of money and requires numerous man-
hours to do correctly.205 In the end, the user
is secured from that vulnerability, which can
no longer be used to breach a corporate
network—at least until the next vulnerability
is discovered. With code bases reaching
millions of lines of code the next vulnerability
is never far away.

What else can be done?

In the past, vendors analyzed exploits
discovered in the wild and engineered
countermeasures to combat the techniques
used. Data execution prevention (DEP) and
address space layout randomization (ASLR)
are classic examples of these mitigations
developed by vendors.

The DEP mitigation marks memory regions
as executable or non-executable and denies
data the option to be executed in non-
executable regions. DEP can be enforced by
hardware (when it is sometimes known as the
NX [No-eXecute] bit) as well as by software.
When released, it was a formidable defense
against the standard exploitation techniques
of executing shellcode from an attacker-
controlled buffer. Today, however, attackers
have several techniques to bypass DEP.

One common way is to use return-
oriented programming (ROP) chains to
call VirtualProtect/mprotect and flag a
certain region as “executable.” To combat
this technique, vendors implemented ASLR
to randomize the base address of loaded
dynamic link libraries (DLLs), thus increasing
the difficultly in fielding a reliable exploit.
Attackers could rely on the known addresses
of ROP gadgets to disable DEP. With the
introduction of ASLR, attackers must either
find a way to load a non-ASLR DLL or to leak
a DLL address. With this new requirement for
exploitation, vulnerabilities that disclosed the
layout of memory in a process became highly
prized in the attacker community.

These types of mitigations were successful
at breaking the common exploit techniques
of the time, but attackers worked their way
around the defenses. The cat-and-mouse
game between software vendors and exploit
writers continues with new exploit-specific
mitigations being released and new
offensive techniques quickly following.
While these mitigations evolved, new
vulnerabilities continued to be discovered
and patches deployed. Recently, vendors
that receive hundreds of vulnerability reports
began taking a different approach
to software mitigations.

27

206 http://community.hpe.com/t5/Security-Research/Microsoft-IE-
zero-day-and-recent-exploitation-trends-CVE-2014/ba-p/6461820#.
VnQmo_mDFBc.
207 https://securityintelligence.com/understanding-ies-new-exploit-
mitigations-the-memory-protector-and-the-isolated-heap/.

208 https://technet.microsoft.com/en-us/library/security/ms14-035.
aspx.
209 https://technet.microsoft.com/en-us/library/security/ms14-037.
aspx.
210 https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-
building-a-safer-browser/.

211 https://technet.microsoft.com/en-us/library/security/ms15-106.aspx.
212 https://bugzilla.mozilla.org/show_bug.cgi?id=497495.
213 http://blog.chromium.org/2014/08/64-bits-of-awesome-64-bit-
windows_26.html.

New mitigation strategy

Microsoft’s flagship browsers, Internet
Explorer® and Edge®, offer a unique case study
on this new approach to mitigations. Over
the years, use-after-free (UAF) vulnerabilities
became one of the most common
vulnerability classes in the browser.
They were the vulnerability of choice in
everything from nation-state attacks to
common campaigns launched from exploit
kits.206 In response to each one, Microsoft
remediated and released patches for
hundreds of UAFs. During this time, Microsoft
not only implemented point fixes but also
developed a new set of mitigations hoping to
eliminate this vulnerability class.207

In the summer of 2014, Microsoft introduced
two new mitigations into its browser to
increase the complexity of successfully
exploiting a UAF. June’s patch208 introduced
a separate heap, called isolated heap, which
handles most of the document object model
(DOM) and supporting objects. From a
defensive perspective, the isolated heaps
make it harder for an attacker to fill a freed
object residing inside the isolate heap region
with controlled values.

Microsoft released a subsequent patch209
in July, 2014, introducing a new strategy
for freeing memory on the heap—
MemoryProtection. This mitigation operates
by preventing memory blocks from being

deallocated as long as they are being
referenced directly on the stack or processor
registers. MemoryProtection guarantees
the block will remain on the wait list until
reuse, and will remain filled with zeroes. This
prevents an attacker from controlling the
contents of the freed block before it is reused.
Both of these mitigations had an immediate
impact on the use-after-free landscape by
implementing techniques to mitigate the
effects of the vulnerability’s existence.

Isolated heap and MemoryProtection were
not the only use-after-free mitigations in
the development pipeline at Microsoft.
MemGC was introduced in Microsoft Edge
and Internet Explorer browsers in Windows®
10.210 MemGC is a major evolutionary step,
improving upon the protections afforded
by MemoryProtection. In October of 2015,211
MemGC was additionally back-ported to
Internet Explorer 11 running on earlier
Windows versions.

MemoryProtection only guards against
references to freed objects residing on the
stack or processor registers. In contrast,
MemGC aims to provide protection to a
full-fledged managed memory solution by
protecting against references to freed objects
regardless of where the reference may live.

MemGC knows of all allocations made
through the MemGC allocator.
When application code requests to free an

allocated block of memory, MemGC fills
the memory with zeroes. This serves as an
effective mitigation against UAFs. MemGC
keeps the memory in an allocated and
zeroed state. Periodically, MemGC executes
a “recycling” operation to perform final
deallocation of all such memory blocks. A
memory block will only be recycled when no
references remain, either on stacks or in other
MemGC-tracked allocations.

MemGC represents a highly effective
mitigation. At the time of this writing, the vast
majority of use-after-free vulnerabilities in
Microsoft Edge and Internet Explorer 11 are
rendered non-exploitable by this mitigation.

New industry norms

For complex code bases like web browsers,
mitigations targeting the effectiveness
of a common vulnerability type are a
welcome change. Fortunately, Microsoft
is not the only vendor developing these
types of countermeasures. Mozilla Firefox
implemented Frame Poisoning212 and
Google Chrome developed PartitionAlloc213

to combat use-after-free vulnerabilities.
These mitigations increase the complexity
of successfully writing a reliable exploit
leveraging this style of vulnerability. The
browser developers successfully disrupted
the threat landscape and forced attackers to
adjust their tactics, which is the ultimate goal.

28

214 http://krebsonsecurity.com/tag/adobe-flash-player/. 215 https://helpx.adobe.com/security.html. 216 https://blogs.adobe.com/security/2010/12/leveraging-the-android-
sandbox-with-adobe-reader.html.

Logical abuses of implicit calls

There is no denying 2015 was the year for
active exploitation of Adobe Flash. This was
driven by the existence of an easy-to-use
exploit primitive made available through
the corruption of vector objects and an
abundance of UAFs in the code base. Given
all this attention, Adobe Flash is being heavily
audited by security researchers interested in
aiding in the fight against adversaries,214 but
it is not the only Adobe product receiving
attention. Adobe Reader fixed a record
number of vulnerabilities215 in the 2015
calendar year.

Most of the Reader vulnerabilities discovered
reside in the code handling the JavaScript
APIs. These JavaScript APIs offer document
authors a rich set of functionality, allowing
them to process forms, control multimedia
events, and communicate with databases.
The primary purpose for this flexibility is to
give the end user easy-to-use yet complex
documents. Unfortunately, this flexibility is
a perfect avenue for attackers. By thinking
outside the box, an attacker can execute
malicious logic by leveraging weaknesses in
this code base.

Adobe built a security boundary into these
APIs.216 The boundary limits what type of
functionality is made available to document
authors based on the mode in which the
application is operating. In Adobe Reader, this
security boundary is implemented based on
the concept of privileged and non-privileged
context. When the code is executing in a
privileged context, the document author is
allowed access to the subset of security-
restricted APIs. Examples of points within
Adobe Reader where code executes in a
privileged context include operating in
console mode, performing batch operations,
executing application initialization events, and
trusting the document’s certificate. During
these times, the document author will have
access to the security-restricted APIs.

Some examples of non-privileged APIs
include mouse-up and mouse-down events
and any functionality that can be executed
in the “doc” context. A specific example of
a security-restricted API is app.launchURL.
This API should not be available from the
“doc” context and should only be executed
when you are in batch or console mode. If
you try to execute a privileged API from the
doc context, you will be prompted with the
following error dialog:

An attacker’s goal is to execute a privileged
API (or security-restricted function) from
within the “doc” context, providing the ability
to execute unintended operations by strictly
viewing the PDF. This needs to be completed
without alerting the victim with a security
warning dialog. Surprisingly, attackers do not
need to resort to classic memory corruption
techniques to accomplish the goal. This can
be accomplished by simply understanding
when the JavaScript language makes implicit
function calls. These implicit calls allow the
attacker to execute user-defined code in an
unintended context.

Figure 9. Adobe Reader security warning

29

217 http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf.

Using property redefinition techniques, the
attacker gains the ability to execute arbitrary
security-restricted APIs from a context in
which they are not allowed. Now all the
attacker needs to do is find some interesting
security-restricted APIs to call. In this case,
Adobe Reader’s undocumented APIs217 fulfill
this exact requirement. The undocumented
privileged API Collab.uriPutData provides
the end user the ability to dump a file to
disk. Using the undocumented API, attackers
can either stash their payload in the victim’s
startup folder or drop a DLL in the disk.
Either option allows them to gain remote
code execution of the victim’s machine.

With these exploit primitives, attackers
have everything needed to construct an
exploit that achieves remote code execution
through JavaScript API restriction bypass
vulnerabilities. They begin their attack by
attaching a malicious payload to a PDF. Next,
they write JavaScript that executes when the
document is opened. The JavaScript needs
to extract the contents of the attachment
into a JavaScript object. Following that, they
leverage a JavaScript API restriction bypass
vulnerability to execute the undocumented
privileged API Collab.uriPutData to drop a
DLL to the disk. Once the DLL is dropped,
they force Adobe Reader to load the attacker-
supplied DLL and execute the payload.

This type of attack is devastating as there is
little indication of compromise. In this case,
the attacker is not corrupting memory within
the application so the application will not
crash. No security dialog will be displayed
to the end user to show that privileged
functionality is being executed. The exploit is
simply redefining what methods are implicitly
called within the JavaScript so that it executes
unintended privileged APIs. These abuses
offer an interesting case study of when using
the language as designed results in a security
boundary failure.

Figure 10. The result of successful exploitation

30

The need for
wide-reaching fixes

While the fixes for use-after-free
vulnerabilities in Microsoft Internet Explorer
and Edge are commendable, history
teaches us it is only a matter of time before
attackers leverage a different vector to
exploit these programs. Still, the inclusion of
MemoryProtection and MemGC demonstrates
how wide-reaching fixes disrupt attack in
an asymmetric fashion. Instead of releasing
patches to fix many different vulnerabilities,
these defensive measures take out the entire
class—at least for some period of time.
Other vendors would do well to consider
implementing similar strategies to disrupt
classes of attacks.

Figure 11. Top 10 CVE-2015 exploits by prevalence discovered by ReversingLabs

CVE-2015-1701

CVE-2015-2331

CVE-2015-5119

CVE-2015-0311

CVE-2015-5122

CVE-2015-1671

CVE-2015-1692

CVE-2015-3113

CVE-2015-5097

CVE-2015-0313

Others

4%

3%
3%

2%

4%

4%

5%

9%
9%

10%

46%

Exploits

As detailed in the “business of bugs” section
earlier in this report, finding vulnerabilities
in software is usually the domain of security
researchers, with many of them participating
in coordinated disclosure with vendors.
Despite the progress made with a record-
setting year (both reporting and patching),
exploits remained one of the main vectors
allowing remote code execution and privilege
escalation by attackers.

The distribution of newly discovered
samples for vulnerabilities identified in 2015
(CVE-2015-xxxx) shows the high prevalence
of exploits for the Windows privilege
escalation vulnerability CVE-2015-1701,218
which accounts for over 45% of exploit
samples for the year. CVE-2015-1701, first
observed in a highly targeted attack,219 was
used in combination with Adobe Flash remote
code execution exploits.

31

Looking at vulnerable applications
(Figure 12), however, the top 20 were
dominated by Adobe Flash exploits. Indeed,
2015 was fraught with newly discovered Flash
vulnerabilities in spite of several security
improvements implemented by Adobe and
Microsoft Windows such as Control Flow
Guard (CFG) and a more secure Action Script
vector class. Out of the top 20 applications,
half affected Adobe Flash. The most
commonly encountered Flash samples
include two discovered after the Hacking
Team breach (CVE-2015-5119220 and CVE-
2015-5122221), and a third (CVE-2015-0311222)
found in the Angler exploit toolkit.223

Figure 12. Top 20 vulnerabilities by targeted platform

218 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701.
219 https://www.fireeye.com/blog/threat-research/2015/04/probable_
apt28_useo.html.

220 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5119.
221 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5122.

222 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0311.
223 http://malware.dontneedcoffee.com/2015/01/unpatched-vulnerability-
0day-in-flash.html.

 10

 3

 2

1

1

1

1

1

0 2 4 6 8 10

PHP

Microsoft Office

Android

Adobe Reader

Silverlight

Internet Explorer

Windows

Flash

29%

10%

4%
4% 3%

50%
Windows

Flash

PHP

Internet Explorer

Silverlight

Adobe Reader

Microsoft Office (0)

Android (0)

Figure 13. Proportion of CVE-2015-xxxx vulnerabilities discovered by affected application

Looking at the proportion of samples
discovered by ReversingLabs in 2015, it is
Microsoft vulnerabilities that dominate the
top 20, accounting for nearly 50% of all
discovered samples, followed by Adobe Flash
(29%) and a single PHP vulnerability (10%).

32

CVE-2010-2568

CVE-2012-6422

CVE-2014-6332

CVE-2010-0188

CVE-2009-3129

CVE-2012-1723

CVE-2010-1297

CVE-2012-0158

CVE-2010-3301

CVE-2014-0503

Others

4%
4%
3%

2%

4%
5% 5% 6%

13%

24%
29%

As we learned in last year’s report, attackers
leverage more than just the newest
vulnerabilities to carry out successful
attacks. Looking at newly discovered exploit
samples for all known vulnerabilities, not just
those discovered in 2015, different patterns
emerge. Alarmingly, 2015 is still dominated
by CVE-2010-2568224 (patched again in early
2015225), although the overall proportion is
a bit lower (29% in 2015 vs. 33%in 2014). In
fact, it is disheartening to see that the top 10
vulnerabilities exploited overall (Figure 14)
continue to be those that are more than a
year old (and 48% are five or more years old).

Surprisingly, the old Shortcut Icon Loading
Vulnerability first discovered by VirusBlokAda
during the initial analysis of Stuxnet is
followed by samples exploiting CVE-2012-
6422,226 a vulnerability in Samsung Exynos
processors, which allows the attacker
to escalate privileges by being able to
arbitrarily read and write system memory.
The prevalence of CVE-2012-6422 is likely
indicative of the increased popularity of
Samsung smartphones and the Android
operating system.

Figure 14. Top vulnerabilities exploited in 2015 by as reported by ReversingLabs

224 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568. 225 http://community.hpe.com/t5/Security-Research/Full-details-on-CVE-
2015-0096-and-the-failed-MS10-046-Stuxnet/ba-p/6718459.

226 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6422.

Figure 15. Top 20 discovered exploit samples by targeted platform

Now, let’s look at this from the perspective of
targeted applications and platforms. Again,
the data shows Microsoft Windows dominates
with more than 42%—largely attributed to
the Stuxnet vulnerability (CVE-2010-2568).
Confirming our belief that attackers are
very much interested in mobile platforms,
Android is second with 18%. Oracle Java (12%),
Microsoft Office (11%), and Adobe (Flash and
Reader at 7% each) round out the top five.

18%

12%

11%

7%

7% 3%

42%

Windows

Android

Oracle Java

Microsoft Office

Adobe Flash

Adobe Reader

Linux

33

With the exception of Windows and Android,
the platforms represented here are used most
commonly for delivering malicious exploit
files resulting in malware infections. This is
a change from last year’s report when Java
exploits were the second most prevalent,
accounting for more than 21% of all
discovered exploit samples.

Although several vulnerabilities in JRE were
discovered in 2015, none of them allowed
remote code execution,227 which lowers the
interest of malware attackers in Java. Combine
this with the fact that many people learned
how to disable Java from running within a
web browser228 environment, and it is easy to
understand why Java fell in 2015—at least as
a platform.

Looking at only newly discovered exploit
samples delivered through web pages,
the situation is somewhat different as HTML
(JavaScript) leads with 35%—more than
Adobe Reader, Java files, and Adobe Flash
files.

Figure 16. Count of newly discovered exploit samples by platform

227 http://www.oracle.com/technetwork/topics/security/alerts-086861.html. 228 http://java.com/en/download/help/disable_browser.xml.

0 1 2 3 4 5 6

Linux

Adobe Reader

Adobe Flash

Android

Windows

Microsoft Office

Oracle Java 6

 3

 3

 3

 2

 2

1

Figure 17. Web or email exploit samples discovered in 2015 by file type

35%

20%

8%
4%2%

2%

31%

PDF

Java

HTML

SWF

Multimedia (0)

Word

Excel

PowerPoint (0)

CHM (0)

34

Figure 18. Newly discovered samples in AV-TEST repository

Malware: still dangerous,
still pervasive

While malware still represents a significant
threat to the digital enterprise in 2015, it
seems the linear growth of newly discovered
malware samples did not materialize.
According to the independent German
security testing organization AV-TEST,
there were about 140 million newly discovered
malware samples for the Windows platform.229
This largely agrees with the 135 million
samples HPE Security Research partner
ReversingLabs tracked. It’s important to
note that ReversingLabs’ number includes
potentially unwanted applications (PUAs).

229 https://www.av-test.org/en/statistics/malware/.

40,000,000

80,000,000

120,000,000

160,000,000

Dec

Nov

Oct

Sep

Aug

Jul

Jun

May

Apr

Mar

Feb

Jan

* Note: 2015 data extends from Jan–Nov only.

20
12

20
13

20
14

20
15

*

20
05

20
06

20
07

20
08

20
09

20
10

20
11

35

Given trending over recent years, the
expectation was that it would continue at
the same alarming pace into 2015. Even we
predicted this in our 2015 report. It is difficult
to pinpoint exact reasons for this apparent
stagnation, but it’s likely due to improvements
in defenses such as the operating system
and protection components implemented in
the enterprise. Another contributing factor
could be the takedown of several large
malware operations in 2015.230, 231 We can also
reasonably attribute some percentage of
decline to the consumer shift from traditional
computers to mobile devices. The centralized
distribution model for apps used by iOS and
Android has proven more difficult for malware
attackers despite the obvious growth in
interest in attacking mobile platforms.

Regardless of increased interest in attacking
mobile platforms, Microsoft Windows remains
the top platform for malware with 94%,
as seen in Figure 19.

Figure 19. Breakdown of malware samples by platform discovered in 2015 by ReversingLabs

3%

1% 1%

94%

Windows

Android

Document

MSIL

PHP (0)

MacOS (0)

Linux (0)

Perl (0)

UNIX (0)

iOS (0)

FreeBSD (0)

230 http://www.consumerreports.org/cro/news/2015/04/botnet-takedown-
removes-malware-threats/index.htm.

231 https://threatpost.com/law-enforcement-shuts-down-dridex-
operation/115036/.

36

The only other platform of note here is
Android, with 3% (or just over 4.5 million
samples). Of interest, Android’s (and other
mobile platforms’) main threats are potentially
unwanted applications (PUAs) and advertising
frameworks collecting private and potentially
identifiable user information.

Examining overall growth rates per platform,
we see a shift away from Windows-only
malware. The absolute champion, in terms of
growth rate, was Apple iOS, with an increase
of more than 230% (although the number
of discovered Apple malware samples, just
under 70,000, is still very small compared to
the number of Windows malware samples) as
seen in Figure 20.

Figure 20. Yearly growth in newly discovered malware samples by platform (ReversingLabs)

232 http://w3techs.com/technologies/overview/operating_system/all. 233 http://w3techs.com/technologies/overview/content_management/all.

The increase of interest in Linux can be
contributed to its popularity for hosting
web content.232 Users of popular content
management applications such as
WordPress233 often fail to promptly update
to the latest versions, allowing attackers
time to install malicious code on the server.
The growth of PHP-based samples can be
attributed to remote administration (remote
shell) tools exposed through a web-based
user interface.

Overall, despite being a very serious
problem, we can be happy with a slowdown
in Windows-based malware—at least for
2015. Security features and mitigations as
addressed earlier in this report are expected
to further contribute to a stagnation in
the growth of malware and hopefully,
an eventual decline.

-100% 0% 100% 200% 300% 400% 500% 600% 700% 800%

Windows

UNIX

PHP

Perl

Other

MSIL

Linux

iOS

FreeBSD

Document

Android 153%

 35%

 -33%

 235%

 212%

-67%

 33%

 116%

 752%

 -2%

 88%

37

234 http://www.microsoft.com/security/portal/threat/encyclopedia/entry.
aspx?Name=Win32%2fAllaple.

235 https://nakedsecurity.sophos.com/2015/02/27/europol-takedown-of-
ramnit-botnet-frees-3-2-million-pcs-from-cybercriminals-grasp/.

236 http://www.microsoft.com/security/portal/threat/encyclopedia/entry.
aspx?Name=Win32%2FElkern.
237 https://www.anthemfacts.com/

Windows malware in 2015

Looking more closely at Windows malware,
the data reveals that self-replicating malware
such as network worms and parasitic viruses
dominate. However, most of the top families
are not new, showing us that patching is still
very much a problem. Let’s look at the top two
families (Figure 21) more closely.

Allaple234 tops the charts with 26% of samples
and is a polymorphic worm discovered more
than eight years ago that affects HTML
files, which may contribute to such a high
number of samples. Allaple is similar to Ramnit
(infecting files other than Windows PE files),
which accounted for almost 5% of the
samples despite being taken down in February
by Europol.235

 Elkern,236 at 19%, is another surprise. Elkern
is a polymorphic parasitic virus and worm
discovered in the old era of viruses (over 10
years ago) when malware was created to
showcase the author’s technical skills or, at
worst, overwrite or delete files.

Although the growth in newly discovered
malware samples slowed, 2015 was not
without innovation including malware
designed to attack users in general,
as well as malware designed to target
specific organizations.237

Figure 21. Top discovered Windows malware families according to ReversingLabs

20%

7%

3%

19%

2%

7%

2%
2%

26%

4%

5%

6%

Allaple

Elkern

Multiplug

Virut

Virlock

Ramnit

Mira

Vobfus

Upatre

Sality

Others

38

238 http://www.securemac.com/privacyscan/new-apple-mac-trojan-
called-osxcointhief-discovered.
239 https://malwaretips.com/blogs/remove-potentially-unwanted-
program/.

240 http://www.thesafemac.com/arg-vsearch/.
241 https://cynomix3.appspot.com/tag/not-a-
virus%3AHEUR%3ADownloader.OSX.Macnist.a.

242 https://blog.malwarebytes.org/mac/2015/10/bypassing-apples-
gatekeeper/.

OS X malware in 2015

2015 saw the continued trend of a relatively
few truly malicious samples created to run
specifically on OS X. Perhaps the most
interesting examples are Bitcoin stealers such
as CoinThief238 or Bitcoin mining malware,
which uses a computer’s computing resources
to mine Bitcoins for the benefit of the attacker.

The majority of threats on OS X, in fact over
99% of all newly discovered threats, belong
to the category of potentially unwanted
applications (PUAs). They are usually
installed in a bundle along with useful, wanted
applications.239 Once installed, PUAs often
download and install additional components
or display advertisements through browser
plugins such as VSearch.240 The most
commonly encountered OS X PUA is known
as Macnist,241 which encompasses several
downloader families.

Although the malware protection module
Gatekeeper, built into the OS X operating
system, is improving with every new release,
this year has seen a few successful attacks
designed to bypass it.242 We expect that the
research in this area will continue in the
next year, as bypassing built-in security
mechanisms is key to successfully installing
malicious software on OS X.

Figure 22. Top OS X threat samples discovered in 2015

5%

30%

62%

1% 1%1%

Macnist

Vsearch

Genieo

Mac bundlore

Bundlore

Installcore

Getshell (0)

Agent (0)

Spigot (0)

Others (0)

39

243 http://www.techrepublic.com/blog/it-security/ddos-attack-methods-and-how-to-prevent-or-mitigate-them/.

Linux malware in 2015

Top Linux malware samples detected in 2015
are still dedicated to launching distributed
denial of service (DDoS) attacks. Most DDoS
Trojans connect to a central command and
control (C&C) server used by the attackers to
synchronize denial of service attacks,
usually conducted by choosing one of the
well-known243 DoS methods such as TCP,
UDP, and ICMP flood or DNS amplification.

The world of Linux malware, in terms of threat
types, has not seen a major change from
the last year and DDoS malware continues
to dominate the top 20 threats, accounting
for more than 60% of all discovered samples.
A notable trend is the further increase in
infecting small office and home routers, which
are often misconfigured or not updated with
the latest security patches. Several Linux
malware families spread in this manner with
functionally identical executables designed to
run on different processor architecture, with
MISP, ARM, x86, and PowerPC being the most
common ones.

Figure 24. Top 20 Linux malware families by malware type

3%

24%
61%

8%

DDoS

Generic

Backdoor Trojan

Hacktool

Parasitic virus

Worm

2%2%

40

244 http://now.avg.com/war-of-the-worms/.
245 http://news.bbc.co.uk/2/hi/technology/3532009.stm.

246 http://www.darkreading.com/vulnerabilities---threats/and-now-a-
malware-tool-that-has-your-back/d/d-id/1322451.
247 https://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-
viruses.html.

248 http://all.net/books/virus/part2.html.
249 http://www.zdnet.com/article/two-stealthy-linux-malware-samples-
uncovered-following-in-windows-variants-tracks/.

First discovered in 2014, the Linux malware
families Darlloz and Aidra244 continued to
target routers throughout 2015. Samples of
both families attempted to secure infected
devices from infection by another family,
reminiscent of the Netsky, Bagle, and
MyDoom wars,245 which happened over 10
years ago.

This year, router-based malware has seen
the addition of the purportedly “benevolent”
worm Wifatch,246 which spread to unprotected
routers in an attempt to secure them
from further infections with no malicious
payloads included in its code. First mention
of benevolent viruses was recorded in one of
the first-ever research efforts into computer
viruses, published by Fred Cohen in 1984.
In his book “Computer Viruses—Theory
and Experiments,” 247 Cohen describes a
compression virus,248 which preserves the
original function of the infected executables
but also saves disk space by compressing the
host code.

The level of sophistication in Linux malware
is still generally low, which can be attributed
to the relatively low level of user awareness
about malware threats to Linux. An additional
contributing factor is the fact that anti-
virus software is rarely installed on Linux
systems. More advanced anti-debugging
and obfuscation techniques are generally not
used as they are typically not required when
infecting systems.249

With the further increase of Linux as a
popular platform for hosting applications and
the adoption of software containers as a de
facto standard for packaging applications, it
is likely we will see more sophisticated Linux
malware in the near future.

Figure 23. Top Linux malware samples discovered in 2015

3%
3%

29%

8%

11%

21%

8%

7%4%
4%

3%

Agent

Gafgyt

Tsunami

Elknot

Xorddos

Setag

Ddos

Mrblack

Mayday

Dofloo

Others

41

250 http://www.techtimes.com/articles/104373/20151109/new-family-of-android-malware-virtually-impossible-to-remove-say-hello-to-shedun-shuanet-and-shiftybug.htm.

Mobile malware in 2015

Android threats, malware, and potentially
unwanted applications continued the growth
trend already visible in 2014. Although there
are nowhere near the number of discovered
threats for Windows platform, we have
reached the point where we are seeing over
10,000 new threats discovered daily, reaching
a total year-over-year increase of 153%.

All the top malware families are the usual
suspects in the Android world and are
designed to obtain financial benefits for the
attackers by installing additional unwanted
components, sending or stealing SMS
messages, or stealing confidential information
such as the user’s contacts details or phone’s
unique identifier. Most Android malware
purports to be legitimate apps uploaded on
third-party app repositories following patterns
well-known from desktop malware.250

Figure 25. Discovered Android threats, through October 2015

Figure 26. Top Android malware families discovered by ReversingLabs in 2015

0

100,000

200000

300,000

400000

500,000

Oc
t

Se
p

Au
g

Ju
l

Ju
n

Ma
y

Ap
r

Ma
r

Fe
b

Ja
n

11%

7%4%

29%
33%

4%
4%2%

2%

2%
2%

Agent

Smsagent

Fakeinst

Opfake

Smsreg

Smforw

Boxer

Smsthief

Stealer

Smssend

Others

42

251 https://blog.avast.com/2015/02/10/mobile-crypto-ransomware-
simplocker-now-on-steroids/.
252 http://www.theregister.co.uk/2015/05/26/android_ransomware_
mobile_scam_fbi/.
253 http://www.welivesecurity.com/2014/07/22/androidsimplocker/.

254 https://blog.malwarebytes.org/mobile-2/2014/05/difficulty-removing-
koler-trojan-or-other-ransomware-on-android/.
255 http://www.welivesecurity.com/2015/09/10/aggressive-android-
ransomware-spreading-in-the-usa/.

256 http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp-the-south-korean-fake-banking-app-scam.
pdf.
257 https://blog.kaspersky.com/android-banking-trojans/9897/.
258 http://www.wiki-security.com/wiki/Parasite/ZeusTrojan/.

Android ransomware

Ransomware is a very successful model of
attack and its mobile variant is not much
different from its desktop counterpart. Usually,
the user is tricked into installing a useful
app—for example, an app that pretends to
be Adobe Flash player.251 Once installed and
executed, the malicious application attempts
to encrypt all accessible documents, images,
and multimedia files on the device. When
this process is finished, the ransomware
application displays a text, a warning that
often seems to come from law enforcement
agencies such as the FBI252 and instructs the
user how to pay to restore files and access
to the device.

Some of the most successful Android
ransomware families are Simplocker253 and
Koler.254 The recently discovered Locker255
family actually sets a PIN for the device and
makes the restore almost impossible if the
user is not willing to pay the attackers for
recovery instructions.

Banking (phishing) malware

Fake Internet banking apps are another
successful attack pattern that uses purported
banking apps to steal user credentials and
allow attackers access to user’s bank accounts.
The fake banking app attacks often targeted
Korean,256 Russian, Indian, or Vietnamese
banks.257 In Korea, users received spoofed
SMS messages that enticed them to install
the fake app, which led to loss of banking
credentials. In other cases, such as those
involving the Zeus malware,258 fake apps
required users to enter a code to access
online banking while forwarding the access
code to the attacker by sending a background
SMS message.

Figure 27. Monthly breakdown of Android ransomware samples discovered in 2015

Figure 28. Monthly breakdown of fake banking apps malware discovered in 2015

0

50

100

150

200

250

300

350

Oc
t

Se
p

Au
g

Ju
l

Ju
n

Ma
y

Ap
r

Ma
r

Fe
b

Ja
n

0

200

400

600

800

1000

Oc
t

Se
p

Au
g

Ju
l

Ju
n

Ma
y

Ap
r

Ma
r

Fe
b

Ja
n

43

259 https://blog.lookout.com/blog/2015/01/06/socialpath/.
260 http://www.symantec.com/connect/blogs/online-criminal-group-
uses-android-app-sextortion.
261 https://developer.apple.com/xcode/.
262 http://techcrunch.com/2015/09/21/apple-confirms-malware-infected-
apps-found-and-removed-from-its-chinese-app-store/.

263 http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-
xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/.
264 https://www.fireeye.com/blog/executive-perspective/2015/09/
protecting_our_custo.html.
265 http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-
ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-
apis/.

266 http://researchcenter.paloaltonetworks.com/2015/08/keyraider-ios-
malware-steals-over-225000-apple-accounts-to-create-free-app-utopia/.
267 http://www.macrumors.com/2015/09/20/xcodeghost-chinese-
malware-faq/.

Information-stealing malware

Phone numbers, email addresses, and other
contact details are valuable for malware
writers. Many malicious applications,
including PUAs, will attempt to collect this
data from infected devices and send it to
attackers. Apart from sending SMS messages
to invite users to install malicious apps, some
attackers also spread them through
Twitter and WhatsApp messages.259 In Japan,
a group behind the Godwon information
stealing malware collected the contact
details to try to extort the user260 after sharing
compromising photos and videos with
attackers.

 iOS malware

Due to the popularity of the platform,
researchers have been investigating all
factors of the security of the iOS platform
since its release. However, until 2015, we have
not seen any successful malware attacks get
into Apple’s closely guarded App Store.

Unfortunately, this year witnessed the first
major compromise of applications uploaded
to the App Store. This is a consequence of
an attacker’s modification of Apple’s Xcode261
programming environment, which was shared
among many developers in China.262 This
resulted in a malicious information-stealing
component, known as XcodeGhost,263 being
included with more than 4000 apps264
published to the App Store by legitimate
developers of IOS apps.

While XcodeGhost managed to get into
Apple’s App Store, two additional families
targeting third-party app stores for jailbroken
phones became prevalent: Yispecter265
and Keyraider.266 Interestingly all major iOS
malware families are geographically targeting
Chinese and Taiwanese users.267

Although the total number of IOS malicious
apps is very low compared to all other
popular malware platforms, the growth of
235% indicates that it should be a closely
watched area in 2016.

Yispecter

Xcodeghost

Keyraider

Morcut

Generic.ba

Pacisym

Fidall

Wirelurker

Oneclickfraud

Stealer

Others

1%1%

4%
3%

2%
2%

7%

23%

26%

3%

28%

Figure 29. Top malicious iOS apps discovered in 2015

44

269 http://newsroom.mastercard.com/2015/05/11/security-matters-the-
continuous-evolution-of-atm-fraud-attacks/.
270 http://www.bankinfosecurity.com/atm-heist-a-8178.
271 http://www.cen.eu/Pages/default.aspx.

272 http://money.cnn.com/2014/03/04/technology/security/atm-
windows-xp/.
273 https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-
support.
274 http://www.cisco.com/c/dam/en/us/td/docs/solutions/Verticals/
Financial_Services/Financial_Branch_Banking/financial_banking.pdf.

275 http://www.conceptdraw.com/examples/diagram-example-atm-
system.
276 https://www.virustotal.com/.
277 https://plusvic.github.io/yara/.

Spotlight: significant malware
in 2015

Just as the marketplace grows for
vulnerabilities, malware in 2015 took on a new
focus. In today’s environment, malware needs
to produce revenue, not just be disruptive.
This has led to an increase in ATM-related
malware, banking Trojans, and ransomware.

ATM malware prevalence and trends

2015 bore witness to a steady increase in
automated teller machine (ATM)-related
attacks. While not new-ATM malware attacks
have existed since 2004268—they have risen
in frequency exponentially the past few
years.269 ATM-targeting malware, as reported
by our telemetry, occurs in moderate
but still alarming numbers. Due to the
oscillated nature of targeted platforms, once
compromised they appear on the radar of
AV companies and major news feeds. These
attacks are most likely only reported back to
the banks and ATM manufacturers, making it
difficult to gather reliable telemetry.

Attacks targeting ATMs generally fall into one
of two categories:

• Stealing credit card information. These
attacks may use hardware such as
skimmers, software loaded onto the
ATM, or a combination of both.

• Directly dispensing cash. These
attacks rely on directly bypassing card
authentication and are performed at the
software level.

While there’s no definitive answer as to what
contributes to the rise of ATM malware, it
is likely that an aging ATM fleet plays a
significant role. The ease of access to the
inner workings of certain ATMs and their
locations contribute as well. What is certain
is that cybercriminals attacking ATMs are
well-organized and operate on an
international scale.270

Targeted platforms

ATM software architecture follows the design
of the common architecture and consists of
the following major blocks:

• Hardware modules

• Service providers’ drivers for hardware
modules

• Financial services extension (XFS)
manager

• Business application

Maintained and promoted by the European
Committee for Standardization271 (CEN), the
XFS manager is based on earlier work of
Windows Open Architecture Extension for
Financial Services by Microsoft (WOSA/XFS).
The CEN/XFS manager communicates to the
service providers, which in turn implement
device drivers for particular hardware
modules. In doing so, CEN/XFS abstracts a
business application (e.g., money dispenser,
secure crypto-processor, a money vault, a
pin-keyboard, a card reader, a printer) from
ATM hardware modules by providing a set
of standard APIs. The business application
receives, interprets, and acts on user inputs
ultimately rendering services exposed by
the ATM. Ninety-five percent of ATMs use
a locked down version of Windows XP,272
despite the fact that Windows XP is no longer
supported by Microsoft.273 The ATMs are not
expected to be connected to the Internet
without an encrypted transport layer, such as
a Cisco VPN tunnel.274 Small ATMs found in
kiosks, small shops, and service stations can
also utilize proprietary telemetry links using
ISM bands275 or phone lines.

ATM malware prevalence

Standalone ATMs do not typically run
endpoint security software or provide any
telemetry to gain knowledge about the
prevalence and distribution of malware. For
insight into the prevalence and distribution
of ATM malware, we monitored the crowd-
sourced sample gateway VirusTotal.276
Operating under the assumption that
malware targeting ATMs has a high
probability of traversing client systems
and being spotted by users or AV engines
before installing, as well as knowing that the
XFS manager is implemented via msxfs.dll
(in the Microsoft Windows environment) a
simple YARA277 rule was crafted to identify
files linked with msxfs.dll and importing a
set of XFS APIs common to known ATM
malware. We limit our observations to three
common AV engines—Kaspersky, Microsoft,
and ESET—based on the prevalent number
of malware detections and the uniqueness
and consistency of chosen malware names.
It is important to note that the simplified
ATM malware files selection rule would not
exclude legitimate XFS applications infected
by viruses. As such, these were carefully
examined and filtered out. Further analyzing
sourced files revealed the following ATM
malware landscape throughout 2015.

45

Figure 30. ATM malware rates as per the Kaspersky AV engine

Figure 31. ATM malware rates as per the Microsoft AV engine

Figure 32. ATM malware rates as per ESET

The total number of samples within a
malware family reflects all cases submitted
to VirusTotal over the course of the year,
including non-unique submissions and
representation from different geographical
regions. Having a ratio of unique
submissions relative to the total number
of samples, coupled with the geographical
information for each individual submission
source gives us a sense of prevalence
and distribution for a particular malware
family. Of particular note, the total number
also reflects the readiness of AV engines
to detect the sample at the time of the
submission and does not take into account
the subsequent re-scans.

When comparing these AV engines,
Kaspersky’s provides the best results based
on granularity of malware identification.
Using Kaspersky’s AV engine as a baseline,
and layering the overall distribution and
number of detected files within individual
malware families, a few interesting cases
emerged.

Backdoor.Win32.Suceful.a

Backdoor.MSIL.Tyupkin.a

Backdoor.MSIL.Tyupkin.c

Backdoor.Win32.Tyupkin.h

Trojan-Banker.Win32.GreenDispenser.c

Trojan-Banker.Win32.GreenDispenser.d

Backdoor.Win32.Tyupkin.g

Backdoor.Win32.Tyupkin.d

Backdoor.MSIL.Tyupkin.b

Backdoor.Win32.Tyupkin.c

Trojan-Banker.Win32.GreenDispenser.a

Trojan-Banker.Win32.GreenDispenser.b

Backdoor.Win32.SkimerNC.a

Backdoor.Win32.Atmmng.a

Trojan-Banker.Win32.GreenDispenser.e

Worm.Win32.Huhk.c

1%1%1%3%

4%
5%

4%

5%

7%

7%

7%

7% 8%

19%

12%

20%

1%1%

6%

3%3%

25%
61%

Backdoor:MSIL/Sidkey.A

Trojan:Win32/Greeodode.A

Backdoor:Win32/Suceful.A

Backdoor:Win32/Loretsys.A

Trojan:Win32/Pakes

Trojan:Win32/Skeeyah.A!bit

TrojanDropper:Win32/Pakes.gen!A

1%1%

13%

3%3%

11%

16%
17%

35%
MSIL/Padpin.A

Win32/Pinapter.A

Win32/Alman.NAB

Win32/ATM.A

Win32/ATM.B

Win32/Skimer.D

Win32/Huhk.C

Win32/Ramnit.A

Generik.LDZFWNB

46

278 http://www.embarcadero.com/products/delphi.

AKA Suceful

Kaspersky’s AV engine assigned the name
Backdoor.Win32.Suceful.a to an ATM-
related malware that made its debut in the
middle of 2015 and so far has three distinct
submissions in VirusTotal. The first file
originated in Russia at the end of August
(08/28/2015). Later submissions of the
same file were made from countries such
as Germany, India, Ukraine, Netherlands,
Malaysia, Italy, South Republic of Korea, and
Taiwan. The last submission occurred on
September 19 from Korea.

The second file was submitted just one
minute later on August 28 and originated
in France. It might suggest a check by
the malware actors using Internet proxies
for anonymization, or it may just be a
coincidence. The later submissions of this

same file were made from India, Ukraine,
Malaysia, Netherlands, and Taiwan. As seen
in the first case, the whole distribution took
about a month with the last submission made
on September 23. The monthly lifespan likely
indicates that most of the AV engines have
caught up with the malware. It could also
mean the malware finished its transitions
through gateways and now resides on
endpoints, such as ATMs, which are not
routinely scanned.

The third file is likely a continuation of the
campaign started in July. There are only two
submissions made, both on September 21
and originating from Vietnam.

Such a broad range of countries of origin
suggests a very wide and multinational
distribution as well as possible involvement of
an organized group or groups of actors.

The malware is written in Delphi.278 The
prevalent language of the file resources
suggests a Russian-speaking country as
a point of origin. The malware uses the
WFSAsyncExecute API and also employs
the WFSOpen, WFSStartup WFSExecute
APIs from the msxfs.dll library. References
to Pinpad, IDCardUnit, RequestID,
DBD_MOTOCARDRDR, Key-ENTER, Key-
CANCEL, Key-CLEAR as well as other
XFS-related strings suggests ATM card
reader manipulations. The malware derives
its name from a typo made in an internally
used return status string (SUCEFUL) during
a successfully executed operation.

47

279 https://securelist.com/blog/research/66988/tyupkin-manipulating-atm-machines-with-malware/.

AKA Tyupkin

The name Backdoor:MSIL/Sidkey.A is used
by Microsoft AV and covers most variations
of the Backdoor.Win32.Tyupkin and Win32/
Padpin families as identified by Kaspersky’s
and ESET-NOD32 AV engines respectively.

This family of malware is not new, yet it
persisted throughout 2015 despite its
relatively high rate of detections by AV
engines. In April 2015, a file detected as
Backdoor.MSIL.Tyupkin, a variant flagged
by Kaspersky AV, was submitted. The first
submission of the file came on April 9 and
originated in Russia. Again, judging by the
file’s prevalent language and the initial locale
of submission, it is fair to say that the malware
was likely targeting Russian-speaking
regions. As suggested by the detection name,
this malware was written using the .NET
framework and utilizes XFS framework for its
malicious purposes. The most prevalent file
name for this variant seen in the wild is ulssm.
exe, which is hardcoded in the malware.
Several notable XFS functions utilized by this
sample are: WFSExecute, WFSFreeResult,
WFSGetInfo, WFSIsBlocking, WFSOpen, _
wfs_pin_data, _wfs_pin_func_key_detail,
_wfs_pin_getdata, _wfs_result, WFSStartUp,
_wfsversion, WFSCancelBlockingCall, _wfs_
cdm_cu_info, _wfs_cdm_denomination,
and _wfs_cdm_dispense.

The names of the APIs used suggest this
malware is focused on pin-pad and money
cassette dispenser manipulation. Other
submissions of this variant came from the
United States, Israel, Malaysia, Great Britain,
France, Taiwan, Estonia, Indonesia, Czech
Republic, and Brazil with the last submission
made on July 18, originating in France.

The Tyupkin malware family proved to be
popular among attackers. One recent and
persistent submission is a Tyupkin.h variant.
The first submission of this variant was made
on April 15 and originated in China. The
most recent was from Italy and submitted on
November 4. From the dynamic of submission
we observed it appears as if the different
variants were released nearly simultaneously
targeting different geographical regions.
Some of the variants proved to be more
persistent continuing to appear in the wild at
the time of this writing.

As with the previously mentioned Suceful,
judging by the exported XFS functions and
services, Tyupkin is very pervasive and
attempts to dispense cash from the ATM to
the attackers. At this time, known variants of
Tyupkin do not attempt to manipulate or steal
the user’s card.

Despite the high detection rate by AV
engines, this malware family still manages to
persist and due to its international prevalence
and efficacy279 is most likely used by organized
crime groups mostly targeting NCR ATMs.

The names of the APIs used suggest Tyupkin
is focused on pin-pad and money cassette
dispenser manipulation.

48

280 http://www.casefi.com/uncategorized/greendispenser-atm-malware-alert/.

AKA GreenDispenser

This family of malware first came to
light in the beginning of June 2015. The
file is detected as Trojan-Banker.Win32.
GreenDispenser.A, a variant of Win32/ATM.B,
and Trojan:Win32/Greeodode.A by the
Kaspersky, ESET-NOD32, and Microsoft AV
engines respectively.

As well as its predecessor Tyupkin,
GreenDispenser targets NCR ATMs and
once installed dispenses unauthorized cash
to malevolent actors.280 It is written in C and
imports the WFSGetInfo, WFSFreeResult,
WFSOpen, WFSClose, WFSExecute,
WFSStartUp, WFSIsBlocking APIs from the
MSXFS.dll. It includes functionality to delete
itself on request and simulate the ATM out-of-
service message. The malware can be limited
to act within a certain time frame to reduce
exposure and the chance of being detected.

The initial submission to VirusTotal was
made on June 4 and originated in India. Later
submissions were made from the United
States, France, and Japan. These submissions
occurred more or less evenly throughout
the following months up to September 29.
The later variations of the GreenDispenser
Trojan family included Trojan-Banker.Win32.
GreenDispenser.b, Trojan-Banker.Win32.
GreenDispenser.c, and the Trojan-Banker.
Win32.GreenDispenser.d as detected by
Kaspersky AV.

The Trojan-Banker.Win32.GreenDispenser.b
submissions started in the second half of
June, originating in Mexico, and ran up until
the end of September. The submissions were
made from sources in Japan, Netherlands, and
France.

The Trojan-Banker.Win32.GreenDispenser.c
variant submissions were only seen in
September and covered regions such as
France, Netherlands, and Mexico.

The final variant, Trojan-Banker.Win32.
GreenDispenser.d, was initially seen in
June with the first sample submitted on
June 11 from a source in Mexico. Additional
submissions began in August and continued
until the beginning of October from countries
such as Japan, France, the United States,
and Russia.

49

281 http://www.komonews.com/news/local/Thieves-use-bucket-loader-
dump-truck-in-elaborate-ATM-theft-327457451.html.

282 http://www.justice.gov/opa/pr/bugat-botnet-administrator-arrested-
and-malware-disabled.

283 http://blog.trendmicro.com/trendlabs-security-intelligence/banking-
trojan-dridex-uses-macros-for-infection/.

From point of sale to point of steal

ATM malware prevalence is on the rise
in 2015 compared to 2014. ATM malware
targets financial institutions directly and
adds to an already hefty portfolio of attacks
on financial services such as credit card
skimming devices and point-of-sale (PoS)
credit card information memory scraping.
The ATM attacks expose weaknesses in
ATM infrastructure such as a lack of regular
maintenance, misplacement of the service
keys that allow easy access to the ATM
software, the use of unsupported and
misconfigured operating systems, and the
absence of regular checks by AV solutions.
Some of the attacked ATMs were located
within convenience stores. Many of these
stores run extended business hours and
provided an easy target during evening and
night hours of operation when such locations
are less crowded. As seen in the prevalence
and the geographical distribution data, the
problem is truly global and the attacks are
well organized. As a precaution, banks should
constantly review the physical security281 of
ATMs in addition to updating the software
that controls and protects the machines.

Banking Trojan takedowns do little to
stem the scourge

In October, the banking Trojan Dridex
generated a fair amount of public attention
as the FBI, Department of Justice, the UK
National Crime Agency, and a number
of other European law enforcement and
technology companies announced the arrest
of an administrator and the disruption of
the botnet’s command and control (C&C)
servers.282 Dridex evolved from the Cridex
Trojan, which itself is based on the Zbot/Zeus
Trojan.283 These newer versions better protect
their communications and disseminate
themselves more efficiently than their
predecessors. The C&C networks of Zeus
and related banking Trojans are typically
encrypted and peer-to-peer capable. They
utilize domain-name generator algorithms
(DGAs) and a host of other anti-interception
technologies to maintain the online presence
required for continued operations.

50

Dridex infections often begin with a Microsoft
Office macro chaining together multiple
scripts, usually JavaScript or PowerShell, to
solicit a download of the main executable.
The sample W2KM_DRIDEX.YYSPE
demonstrates implementation. This case is
just one of many where the Visual Basic for
Applications (VBA) macro invokes a base64-
encoded PowerShell to construct JavaScript,
which then builds x86 shellcode that solicits
the download. Automated file scanning of
such documents is made particularly difficult
due to this blending of technologies and
layering, which renders the malicious payload
opaque to static analysis.

The continued success of these Trojans
is likely due to the combination of two
factors. The malware uses Microsoft
Office documents rather than executables
to disseminate itself. While many users
have learned not to run programs from
unknown sources, they are still likely to open
documents. The Trojans also explicitly pack

an executable. Anti-virus engines are more
likely to identify a clearly packed file and flag
it. This behavior resulted in a new approach
by the malware authors. The surreptitious
embedding of unpacking code in what
appears to be high-level-language (HLL)
compiled code, complete with WinMain, APIs,
library code such as printf(), can fool even
human analysts. This use of HLL compilers
gives the malware binary an initial allure of
legitimacy. However, it is the source-level
obfuscation, realistic binary constructs, and
looser emulation context that collectively
contribute to resisting current generic
detection strategies.

Aiding the distribution of banker malware is
the resurgence of the Office Macro, which
appears to be making a comeback.284 This
comes as no surprise, because finding
and exploiting zero-day vulnerabilities in
Office applications is not as trivial a task as
compared to obfuscating a bit of VBA.

Figure 33. Banking Trojan detections in VirusTotal

284 http://www.theregister.co.uk/2014/07/08/macro_viruses_return_from_the_dead/.

Any

Sophos

Kaspersky

40,000

80,000

120,000

ZB
OT

Ba
nk

er

Ti
nb

a

Dr
id

ex

Do
rk

bo
t

Dy
re

Va
wt

ra
k

Ba
nc

os

Em
ot

et

Ca
rb

er
p

Ze
us

Sh
yl

oc
k

Ci
ta

de
l

Ba
nl

oa
d

Go
zi

KI
NS

51

 Ransomware

This past year saw a number of ransomware
families, including Cryptolocker,285
Cryptowall,286 CoinVault,287 BitCryptor,288
TorrentLocker,289 TeslaCrypt,290 and others,
wreaking havoc by encrypting files of private
and corporate users alike. Once encrypted,
the malware author typically demands
ransom in exchange for decryption keys
required to restore the files. In coordinated
takedowns between law enforcement and
security researchers, some ransomware
operations were stopped, or at least slowed.
This often includes taking over the command
and control infrastructure, which contains the
decryption keys. One excellent example is the
CoinVault takedown by Kaspersky Labs and
the Netherland National High Tech Crime,291

which exposed over 14,000 decryption keys.

The best protection against ransomware
is a sound backup policy for all important
files on the system. By default, Windows
keeps shadow copies of the files in the user’s
home folder. Sometimes the system can
be recovered from a ransomware attack by
restoring shadow copies, but ransomware
authors will try to disable shadow copy
restores by deleting them.

Hiding in plain sight

As security products improve at inspecting
and identifying packed or unusual code,
malware authors appear to be moving toward
blended scripts to prevent detection. Over
the past year, there has been a general
shift from wholesale packing of malware
executables toward better utilizing the
inherent strengths of high-level language
compiled binaries (i.e., HLL/C, MFC, .NET,
Visual Basic, etc.) and off-the-shelf scripting
engines (i.e., AutoIt, cscript, vbscript,
PowerShell, etc.). Regardless of the type of
malware, this combination provides a new
level of difficulty in detection and eradication.

Binaries compiled in .NET, Visual Basic, and
MFC are less trivial to emulate and traverse.
This allows for malicious functionality to be
more easily hidden, from both inexperienced
malware analysts and automated scanning
tools.

Figure 34. Office files with macros, VirusTotal 2015

285 http://blog.trendmicro.com/trendlabs-security-intelligence/crypto-
ransomware-sightings-and-trends-for-1q-2015/.
286 http://www.computerworld.com/article/3012101/security/pony-
angler-and-cryptowall-mixed-into-dangerous-cyberthreat-cocktail.html.

287 https://securelist.com/blog/virus-watch/67699/a-nightmare-on-
malware-street/.
288 http://www.theregister.co.uk/2015/11/02/kaspersky_announces_
death_of_coinvault_bitcryptor_ransomware/.
289 http://www.scmagazineuk.com/torrentlocker-copycat-
cryptofortress-leads-new-wave-of-ransomware/article/402279/.

290 https://securelist.com/blog/research/71371/teslacrypt-2-0-
disguised-as-cryptowall/.
291 https://noransom.kaspersky.com/.

It appears that Microsoft Office Word
documents and Excel® spreadsheets remain
the favored attachments. Many businesses
use these programs to conduct day-to-day
operations, which provides a broad user
base for attackers to target.

doc

docx

xls

xlsx

exe

macro

exploit

26%

1% 2%

16%
77%

58%

20%

52

Outlook for 2016

Increasingly skillful cybercriminals seem
highly motivated and intent on stealing our
identity, emptying our bank accounts, and
holding our data for ransom. This threat
is compounded by the ever increasing
complexity of running a modern IT enterprise.
For businesses and their IT departments,
vigilance needs to be fortified with action
and preparedness.

End users and security professionals alone
should not be shouldering the burden
of ensuring the storage and integrity
management of data. Security product
vendors must become as nimble as the
adversary by staying abreast of the multitude
of emerging techniques—even while
constrained by existing business factors.
Programming errors, system oversights,
ill-conceived features, and poor QA are not
assisted by time-to-market and resourcing
pressure justifications. The adversary is
determined. The defense must be more so.

Figure 35. Languages used in malware creation 2011–2015

HLL/C MFC .NET Visual Basic

2011 1 • 115 •

2012 377 • 399 •

2013 652 23 863 •

2014 560 167 2947 28,054

2015 20.348 227 171,750 139,654

53

Conclusion

While the apparent stagnation in the overall
growth of malware is an unexpected positive,
the slow shift of focus away from Windows
toward Linux, Android, and OS X means the
overall attack surface for malware continues
to grow. While always disruptive, today’s
malware has become focused more on
money than disrupting services. For these
non-Windows platforms, malware often
takes the shape of potentially unwanted
applications, which could confuse a non-
technical user as to what is or isn’t malware.
This is especially troubling given the first
signs that Apple’s walled-garden application
store approach may not be infallible. While
the anticipated flood of attacks on Internet of
Things (IoT) devices has yet to occur, attacks
on home routers292 may be a precursor of
things to come.

The ever-present ATM has become the focus
for many types of attacks, with malware
authors targeting the users of ATMs and the
machines themselves. While there have been
coordinated law enforcement takedowns
of banking Trojan infrastructure, statistics
show the attackers are capable of restoring
services to the botnets in a surprisingly
rapid fashion. As more and more of our
financial transactions occur online, criminals
will continue to target these transactions
for profit. Put simply, if there is money to
be made, there is money to be stolen. The
industry must focus on securing these
transactions to deprive attackers of the illicit
income they so desire.

292 http://www.computerworld.com/article/2921559/malware-vulnerabilities/malware-infected-home-routers-used-to-launch-ddos-attacks.html.

54

Software analysis
In order to have a consistent view of the
data analyzed for this report, all identified
issues were classified according to the HPE
Software Security Taxonomy (originally the
“Seven Pernicious Kingdoms”293), which was
substantially updated and refined294 in
mid-2014.

During 2015, the taxonomy extended further
to include other assessment techniques (such
as manual analysis and mobile vulnerabilities)
and HPE Security Fortify products such as
HPE Security Fortify on Demand (FOD). This
endeavor continues as the taxonomy evolves
with the most recent updates considered
for analysis in this report. Changes to the
taxonomy that affect statistics presented
in this report are flagged as necessary
throughout the text. As a reminder of how
the taxonomy works, findings are sorted
into kingdoms, which consist of vulnerability
categories, each of which includes one or
more security issues.

293 https://cwe.mitre.org/documents/sources/
SevenPerniciousKingdoms.pdf.

294 http://community.hpe.com/hpeb/attachments/hpeb/off-by-on-
software-security-blog/402/1/An%20Evolving%20Taxonomy%20-%20
2014.pdf.

55

Why and how we do this analysis

Our yearly analysis of trends in application
security provides a unique snapshot of the
state of application security during the past
year. Readers are encouraged to use our
findings as a guide for issues to watch for
during their own development processes,
to help plan their own effective security
development lifecycle, and to structure and
deliver effective security training.

Before diving into the data, let’s define it. First,
the dataset is separated into two groups:
mobile applications and those not geared
toward mobile (in this Risk Report, referred to
simply as “mobile” and “apps” or “web apps”).
The issues affecting the two types continued,
in 2015, to differ significantly. Separating
the datasets provides a clearer picture of
which vulnerabilities occur in each group.
It also accounts for significant differences
in sample size, which are predicated on
significant differences in dataset size. Each
of the two main datasets is drawn from the

applications processed by the HPE Security
Fortify on Demand service between October
30, 2014, and October 30, 2015. This data
was anonymized and sanitized. The apps
dataset, drawn from over 7000 scanned
applications, includes both web and desktop
apps but, as previously noted, excludes
mobile. The mobile dataset is drawn from
over 450 scanned apps. Note that though
both datasets have expanded in size since
last year’s Risk Report, the rate of increase
for mobile is double that of apps—a 20%
increase as opposed to apps’ 9% bump.

Application results

Figure 36 shows the percentage of
applications that exhibited a vulnerability
in the given kingdom at least once,
but provides no information on what
percentage of applications had more than
one vulnerability there.

Generally, the breakdown between the two
years is similar. Year-to-year changes in the
rankings for the three kingdoms with the
lowest representation (API Abuse, Code
Quality, and Time and State) are primarily
due to changes to the HPE Software
Security Taxonomy itself. The most prevalent
vulnerabilities remain the same for both
years. Likewise, the increase in API Abuse
issues may be attributed to changes in the
taxonomy. In order to make a fair comparison,
disregarding the changes and comparing
the values based on the older classification,
API Abuse vulnerabilities were actually
reduced by half from 2014, to about 8% of
vulnerabilities noted.

Figure 36. The likelihood per kingdom of apps found to be vulnerable

0 20% 40 60% 80 100%

Time and State

Security Features

Input Validation
and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse
16%
 30%

 17%
 21%

 72%
 72%

 82%
 77%

 47%
 43%

 52%
 44%

 86%
 90%

 22%
 20%

Overall 2014
Percentage

Overall 2015
Percentage

56

Mobile results

Turning now to the sphere of mobile
applications, which differs from the larger
dataset in significant ways.

Mobile applications present different issues
from those seen in non-mobile applications.
Figure 37 compares the likelihood that
mobile apps and non-mobile apps will exhibit
at least one issue in each kingdom. As with
Figure 36, the chart shows the percentage of
applications that exhibited a vulnerability in
the given kingdom at least once, but provides
no information on what percentage of
applications had more than one vulnerability
there. (This chart includes results from HPE
Security Fortify on Demand’s Manual Mobile
Analysis tool.)

Security Features continues to be the most
represented kingdom for both traditional
and mobile applications. Mobile applications
tend to see over 10% more issues related to
security features than do other applications.
The vast majority of API Abuse issues in
mobile are from three categories: Push
Notifications, Ad/Analytics Frameworks,
and General Pasteboard. As noted before,
changes to the taxonomy affected the API
Abuse kingdom. Likewise, taxonomy changes
affected mobile’s results in the Environment
kingdom (showing a 14% apparent increase
in vulnerabilities from before the changes)
and in Time and State (showing a
10% decrease).

Figure 37. Comparing kingdom incidence in mobile and non-mobile applications scanned

0% 20% 40% 60% 80% 100%

Time and State

Security Features

Input Validation
and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse
 30%
 79%

 21%
 40%

 72%
 93%

 77%
 88%

 43%
9%

 44%
 82%

 90%
 99%

 20%
 23%

Web app containing
type of weakness

Mobile app containing
type of weakness

57

Top vulnerablities in
applications

The chart in Figure 38 shows the 10 most
commonly spotted vulnerabilities in non-
mobile applications in 2015. Four of the
kingdoms—Encapsulation, Security Features,
Environment, and Errors—are represented
in this chart.

Once again, a prominent result looks more
remarkable than it is. The System Information
Leak: External category, which didn’t make
an appearance in last year’s analysis, would
seem to be at the top of the heap in 2015.
The numbers aren’t actually as overwhelming
as the bars would indicate—another artifact
of changes to the taxonomy—but the
vulnerability itself is well worth examining. It
describes a situation in which too-detailed

error messages leak system data that might
help attackers gain dangerous visibility into
the system. It’s not in itself a critical-severity
vulnerability, but it can certainly assist in
other attacks, including critical ones. It is
troubling to note in the analysis that half
of the applications scanned exhibited a
median of two System Information Leak:
External issues per application. The Insecure
Transport: HSTS Not Set category, second
from the left in Figure 38, is a fairly new
taxonomy entry. The HTTP Shared Transport
Security (HSTS) header was introduced to
battle man-in-the-middle (MitM) attacks over
SSL/TLS, such as protocol downgrade and
cookiejacking. The good news is that most
modern browsers now support the HSTS
header. The bad news is that the analysis
indicates many applications do not yet take
advantage of it.

Figure 38. The 10 most commonly occurring vulnerabilities in the applications dataset

50%
49%

44% 43% 41% 39%
39% 37% 36% 35%

2

1

2 2 2

4

2 2

1 1

0

1

2

3

4

5

6

0%

10%

20%

30%

40%

50%

60%

Syste
m In

form
atio

n Leak: E
xternal

Insecu
re Transp

ort:
HSTS Not S

et

Cookie Secu
rity

: C
ookie not S

ent O
ver S

SL

Cross-
Frame Scri

ptin
g

Cookie Secu
rity

: H
TTPOnly not S

et

Web Server M
isc

onfig
uratio

n: U
nprotecte

d Dire
cto

ry

Priv
acy

 Violatio
n: A

utoco
mplete

Poor E
rro

r H
andlin

g: S
erver E

rro
r M

essa
ge

Insecu
re Transp

ort:
Weak SSL Protoco

l

Hidden Field

Median
vulnerability
count

Percentage

58

Figure 39. The 10 most commonly occurring critical-class vulnerabilities in the applications dataset

1

3

1

15

1

10 10

1 1

3

25%
23%

18%

14% 14%
12% 11% 10% 10% 10%

0

2

4

6

8

10

12

14

16

0%

5%

10%

15%

20%

25%

30%

Insecu
re Transp

ort:
Weak SSL Protoco

l

Cross-
Site

 Scri
ptin

g: R
efle

cte
d

Cross-
Frame Scri

ptin
g

Null D
ereference

insecu
re Transp

ort:
Weak SSL Cipher

Unreleased Reso
urce

: S
tre

ams

Priv
acy

 Violatio
n

Ofte
n M

isu
sed: L

ogin Form

Insecu
re Transp

ort

Passw
ord M

anagement: H
ardco

ded Passw
ord

Median
vulnerability
count

Percentage

Of course, mere prevalence isn’t what
makes a vulnerability vicious. Figure 39
pares down the dataset to show the 10
most frequently spotted critical-severity
vulnerabilities in applications. Here, the most
strongly represented kingdoms are Security
Features, Input Validation and Representation,
Encapsulation, Code Quality, and API Abuse.
Environment and Errors issues for the most
part do not rise to the critical level.

Over one-third of the applications
scanned—35%—exhibited at least one critical-
or high-severity vulnerability.

Two categories, Insecure Transport: Weak
SSL Protocol and Cross-Frame Scripting,
appear in both the common and the
critical top 10. Indeed, most issues in those
categories are sufficiently dangerous to
merit the most severe classifications. The
SSL finding is worth looking at more closely.
As longtime observers of the vulnerability
scene know, SSL-related problems made
a very big splash in the last months of
2014, with the POODLE exploit extending

its reach from SSLv3 (CVE-2014-3566) to
TLSv1 (CVE-2014-8730).295 Statistics for
these vulnerabilities are available for the
first full year in 2015, and it’s disheartening
to see them make such a strong showing.
It’s likely that many applications continue
to use weak SSL protocols and ciphers for
backward-compatibility purposes, but it’s still
a dangerous choice.

The presence of Privacy Violations on the
list and the high occurrence median—10—
are daunting in their own way. Elsewhere,
the critical-severity chart delivers a head-
slap moment with hardcoded passwords
appearing in no less than 10% of applications.
As if that wasn’t bad enough, the median
number of occurrences in affected
applications was three. Five years after
Stuxnet made clear the profound security
shortcomings of making a “password” part
of the code itself, this particular vulnerability
should embarrass any software architect that
allows it to happen.

295 https://www.globalsign.com/en/blog/poodle-vulnerability-expands-beyond-sslv3-to-tls/.

Over one-third of the
applications scanned—
35%—exhibited at least
one critical- or high-severity
vulnerability.

59

Top five vulnerability
categories in applications

Back to the apps dataset. Figure 40 shows
the five vulnerability categories most likely
to appear in an application. They come to us
from the Security Features, Environment, and
Encapsulation kingdoms.

Let’s discuss these five more closely to
determine precisely what issues are turning
up in each category. Insecure Transport,
Cookie Security, and Privacy Violation all fall
under the Security Features kingdom. While
these three categories refer to the cause of
a specific vulnerability in an application, the
ultimate effect of issues in these categories
would lead to some form of privacy violation.

Insecure Transport: HSTS Not Set is the
most prevalent issue within this category,
accounting for nearly 29% of findings. Again,
this may be due to the fact that HSTS is
a fairly new browser capability. We’ll be
monitoring this issue with interest in next

year’s Risk Report. Likewise, Weak SSL
Protocol (20%) and Weak SSL Cipher (95%)
both may appear as a result of relatively new
industry standards and regulations (e.g., RC4
being marked as unsafe,296 the January 2015
release of PCI SSC’s Data Security Standard
3.1297), which result in more issues being
flagged for existing configurations. Again,
backward compatibility decisions may be an
issue here. Missing Perfect Forward Security
(6%) is another relatively recent mitigation
technique making a significant showing.298

In the Web Server Misconfiguration category,
two issues—Unprotected Directories and
Unprotected File—together composed just
under 64% of our findings. The Insecure
Content-Type Setting header seems to
contribute to a lot of misconfiguration
problems, as well. Such issues are often an
enabler for other problems, such as cross-
site scripting. Our data indicates that around
29%of applications in the sample set are
vulnerable to misconfiguration issues such
as these.

With all of these insecure-transport issues
turning up, we were interested to see that in
many cases cookies sent over SSL aren’t very
secure either. Nearly 38% of the applications
we saw with cookie-related issues failed to
send them over SSL—an excellent example
of developer misuse of SSL/TLS. Meanwhile,
HTTPOnly Not Set is strongly represented,
contributing to a third of cookie security
issues. The HTTPOnly flag has been around
for quite some time, and yet it’s still missing
in 41% of applications scanned.

With System Information Leak issues, it’s
interesting to note that over 97% of the
applications that leak information do so to
some external entity. Also, based on the
occurrences of the various issues, System
Information Leak: External contributes to
more than 80% of vulnerable instances.

Figure 40. The five most frequently spotted categories across applications

296 https://blog.mozilla.org/security/2015/09/11/deprecating-the-rc4-
cipher/.

297 https://www.pcicomplianceguide.org/pci-ssc-data-security-
standard-3-1-guidelines/.

298 https://www.eff.org/deeplinks/2014/04/why-web-needs-perfect-
forward-secrecy.

0% 10% 20% 30% 40% 50% 60% 70% 80%

Privacy Violation

System Information Leak

Cookie Security

Web Server Misconfiguration

Insecure Transport 67%

 62%

 58%

 52%

 48%

60

Finally, let’s look at privacy violations. While
autocomplete issues occur in well over a
third of the applications (38%), generic
privacy-violation issues corresponding to the
exposure of user data seem to occur more
often within the affected apps. In addition,
most autocorrect issues are of relatively low
severity, while other frequently seen privacy-
violation issues are of critical or high severity
(as we saw in Figure 39). We also noticed that
while autocomplete issues occurred a median
of twice per affected application, critical-
severity privacy issues occurred a median of
10 times per affected application.

Mobile vulnerabilities

Returning to the mobile sphere to see what
issues most plagued scanned apps there,
see Figure 41.

For mobile applications, it’s internal system
information leaks that lead the most common
list. Their very large presence atop the list
of most frequently encountered mobile
vulnerabilities indicates that a substantial
majority of the applications we saw are
storing sensitive information on devices that
can be left on restaurant tables, stolen from
backpacks, and dropped in toilets. Note the
high showing of Weak Encryption (69%), a
flaw one sees far less often in
non-mobile applications.

As before, the issues that are common
are not necessarily critical-level. Insecure
Transport, eighth on the list of common
flaws, leads the list of critical issues. A quick
skim of the category names represented
confirms that developers are still struggling
with privacy issues on these devices. Overall,
it should be noted that 75% of the mobile
applications scanned have at least one
critical- or high-level finding, compared to
35% of non-mobile applications.

Figure 41. The 10 most commonly occurring vulnerabilities in the mobile applications dataset

Figure 42. The 10 most commonly occurring critical-severity vulnerabilities in the mobile dataset

20% 40% 60% 80% 100%

Insecure Transport: Missing Certificate Pinning

Privacy Violation: iOS Property List

Insecure Transport

Privacy Violation: Screen Caching

Privacy Violation: Geolocation

Often Misused: Push Notifications

Weak Encryption

Insecure Deployment: Missing Jailbreak Detection

Insecure Storage: Lacking Data Protection

System Information Leak: Internal 83%

 75%

 72%

 69%

 65%

 54%

 52%

 50%

 49%

43%

0% 5% 10%10% 15% 20% 25% 30% 35%

Password Management: Weak Password Policy

Log Forging

Insecure Storage: Lacking Data Protection

Unreleased Resource: Streams

Intent Manipulation: Unvalidated Input

Privacy Violation: HTTP GET

Account Management:Inadequate Account Lockout

Null Dereference

Privacy Violation

Insecure Transport 30%

 29%

 27%

 22%

 22%

 21%

 20%

 20%

 19%

18%

61

Top five vulnerability
categories in mobile

The reason for that gap is clear—and it’s not
only a question of the size and portability
of the device. Mobile applications have
a different runtime environment than do
traditional desktop and enterprise server
applications. On mobile, the environment
makes heavy use of unique personally
identifiable information, such as geolocation
and screen/keyboard caching. Moreover,
the environment often contains both
trusted and untrusted applications, creating
a unique situation in which the storage
and transmission of private and sensitive
information becomes a more pressing issue.
As such, it isn’t surprising that developers
appear to be introducing an equally large
percentage of Insecure Storage and Privacy
Violation weaknesses into their mobile
applications (88%). Compare this to the top
five vulnerabilities in the applications space
(Figure 40), where Privacy Violations, though
still making the list, have a relatively weak
showing at 48%.

Within the Privacy Violations category for
mobile, Geolocation, Screen Caching, iOS
Property List (iPhone only), and HTTP

GET issues occur at very nearly the same
frequency and together account for 85%
of all findings. Less frequently seen issues
include problems related to credit cards,
passwords, and autocomplete handling.

In the Insecure Storage category, 58%
of issues spotted involve a lack of data
protection. Two issues, Android Backup
Storage and Android World Readable or
Writeable, are only found on that platform
and together account for 28%
of findings.

In the category of System Information Leak
weaknesses, 86% of the mobile applications
scanned had at least one detected issue,
while 52% of traditional applications had
sensitive system information leaks detected.
While the majority of System Information
Leak issues, 71%, were detected as local
to the device, another 24 percent had the
potential to leak sensitive information outside
of the device.

Often Misused comes in at the fourth spot
(78%) for mobile apps as seen in Figure 43; in
the sphere of traditional apps, it shows up at
an anemic 13th on the frequency list, with just
23% of those applications having trouble of
this sort. It’s not entirely clear why this might

be the case. Perhaps the problem is that
mobile development is less mature than older
application types, and as such, developers
may not be following mature best practices
for mobile-specific APIs and frameworks (e.g.,
Push Notifications, Ad/Analytics Frameworks,
General Pasteboard, Shared Keychain, and
Calendar).

Rounding out the top five most frequently
seen categories of mobile flaws, the
Environmental category of Insecure
Deployment takes the fifth spot, with 75% of
mobile applications exhibiting weaknesses
such as Missing Jailbreak Detection,
Malicious Behavior, and OpenSSL issues. It
is interesting to note that, had we expanded
Figure 43 to show the 10 most frequently
seen categories of vulnerabilities, positions
six through eight on that list are held by
categories related to Security Features (in
addition to Privacy Violation)—specifically,
Weak Encryption (70%), Insecure Transport
(67%), and Privilege Management (49%).

Figure 43. The five most frequently spotted mobile vulnerabilities

 88%

 88%

 86%

 78%

75%

0% 20% 40% 60% 80% 100%

Insecure Deployment

Often Misused

System Information Leak

Privacy Violation

Insecure Storage

62

Vulnerabilities in open
source software

Just as we examined trends in commercial
software as seen in the customer applications
submitted to the Fortify on Demand service,
we examined similar trends in open source
software. We used HPE Security Fortify
Open Review (FOR) data on 287 applications
spanning more than 10 programming
languages. The dataset used for our analysis
did not include any mobile software.

The two most prevalent languages
in the FOR dataset are PHP (50% of
all applications) and Java (28% of all
applications), which is reflective of the state
of open source software today—with the
possible exception of JavaScript, which is
gaining in popularity and ubiquity. Because
the dataset for other languages is statistically
insignificant, our analysis focuses on PHP
and Java applications.

It’s important to analyze open source
applications separately from libraries and
frameworks. The Fortify Open Review
uses the HPE Security Fortify Static Code
Analyzer (SCA) to perform security analysis.
When analyzing an application, the static
analyzer has a complete picture of all the
dataflow traces and execution paths for that
application, and therefore can provide end-
to-end dataflow analysis results. Analyzing
libraries and frameworks separately from
applications built on top of them is different,
because libraries and frameworks only
provide some intermediate steps of the
application’s flow and therefore will not
generate the same full execution paths
and data flows as those of an end-to-end
application. Figure 45 demonstrates the
breakdown of Java and PHP applications
by type. For the purposes of our analysis,
libraries and frameworks are treated
the same.

Figure 44. A breakdown of the FOR dataset
by programming language

Figure 45. A breakdown of analyzed PHP
and Java applications by type

Language Number of
applications

PHP 143

Java 80

Python 19

.NET 14

CFML 13

Ruby 5

Other 5

MBS (Fortify SCA
intermediate language) 4

SQL 2

C/C++ 1

XML 1

Total 287

Type PHP Java

Application 78 33

Framework 52 27

Library 13 20

Total 143 80

63

Distribution by kingdom:
applications

Let’s start by looking at the distribution of
taxonomy kingdoms across applications in
our dataset.

Figure 46 shows the percentage by kingdom
of open source Java applications that have
at least one vulnerability, and presents the
distribution across all of the Java applications
in the FOR dataset. Figure 47 illustrates the
same data, but for PHP applications.

Figure 46. HPE Security Fortify taxonomy kingdom distribution across all Java applications in the FOR
dataset

Figure 47. HPE Security Fortify taxonomy kingdom distribution across all PHP applications in the FOR dataset

It is interesting to observe that in the case of
Java, Code Quality is an obvious “winner,” with
97% of applications vulnerable to issues from
this kingdom. We have seen quite a few Code
Quality findings in Java applications, including
unreleased resources such as sockets and
databases, and dereferences of null values.
On the other hand, the HPE Security Fortify
Static Code Analyzer (SCA) does not detect
code quality issues in PHP out of the box,
which explains why no PHP applications
contain any issues from the Code Quality
kingdom.

Instead, the most active kingdom for PHP
is Input Validation and Representation
(97%). This makes a lot of sense when one
considers notoriously numerous cross-site
scripting findings and CVEs in open source
PHP applications. Input Validation and
Representation takes third place across
Java applications, with 76% of applications
vulnerable to issues in this kingdom. In our

experience, there are a lot more libraries for
doing input validation for Java than there are
for PHP, which we believe explains why the
percentage across Java applications is lower
than that across PHP applications. Security
Features takes second place for both Java
(82%) and PHP (87%) applications. Both types
of applications contain a number of password
management and privacy violation issues that
belong to the Security Features kingdom.
Their presence implies that these applications
do not take good care of private data. Fortify
Static Code Analyzer does not detect Time
and State and Errors issues in PHP out of
the box, which is why the percentage of
PHP applications that contain these kinds of
findings is zero percent for both kingdoms. On
the contrary, 64% of Java applications contain
issues related to Time and State. Specifically,
a number of Java applications incorrectly use
double-checked locking patterns.

0% 20% 40% 60% 80% 100%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse 33%

 97%

 39%

 36%

30%

 76%

 82%

 64%

0% 20% 40% 60% 80% 100%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse 28%

0%

 45%

 4%

0%

 97%

 87%

0%

64

Figure 48. HPE Security Fortify taxonomy kingdoms distribution across all applications in the FOD dataset

Comparing the trends in open source
software to those in commercial software,
there are a number of interesting
observations. First of all, the Security Features
kingdom is prominent, with over 80% of both
open source and commercial applications
vulnerable to issues in this kingdom. This
implies that both types of applications have
trouble managing private data. The reason a
much higher percentage (77%) of commercial
applications are vulnerable to issues in the
Environment kingdom, as opposed to open
source Java (36%) and PHP (4%) applications,
is because in addition to static analysis,
commercial applications also underwent
dynamic analysis, which is much more suitable
for detecting issues in the environment rather
than in actual application source code. A
lot fewer commercial applications (44%, as
opposed to 76% of open source Java and 97%
of open source PHP) are vulnerable to issues
in the Input Validation and Representation
kingdom. This kingdom contains
vulnerabilities that have been in existence for
a long time and have been tackled by security
teams in our customers’ organizations for a
while, through either thorough code reviews
or enforcement of the usage of open source
and proprietary validation libraries. Similarly,

a lot fewer commercial applications (21%)
are susceptible to Code Quality issues than
are open source Java applications (97%).
This seems to indicate that developers of
commercial applications do a much better job
of releasing resources and doing null checks
before dereferencing a value. This could be
due to their access to better tools for finding
memory management issues during the
testing cycle.

The only other outlier seems to be the
Encapsulation kingdom, where more
commercial applications (over 70%) but only
39% of open source Java and 45% of open
source PHP applications contain issues in this
kingdom. Most of the reported issues have to
do with leaking system information outside
of the application. Because commercial
applications were analyzed both statically and
dynamically, and system information leaks
can be found both statically and dynamically,
more commercial applications exhibited
issues in the Encapsulation kingdom during
our scans, as compared to open source
applications.

0% 20% 40% 60% 80% 100%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse 30%

 21%

 72%

 77%

 43%

 44%

 90%

20%

65

Figure 49. HPE Security Fortify taxonomy kingdom distribution across all Java and PHP libraries and frameworks in the FOR dataset

Distribution by kingdom:
libraries
Now let’s take a look at the same trends in
open source libraries and frameworks.

Figure 49 displays kingdom distribution
across all Java and PHP libraries and
frameworks in the FOR dataset. The results
look pretty similar to those observed for
open source applications. The Code Quality
kingdom is the most prolific for Java libraries
and frameworks, with almost identical
incidence percentages (97% for applications
and 98% for libraries). If the 1% difference
has any significance, it may be that libraries
are exposing APIs for opening and closing
resources, which would mean that managing
them is left to the application. The number
of libraries that contain Input Validation and
Representation vulnerabilities, while still
high (70% for Java and 88% for PHP), is a
little lower than the number of applications
(76% for Java and 97% for PHP) because, as
explained earlier, libraries and frameworks
represent only a step in a flow of data through
the application built on top of these libraries
and frameworks.

The same is true for Security Features. The
number of libraries that contain issues in this
kingdom (70% for Java and 80% for PHP) is
slightly lower than the number of affected
applications (82% for Java and 87% for PHP)
because two major categories from this
kingdom represented in the dataset—Privacy
Violation and Password Management—
usually involve flow of data, which cannot
be provided end to end in a library as
opposed to the application built using it.
Similar conclusions can be made about the
Encapsulation kingdom represented by
System Information Leak issues—another
dataflow category. As for Environment, more
Java applications (36%) than libraries (17%)
contain issues in this kingdom because it’s
usually the application that needs to be
configured to use a particular framework, not
the framework itself. The situation is different
for PHP: The number of applications (4%) that
contain issues in this kingdom is about the
same as the number of libraries (6%) because
fewer misconfiguration patterns specific to
certain PHP frameworks are supported by the
Fortify SCA out of the box.

20% 60% 100%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse
 13%
 17%

 98%
0%

 26%
 25%

 17%
 6%

 13%
0%

 70%
 88%

 70%
 80%

 53%
0%

Java

PHP

66

Figure 50. Top 10 vulnerability categories for Java applications in the FOR dataset

Figure 51. Top 10 vulnerability categories for PHP applications in the FOR dataset

Figure 52. Top 10 vulnerability categories for Java libraries and frameworks in the FOR dataset

Open source vulnerabilities
Next, let’s look at the top 10 vulnerability categories across applications and libraries.

 40%

 38%

 25%

 24%

 23%

 23%

 20%

 16%

 15%

 15%

0 5 10 15 20 25 30 35 40

System Information Leak

Header Manipulation

XML Entity Expansion Injection

XML External Entity Injection

Code Correctness

Password Management

Cross-Site Scripting

Privacy Violation

Null Dereference

Unreleased Resource

 44%

 40%

 36%

 33%

 32%

 31%

 31%

 30%

 24%

 24%

0 10 20 30 40 50

Password Management

System Information Leak

Privacy Violation

Dangerous File Inclusion

Cookie Security

Possible Variable Overwrite

Open Redirect

Header Manipulation

Path Manipulation

Cross-Site Scripting

 58%

 43%

 33%

 28%

 26%

 24%

 24%

 20%

 19%

 15%

0 10 20 30 40 50 60

Race Condition

Log-Forging

Privacy Violation

Password Management

Cross-Site Scripting

XML Entity Expansion Injection

Code Correctness

XML External Entity Injection

Null Dereference

Unreleased Resource

67

Figure 53. Top 10 vulnerability categories for PHP libraries and frameworks in the FOR dataset

The results look very much like those
observed in the distribution-by-kingdom
data. For example, Code Quality categories
Unreleased Resource and Null Dereference
are the corresponding number one and
two for both Java applications (Figure 50)
and frameworks (Figure 52), which meshes
with the Code Quality kingdom being the
top kingdom across both Java applications
(Figure 46) and libraries (Figure 49).
Furthermore, as is the case with distribution
by kingdom, the percentage of Java libraries
that contain Unreleased Resource and Null
Dereference issues is slightly higher than
those of Java applications, because libraries
could provide an API for opening and closing
resources, leaving it up to the application
to securely use these APIs. Similarly,
the leading category for both PHP
applications (Figure 51) and libraries
(Figure 53) is Cross-Site Scripting, which is
one of the most widespread vulnerability
categories of the Input Validation and
Representation kingdom—the number-
one kingdom across both PHP applications
(Figure 47) and libraries (Figure 49).

It is interesting to note that the XML External
Entity Injection vulnerability category appears
in third place for Java libraries (Figure 52)
and seventh place for Java applications
(Figure 50). We observed similar trends in
our analysis of open source Java software
dependencies. According to that analysis,
XML External Entity Injection tops the list
of vulnerability categories for open source
Java software dependencies. In general, XML
External Entity Injection and XML Entity
Expansion Injection vulnerabilities both
made the top 10 list for Java applications
and libraries. This shows how much Java
applications and libraries rely on XML and
how much they don’t handle it securely.
PHP applications and libraries, on the other
hand, still struggle with more traditional
vulnerability types, such as Path Manipulation,
Header Manipulation, Open Redirect,
and Cookie Security.

 29%

 24%

 20%

 19%

 19%

 18%

 17%

 17%

 13%

 11%

0 5 10 15 20 25 30

Dynamic Code Evaluation

Dangerous File Inclusion

Open Redirect

Cookie Security

Header Manipulation

Path Manipulation

Password Management

Privacy Violation

Possible Variable Overwrite

Cross-Site Scripting

68

Figure 54. The percentage of open source components in all scanned applications

Figure 55. The percentage of open source components in applications new to the dataset in 2015

Open source
Risk analysis of external components

In an assembled-app culture, organizations
must keep track not only of vulnerabilities in
code developed organically, but also of ones
that are consumed as part of referenced
third-party libraries. After all, an attacker looks
for a hole to allow entry in the organization,
and doesn’t care how it got there (unless
it can lead to other useful points of entry
to the targeted system). Last year’s Risk
Report presented analysis of third-party Java
libraries and the known vulnerabilities that
those libraries introduced in the applications
scanned. This section updates that research,
in addition to a few fresh views and insights.

The sample used for this analysis consists
of 212 CVEs that were reported across 129
different libraries, if all versions of the same
library are counted as a single library. (If each
version was to be counted as a separate
library, the total is 330.) The usage data was
collected from 232 enterprise applications.

Reliance on open source components

Last year, 65% of the applications scanned
used at least one open source component.
This year that has risen to 79%, substantially
due to the apps newly added this year.

Furthermore, 44% of the applications are
more than 50% composed of open source
components, down from 55% of applications
scanned last year.

To further understand the factors
contributing to the significant increase in
open source component adoption, we looked
at open source component usage in the 103
applications that are new in this year’s dataset.
The distribution of usage is shown in
Figure 55.

The Y axis in Figure 55 indicates one
probable reason for the increase in open
source presence in our dataset—all 103 new
applications have at least one open source
component. This is another indication that
open source components are becoming an
integral part of software development.
Their weaknesses must thus be taken into
account in overall risk analysis.

 21%

 16%

 19%

 19%

 25%

0%

0 5% 10 15% 20 25%

76%–100%

51%–75%

26%–50%

1%–25%

0%

 2%

 19%

 34%

 42%

0 10% 20 30% 40 50%

76%-100%

51%-75%

26%-50%

1%-25%

0%

69

Figure 56. CVEs concerning Input Validation and Representation are the most common type of
problems noted in our scans.

Figure 57. When the count is not restricted to issues with CVEs, issues in the Errors
kingdom move up the charts.

Input Validation and Representation issues
represent the most reported kingdom in
Figure 56. The Code Quality kingdom is
not heavily represented here, likely because
issues in that kingdom tend not to
garner CVEs.

Consider a different view of the data, one
in which we look at the ranking of the
kingdoms when their occurrences across all
applications are tallied. This would provide
the likelihood of an issue in a kingdom
occurring in an application. While Input
Validation and Representation and Security
Features remain the top kingdoms affecting
the applications, in Figure 57 Errors rises up
to third place from last in number of CVEs.
This shows that just a few issues in the Errors
kingdom issues seem to affect 17% of all
applications in the sample.

Comparing this chart with Figure 48,
it’s interesting to note that while 77%
of applications organically introduced
Environment issues, less than 2% of
applications inherited these issues from
external libraries. This is probably because
most third-party references aren’t standalone
applications, but rather libraries configured
from the app itself. Almost 72% of proprietary
applications had boundary issues (Kingdom:
Encapsulation); meanwhile, 7% of applications
have Encapsulation issues because of third-
party libraries. For all applications with at
least one Security Feature flaw, it is twice as
likely that a flaw was introduced organically
(that is, by the developers themselves) than
that it got into the code by way of a third-
party library. Considering that this is the
top kingdom of vulnerabilities introduced in
proprietary and mobile (Figure 37) as well
as open source applications (Figure 48),
vulnerabilities introduced due to improper
usage (or non-usage) of Security Features
seem to plague all types of applications.

0% 10% 20% 30% 40% 50% 60% 70% 80%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse 1%

0%

 2%

 1%

 1%

 68%

 23%

 3%

0% 10% 20% 30% 40% 50%

Time and State

Security Features

Input Validation and Representation

Errors

Environment

Encapsulation

Code Quality

API Abuse 3%

0%

 7%

 2%

 17%

 44%

 39%

 2%

70

Figure 58. The 10 flaws most commonly seen in our scans, by CVE

Figure 59. The 10 flaws most commonly seen in our scans, across applications

XML External Entity Injection has become
the top concern this year, switching places
with Denial of Service. The vulnerability is
pervasive, affecting over 20% of all referenced
libraries, which in turn were referenced by
33% of the applications in our dataset. When
compared with Figure 59, the top issue not
related to Code Quality is in fact XML External
Entity Injection (XXE). As mentioned before,

code quality issues don’t generally get CVEs.
That leaves XXE as the most prevalent and
disclosed vulnerability in these dependencies
during the survey period. This year, fewer
encryption-related issues were observed
compared to last year, when Insecure SSL was
accompanied with weak
cryptographic signatures.

Directory Traversal and Header Manipulation
made debuts in the top 10 this year. This is an
excellent reminder that all data coming into
an application must be assumed to be tainted,
and should be consumed only after proper
input sanitization.

As before, one must differentiate between
prevalence and severity. Sifting our findings
to show only the most severe flaws changes
the picture.

 12%

 10%

 8%

 7%

 6%

 5%

 3%

 3%

 2%

 2%

0 2 4 6 8 10 12

Access Control: Missing Authorization Check

Dynamic Code Evaluation: Code Injection

Header Manipulation

Insecure SSL: Server Identity Verification Disabled

OGNL Expression Injection: Struts 2

Access Control: Authorization Bypass

Directory Traversal

Cross-site Scripting: Reflected

Denial of Service

XML External Entity Injection

 34%

 33%

 32%

 27%

 20%

 17%

 16%

 16%

 15%

 12%

0 5 10 15 20 25 30 35

Weak Encryption

Classloader Manipulation: Struts 1

XSLT Injection

Path Manipulation

Poor Error Handling: Server Error Message

Directory Traversal

Cross-site Scripting: Reflected

Insecure SSL: Server Identity Verification Disabled

XML External Entity Injection

Denial of Service

71

Figure 60. The severity of instances in the top 10 CVEs

It is important to note that although the XXE
issue is an Input Validation weakness and
normally considered a critical bug, not all
instances of reported issues are critical. For
the purposes of this analysis, the severity
scale is based on CVSS base score and is
normalized into three levels (Critical, Severe,
and Moderate). Most XXE issues are severe,
but only four are critical-class. In contrast,
seven out of 11 OGNL Expression Injection
instances are considered critical, making
it one of the most concerning issues this
year. Figure 61 shows the 10 libraries most
frequently seen in our sample dataset.

1 1 1
3

1 1

20
17

12 13 8

3
7 7

3

4

3

1
2

7

0

5

10

15

20

25

XML External E
ntity

 In
jecti

on

Denial o
f S

ervice

Dire
cto

ry Traversa
l

Cross-
sit

e Scri
ptin

g: R
efle

cte
d

Acce
ss

Contro
l: A

uthoriz
atio

n Bypass

OGNL Expressi
on In

jecti
on: S

tru
ts

2

Header M
anipulatio

n

Insecu
re SSL: S

erver Id
entity

 Verifi
ca

tio
n Disa

bled

Acce
ss

Contro
l: M

iss
ing Authoriz

atio
n Check

Cross-
sit

e Scri
ptin

g

Critical

Severe

Moderate
4

72

Figure 61. The most popular libraries seen in the dataset

Figure 62. Commons-fileupload: portrait of a popular open source library

For a glimpse of the complex and fluid
relationship between the number of versions
released of any particular library and the
number of CVEs known for it, take a look at
adoption and result patterns for the library
most commonly encountered in our
scans—commons-fileupload–as shown in
Figure 62.

There are seven versions of this library in
the dataset, with 1.3 being the latest version.
Thirty percent of all applications that
referenced open source components in the
sample referenced some version of the library.
However, only four referenced the latest 1.3
version; of those four, only one had upgraded
to the latest from an older version.

Generally speaking, about 9% of all scanned
applications that use at least one open
source component in the sample upgraded
at least one of their libraries. Within this data
subset, only around 5 percent of applications
upgraded to the latest version of the library.

Overall, 49% of applications referencing open
source components used the latest version of
some library.

Lastly, we looked again at the five most
vulnerable applications scanned in 2015 in
order to compare the vulnerabilities found
in each application’s native code to the
vulnerabilities each inherited from
external dependencies.

 41%

 33%

 32%

 28%

 27%

 26%

 26%

 26%

 26%

 21%

0 10 20 30 40 50

spring-webmvc

xercesImpl

xalan

spring-core

struts

spring-web

httpclient

axis

commons-httpclient

commons-fileupload

0% 10% 20%

1.2.2

1.2.1

1.1.1

1.0-beta-1

 2%
 16%

 2%
 2%

 4%
 5%

 4%
 13%

 4%
 12%

 4%
 5%

 4%
 4%

1

1.2

1.3
CVE Count

Application Count

73

Figure 63. CVE-level issues inherited from external dependencies by the five most vulnerable applications of 2015

Figure 64. Issues found in the native code of the five most vulnerable applications of 2015

Compare Figure 63, which shows
vulnerabilities inherited from external
dependencies, to Figure 64, which shows
vulnerabilities occurring in each application’s
proprietary code.

As the charts show, there’s not a great deal
of issue overlap—only two of the top 10
issues (Cross-Site Scripting: Reflected and
Path Manipulation) appear in both charts.
It’s also notable, and concerning, that Null
Dereference is one of the top issues for
proprietary code. Null dereferencing can
lead to severe security consequences
including, but not limited to, root exploits.
However, such issues often fail to garner
enough attention in-house to be averted.

 15,994

 8,966

 7,280

 3,286

 2,874

 2,381

 1,070

 894

 869

 620

0 5,000 10,000 15,000 20,000

File Disclosure: J2EE

Header Manipulation

Unreleased Resource: Streams

Open Redirect

Privacy Violation

Path Manipulation

Null Dereference

Dangerous File Inclusion

Cross-Site Scripting: Reflected

Log Forging

 69

 52

 29

 25

 14

 14

 9

 8

 8

 7

 122

0 30 60 90 120 150

Others

Dynamic Code Evaluation: Unsafe Stream Deserialization

XSLT Injection

Weak Encryption

Path Manipulation

Weak Cryptographic Hash

Directory Traversal

Cross-site Scripting: Reflected

Insecure SSL: Server Identity Verification Disabled

XML External Entity Injection

Denial of Service

74

Remediation
We next look at this year’s data concerning
remediation rates. For this analysis, we looked
at vulnerabilities that were both found for the
first time and fixed within the same yearlong
period (October 30, 2014, to October 30,
2015). All vulnerabilities represented in the
data were triaged and closed. The closed
issues may or may not have been remediated.
This question is considered in the analysis
below.

Number of vulnerabilities fixed

We begin with the applications dataset.
Figure 66 shows the percentage of
vulnerabilities fixed across all kingdoms,
color-coded by severity.

Overall, more than 92% of all issues closed
were remediated. This is good; most of the
issues that are triaged are seen through to
remediation. The remediation rate in Errors is
particularly fine, perhaps because

problems in that kingdom are generally
easier to fix. In contrast, the API Abuse
kingdom appears to be lagging. Further data
analysis indicates that the anomaly can be
ascribed to a very few applications—less
than 2% of those in the dataset—that did
not successfully remediate three specific
types of weakness: Mass Assignment, ASP
.NET MVC Bad Practices, and File Disclosure.
Shifting to mobile applications in Figure 66,
it’s important to note our mobile remediation
sample size was extremely limited, especially
compared to that available in the applications
sphere. Though the sample is more or less
evenly balanced between Android and iOS
applications, the total number of samples
in mobile (45) is such that our researchers
regard the data here as interesting,
but possibly non-representative of the
wider world.

Only 48% of the mobile issues in our sample
seem to have been remediated—a stark
difference from the 92% we saw on the
applications side. There are a couple of
anomalous moments in Figure 66, as one
might expect from a very small dataset. For
instance, the poor showing in Environment
is actually down to one specific Android app
with multiple issues in that kingdom. The
developers of that app did not successfully
remediate, and the bar chart pays the price
(as do, presumably, the users). In this dataset,
86% of all vulnerabilities fall into the Security
Features, Code Quality, or Environment
kingdoms. In the Security Features kingdom,
57% of all issues are in the Privacy Violation
category, out of which around 53% were
remediated. In turn, within Privacy Violation,
more than 65% of the findings were Screen
Caching issues, and 54% of those were
remediated. Alas, almost all of the issues not
remediated were critical- or high-severity
issues.

Figure 65. Application remediation percentage
per severity, by kingdom

0%

20%

40%

60%

80%

100%

 API A
buse

Code Quality

Enca
psu

latio
n

Enviro
nment

Erro
rs

Input V
alid

atio
n and

Representatio
n

Secu
rity

 Features

Tim
e and State

Critical

High

Medium

Low

Total

Per kingdom

Figure 66. Mobile application remediation
percentage per severity, by kingdom

0%

20%

40%

60%

80%

100%

API A
buse

Code Quality

Enca
psu

latio
n

Enviro
nment

Erro
rs

Input V
alid

atio
n and

Representatio
n

Secu
rity

 Features

Tim
e and State

Critical

High

Medium

Low

Total

Per kingdom

75

Remediation: How the process works

What happens between the moment an
application first reveals its vulnerability to a
Fortify scan and the next time it meets the
scanner? Typically, the process unfolds
like so:

The scanning patterns of users for static and
dynamic scans vary. Static scans are usually
more frequent, with a median of six days
between scans. There tends to be a longer
interval—27 days—between dynamic scans.
Due to this variation, the following analysis is
performed separately for static and dynamic
scans within our sample set.

Scan results

In order to analyze remediation patterns
among static scans, we compiled a sample
dataset of 327 applications.

Most low-severity vulnerabilities found in
static scans seem to be fixed very early on.
In this dataset, these numbers reflect System
Information Leak issues, most of which were
relatively straightforward and fixed very
quickly. Most critical-severity issues are
addressed in the second range of scans (6
to 11 scans, or 31 to 60 days). This may be
because critical vulnerabilities tend to require
longer investigations, and the fixes take
longer to engineer as well. About 77% of the

cross-site scripting issues we saw were fixed
in this range. Of those, the vast majority were
in the Cross-Site Scripting: Reflected category,
though a few Persistent and DOM issues
turned up as well. This pattern makes sense
due to the general pervasiveness of
Reflected XSS compared to other examples
of the problem.

Further down the chart, the random spikes
after the fourth range of scans are caused by
unusual activities in a very few applications.
These are anomalous artifacts of the small
dataset and do not represent the pattern
exhibited by a majority of the applications.

Figure 67. Remediation process

Figure 68. Remediation patterns in static scans of applications

Scan
requested

(user)
Review
resultsScan

HPE

Manual
analysis

Audit Publish Triage

Iterate

Fix ScanValidate Batch/
Submit

1

1

2

2

3

3

4

4

1

2

3

4

5

1
2 3 4 5

A user of the
service
requests a
scan of an
application.

An automated scan (static or dynamic)
of the application is performed.

A more detailed manual analysis may be
performed on the application as well.

HPE auditors audit the results of the
scan.

HPE operators publish the audited
results to the user.

The user reviews the results. The user may request a re-audit of certain issues
if he suspects them to be false positives.

The user triages the results and assigns to developers. In some cases,
developers may directly triage the issues.

Developers fix the issues.

QA validates the fix. This may involve several iterations depending on the
quality of the fix.

The organization may submit the new version immediately or might batch
many fixes together before sending a newer version for assessment.

HPE does the
remediation
scan and
validates the fix.
The entire cycle
may be
repeated for
issues that
weren’t fixed in
this round, for
as many
iterations as
desired.

0%

10%

20%

30%

40%

50%

60%

70%

80%

 0
–3
0

31
-6
0

61
-9
0

91
-1
20

12
1-
15
0

15
1-
18
0

18
1-
21
0

21
1-
24
0

24
1-
27
0

Critical

High

Medium

Low

Total

76

We used scan data on 301 applications
to analyze remediation patterns among
dynamic scans. In Figure 69, each range
roughly corresponds to the time between
two dynamic scans. A lot of vulnerabilities
of every severity are addressed early on. Of
particular note, most critical-class Cross-Site
Scripting findings were remediated within
the first range of dynamic scans. In contrast,
the critical XSS findings caught by static
scans weren’t remediated until the second
scan range (Figure 68). The difference may
lie in the kinds of information presented to
developers by the two scan technologies.

Turning our attention to scanning patterns
for mobile, we noted that the median time

between scans was much closer—17 days
between static scans, 21 days between
dynamic scans. Once more, this may be an
artifact of the small dataset, or something
else may be a factor here. It makes sense to
present these numbers in a single chart.

Although the sample dataset is much smaller
than that available to examine remediation of
application vulnerabilities, it is still interesting
to note that overall trends of dynamic and
static scans over 30-day ranges are very
similar to those observed with the application
scans.

With all this analysis, we’re now in a position
to make some cumulative observations about
our remediation data.

Figure 69. Remediation patterns in dynamic scans of applications

Figure 70. Remediation patterns in static and dynamic scans for mobile applications

20%

40%

60%

 0
–3

0

31
–6

0

61
–9

0

91
–1

20

12
1–

15
0

15
1–

18
0

18
1–

21
0

21
1–

24
0

24
1–

27
0

27
1–

30
0

30
1–

33
0

33
1–

36
0

Static

Dynamic

0%

10%

20%

30%

40%

50%

60%
 0

-3
0

31
-6

0

61
-9

0

91
-1

20

12
1-

15
0

15
1-

18
0

18
1-

21
0

21
1-

24
0

24
1-

27
0

Critical

High

Medium

Low

Total

77

Figure 71. Cumulative remediation of issues over time for applications

40%

80%

120%

 0
–3
0

31
–6
0

61
–9
0

91
–1
20

12
1–
15
0

15
1–
18
0

18
1–
21
0

21
1–
24
0

24
1–
27
0

Static

Dynamic

Overall, about 90% of all issues discovered
in static scans seem to be resolved within
the first four ranges. Within those first four
ranges, we saw spikes for each severity of
vulnerability. This shows that vulnerabilities
of all severities are addressed within this time,
and that outliers to those ranges are not
determined by severity class.

Looking at the speed with which application
developers remediated their triaged issues,
there is notable parity between scan
technologies. For static scans, 35% of all
applications remediated issues that were
spotted within the first scan range (that is,
within six static scans; the day of the first
scan in which the vulnerability appears is
numbered as day zero). By the end of the
fourth range (21 scans, or 90-120 days), that
percentage was up to 76%. For dynamic scans,
32% of issues were remediated within the first
range. By the end of the fourth range, the

percentage was up to 79%. Though there’s
certainly a functional difference between the
static and dynamic scan technologies, both
are clearly being used for their intended
purpose of making apps better.

Finally, let’s see how mobile time to fix shapes
up, keeping in mind once again the oddities a
small dataset brings.

Figure 72. Cumulative remediation of remediated applications

40%

80%

120%

Static

Dynamic

 0
–3

0

31
–6

0

61
–9

0

91
–1

20

12
1–
15

0

15
1–
18

0

18
1–
21

0

21
1–
24

0

24
1–
27

0

78

In this sphere, vulnerabilities reported from
dynamic scans seem to be remediated a bit
faster than those from static scans, though
again the difference in static and dynamic
scan intervals on the mobile side is not as
great as the gap on the applications side.

Figure 73. Cumulative remediation of remediated mobile applications

40%

80%

120%

 0
–3
0

31
–6
0

61
–9
0

91
–1
20

12
1–
15
0

18
1–
21
0

21
1–
24
0

24
1–
27
0

27
1–
30
0

30
1–
33
0

33
1–
36
0

Static

Dynamic

15
1–
18
0

79

Conclusion
Overall, it has been an interesting year for
software security research. Both applications
and mobile software pose unique challenges
to developers, and various vulnerabilities
detected in these platforms support that
impression. It was also interesting to note that
applications and mobile shared certain trends
in vulnerabilities when analyzed by kingdom,
thus pointing to common fundamental failures
in the software. The rate of vulnerability
remediation seems to be increasing, which
suggests that technologies are becoming
better understood as they mature.
Nevertheless, there is room for improvement
as shown by the prevalent issues detected.

On the mobile front, the race to compete in a
new, powerful market has forced vulnerable
deployments with known issues. Moreover,
all types of applications tend to use third-
party libraries to ease and speed up the
development process. But such actions can
lead to inheritance of additional vulnerabilities
from yet another source. Here, two main items
need to be noted. While most high-impact
issues in third-party libraries are disclosed
as CVEs, it is disturbing to note that the
applications that use them are not updated
soon enough. Also, CVEs do not represent all
the issues found in third-party software and,
as shown by data from the FOR project,

other undisclosed issues may still exist.
Based on these discoveries, more awareness
and training could be offered to improve
the quality of applications being developed.
The goal of secure software development
is not only to remediate all vulnerabilities,
but to develop applications that don’t have
vulnerabilities in the first place. While we
move toward this ideal world, the right kinds
of investment could take us closer to the goal.

80

299 www.surveymonkey.com/r/ProtectSOC.

Defense and defenders
The security state of defenders

As organizations struggle to address security
gaps and to operate in an assume-the-breach
world, defenders grapple with the need for
improved detections. Currently, the most
common method of event detection involves
monitoring correlated log data, but there’s
a whole world of options for defenders to
navigate. For this year’s Risk Report, we polled
defenders and derived a clearer picture of the
defender landscape.

All organizations need the ability to respond
to threats. In research we conducted299 among
a self-selecting group of incident responders
and enterprises, 80% of respondents report
having security operations functions within
their organization as seen in Figure 74.

81

300 http://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses. 301 http://www.hp.com/go/ponemon.

Yes

No

In the process of building

Other (please specify)

2.7%

10.8%

6.8%

79.7%

Figure 74. Responses to the question,
“Does your organization have a security operations function?”

Figure 75. Responses to the question,
“Does your organization have a security operations center (SOC)?”

Fifty-one percent report the presence of a
formal security operations center (SOC),
and almost 11% reported themselves to be in
the process of building one, as seen in Figure
75. These numbers do not take into account
small or midsized businesses300 in which
the expectation would be a much smaller
percentage of formal SOCs.

The fundamental purpose of a security
operations center is monitoring.
Additionally, according to Ponemon’s 2015
Cost of Cyber Crime Report, detection
and recovery make up 53% of internal activity
cost (incident/non-budget costs), followed
closely by containment and investigation—all
processes that are often managed by
security operations.301

Yes

No

In the process of building

Outsourced to an external
security service provider

Other (please specify)

5.4%

25.7%

6.8%

10.8%

51.4%

82

302 Op. cit.

Four blocks to implementation
In security operations, the reactive nature of
security monitoring is commonly the subject
of complaints. Events must occur before they
can be detected, as opposed to the more
proactive prevention approach. Of course, the
reactive-proactive conversation must occur
within the context of the technology available,
the most common of which is a security
information event management system
(SIEM). Interestingly, in our research we found
the frequency of SIEM implementation fell
between those entities with a SOC and those
with an operational function. As identified
in the Ponemon Report, “the use of security
intelligence systems (including SIEM)…
translates to an average cost savings of
$1.9 million.”302

Operations analysts’ ability to detect an
event is predicated on their ability to see
relevant event data. While SOC nirvana
would mean real-time detection and analysis,
there are several concerns that may affect
implementation of real-time monitoring.

Types/Lack of events. As identified in the
summary of the Ponemon report, most
organizations still spend about 30% of their
security budget on the network layer. The
implications of this become clear when
reviewing the types of logs organizations
actively monitor, as we see in Figure 76.

Staleness of data. While 36% of respondents
claimed real-time ingestion of event log data,
almost 50% admitted to a mix of real-time
and batch data, as shown in Figure 77. As an
example, one accounting firm that responded
to the survey chose to use the batch setting,
instead of a real-time stream, in its high-
volume proxy devices. This decision reduced
the load on the proxies, but created a window
of up to six hours on proxy log events. While
the time difference between event time and
SIEM receipt time is displayed, if analysts
aren’t careful in that situation they could
inadvertently find themselves investigating
activity from several hours back. To avoid
this, content must be written to correlate with
events received asynchronously.

Figure 76. Responses to the question, “Please select all data sources regularly monitored
by security operations (SIEM/SOC).”

Answer options Response percentage

IPS/IDS 85.5

Proxy 72.7

Netflow 47.3

Firewall 74.5

WIDS/WIPS 23.6

AV/HIPS 67.3

Server
(RHEL, Windows Server®, etc.) 60.0

Internal applications
(SAP, CRM, HR, etc.) 27.3

Authentication
(Active Directory, LDAP, etc.) 74.5

VPN 67.3

DLP 27.3

PKI 25.5

DNS 65.5

Database
(Oracle, SQL Server, MySQL, etc.) 45.5

Web applications 41.8

Cloud services
(Azure, Google, AWS, Adallom, Office 365, etc.) 16.4

Other 5.5

83

Environment event coverage. For decades,
operational logs have been collected to
facilitate troubleshooting. However, in an
effort to maintain availability, the collection
process has relied on the centralization
of IT. The largest gap in security log
collection occurs in areas where operational
log collection has not been a priority. In
many organizations, server log collection
is limited to events dictated by various
compliance requirements, or is stymied
by a lack of centralized management and
concurrence in event collection. Likewise,
client host event collection is virtually non-
existent, with ROI decisions focused on the
cost to re-image machines versus event
collection infrastructure, storage, and even
troubleshooting investigation costs. Antivirus
data is one of the primary client and server
host findings most organizations collect and
feed into their SIEM, although log collection
and monitoring infrastructure scale concerns
grow as the company does.

Security analysis content. For security
operations to have a chance of analysis and
detection of intrusion, SIEM content must
exist that allows reasonable notification of
security relevant concerns. The creation
and honing of content is more than a data
problem; it’s simple math. Let’s assume an
organization has 20 different device types
to monitor (firewall, server, proxy, antivirus,
applications, and so on), and each of the
device types has the potential to generate
200 different events. This means we have
a data field of 4000 potential event IDs
to review. Some events will be strictly
operational, some will be security, and some
could apply to both, so conservatively we
reduce the interesting event types to 75
per device, yielding an analysis field of 1500
interesting items. Now take this base of 1500
interesting events and multiply it by 500
individual devices—and don’t forget that this
data expands exponentially when factors such
as device OS versions and time are included
in calculations.

These equations become important when
considering security information detection
and correlation. Some may believe reactive
security operations to be at a disadvantage,
as they must spot the initial intrusion to
effectively protect an organization. In reality,
however, this is inaccurate; there are multiple
points at which defenders can detect, and
contain, an issue. Monitoring may catch an
event at any point in the attack chain, at any
device event, at any time there is malicious
activity. The data to be considered expands
considerably, but so does the ability to detect.
There is not one single event in an active
intrusion, but the potential to catch any
activity that occurs.

Figure 77 Responses to the question, “What best describes the timing of logs and security events into your SIEM for SOC monitoring?

Real-time

Batch

Mix of real-time and batch

Other (please specify)49.1%

36.4%

7.3%

7.3%

84

303 http://www.hp.com/go/ponemon.
304 http://money.cnn.com/2014/05/21/investing/target-earnings/index.
html.
305 https://www.anthemfacts.com/.
306 http://www.hp.com/go/ponemon.
307 http://www.scmagazine.com/companies-leaving-known-
vulnerabilities-unchecked-for-120-days-kenna/article/441746/.

308 http://www.wsj.com/articles/health-insurer-anthem-hit-by-
hackers-1423103720.
309 http://www.ibj.com/articles/51789-anthems-it-system-had-cracks-
before-hack.
310 https://www.duosecurity.com/blog/four-years-later-anthem-
breached-again-hackers-stole-employee-credentials.
311 http://arstechnica.com/security/2015/10/gigabytes-of-user-data-
from-hack-of-patreon-donations-site-dumped-online/.

312 https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347931_
GA-internet-security-threat-report-volume-20-2015-appendices.pdf.
313 http://f6ce14d4647f05e937f4-4d6abce208e5e17c2085b466b9
8c2083.r3.cf1.rackcdn.com/work-smarter-harder-to-secure-your-
applications-pdf-9-w-1884.pdf.

OpSec:
detection in the real world
The 2014 Ponemon report noted that “certain
organizational factors reduced the overall
cost [of a breach]. If the organization has a
strong security posture or a formal incident
response plan in place before the incident, the
average cost of a data breach was reduced
by as much as (respectively) $21 and $17 per
record. Finally, appointing a CISO to lead the
data breach incident response team reduced
per capita cost by $10.”303 While there’s not
a direct correlation between employing a
CISO and reducing breach costs, one need
look no further than the 2014 quarterly
profit expectations at Target, an organization
without a CISO at the time of its breach.304

Let’s look at how detection played a role in
the January 2015 Anthem data breach, which
we mentioned in the privacy section. When
Anthem reported the incident,305 it had been
underway for seven weeks—well below the
average breach duration of 200+ days for the

dataset cited in Ponemon.306 (Other studies
suggest other durations.307) The company
figured out it had been breached when a
sharp-eyed database administrator noticed
unusual activity—specifically, a database
query made with his ID code.308 This all
sounds very positive, but Anthem probably
didn’t feel that way, as it was one of the
largest known corporate breaches of personal
information to date (at that time).309 It was also
Anthem’s second time at the breach rodeo.
It was compromised as well in 2010 under a
previous name, WellPoint.310

The Anthem breach is just one of many
indications that attackers have shifted their
efforts to directly attack applications. Another
example might be the Patreon breach, in
which attackers utilizing a SQL injection

flaw made off with not only user data but the
service’s source code, presumably

to scan for more vulnerabilities at their
leisure.311 Unfortunately, a business’ efforts
to improve accessibility and ease of use can
increase ease of access for attackers too.
Those who monitor the attack marketplace
have confirmed the increased presence
of application exploit toolkits there.312 And
analysis of breaches over the last couple of
years shows a major trend of attacks that
focus on applications and their assets.313

In the process of making it easier for
customers to do business, companies have
unwittingly given attackers greater access to
the center of their business, which is typically
a suite of applications wrapping their business
data and processes. The success of these
attacks in spite of perimeter, network, and
traditional application defenses indicates that
defenders must adapt their strategies.

Analysis of breaches over the last couple of
years shows a major trend of attacks that
focus on applications and their assets.

85

Direct defense
and automation
Organizations are becoming more aware of
the need for direct application monitoring
and defense. In our recent survey314 of
organizations, 28% said they monitored their
internal applications for security-related
events, and 43% reported monitoring their
external-facing applications. This is a dramatic
increase from just a few years ago, when
almost no one was monitoring applications
for security-related events. Industry analysts
have also recognized315 new product market
categories for direct application monitoring
and defense, with most products allowing for
centralized monitoring and analysis.

Whether related to a direct application attack
or simply a vulnerability, studies have shown
a security flaw will most likely be exploited
within 60 days of discovery, but companies
may take over 100 days to remediate it.316 This
poses the question, “Can humans react fast
enough to network security attacks?” Most
of information security history points to the
answer being “No.” This is borne out by the
great number of successful attacks that were
detected, some even at the early stage of the
attack, but that companies nonetheless failed
to stop in time.

Many companies are relying on installing

more detection systems, many of which are
placed in passive mode, meaning they will
not interrupt traffic when a threat is detected.
This is primarily because one device is not
enough to differentiate between an actual
attack and a false positive.

One of the manual methods used to mitigate
a confirmed attack is to configure a firewall
to stop the traffic. The problem is that these
configurations take time to implement, and
the attack may have already succeeded in
removing data or compromising systems.
Undetectable malware may have been
deposited to wait and send data out to one or
more Internet hosts. Knowing your network,
addressing, and current real-time network
configurations along with point-of-contact
admins along each node helps to cut down on
response time.

The industry generally agrees that the fastest
remediation is automated remediation.317, 318
For example, defenders might use a security
enterprise manager to correlate events from
different devices, first confirming an actual
attack is occurring, then sending commands
to routers or firewalls to block the traffic.319
This may cause some inconvenience to
company users, but the alternative, as
Anthem and so many others can attest,
is much worse.

Our research found a relatively low degree
of comfort with application monitoring.
The trend of using applications directly for
threat intelligence is new, and many of the
organizations surveyed did not know exactly
what applications to monitor or how they
should monitor their applications, or what
security threats could be derived from this
data. This low visibility, combined with the
fact that application-related breaches are not
decreasing despite the use of more traditional
security methods, shows that this area of
security intelligence is still immature. Most
organizations are not yet getting the results
they need and are not keeping pace with
attacker trends. But defenders must adapt to
survive. They must learn to treat applications
as security devices. An application should
have defensive capabilities, and it should
provide security-related events such as
authentication, authorization, configuration,
and resource access to security analysts.

314 www.surveymonkey.com/r/ProtectSOC
315 https://www.gartner.com/doc/3090717/hype-cycle-application-
security.

316 http://www.complysmart.com/component/easyblog/entry/study-
claims-enterprise-vulnerability-remediation-can-take-120-days.
html?Itemid=52.
317 https://research.gigaom.com/report/intelligence-aware-threat-
detection-and-mitigation/.

318 https://www.qualys.com/docs/guide_vulnerability_management.pdf.
319 http://cyberattackdefenders.com/blog/security-operations-center-
soc-automation-why-it-matters/.

86

Conclusion
In research we conducted among a self-
selecting group of incident responders
and enterprises, four-fifths of respondents
report having security operations functions
within their organization. This low number
gives us pause, because it is clear from our
research that many organizations are not
keeping pace with attacker trends, including
direct attacks of the systems on which
enterprises rely. We found evidence that
adversaries are taking excellent advantage
of technologies enterprises have put in place
to serve their customers. Only by learning to
treat applications as security entities on the
network can defenders hope to adapt to the
new adversary landscape.

87

Trends in security: the
conference scene
Despite the wealth of research resources
available to us in-house, the HPE Security
Research team still remembers there’s a world
outside its doors. Last year, our researchers
looked at security trends in the news. This
year, we turned our attention to what drew
interest at information security conferences in
2014 and 2015.

We discerned a number of security trends,
based on analyzed abstracts for 4239
accepted talks at more than 80 industry-
oriented conferences and six top-tier
academic security conferences. Because
a single talk can touch on more than one
theme, Figures 78 and 79 depict the overall
distributions for 12 security tracks that cover
almost every aspect of information security.
(Note that we determined some talks to fit
into more than one category.)

In the industry sphere, threat and vulnerability
topics were the meat of the conference
scene, with talks in this category appearing in
one-third of the abstracts analyzed. Privacy
continues to excite discussion, as do GRC
(governance, risk, and compliance) and mobile
topics. Despite high levels of industry chatter
about the Internet of Things, IoT-related
topics made a weak showing in both 2014 and
2015, though both IoT and mobile saw slight
bumps of a percentage point year over year.
Privacy, network security, and data security
itself declined in interest to conference
organizers as did, surprisingly, cloud security.

Figure 78 Presentation topics at industry-focused security conferences, 2014–15

0% 5% 10% 15% 20% 25% 30% 35%

Threat and vulnerability

Finance and healthcare security

OpSec/DevOp

Cloud security

Data security

GRC

Network security

Application security

Mobile

IoT

Cryptography

Privacy
 21%
 19%

 11%
 11%

 6%
 7%

 13%
 14%

 11%
 11%

 13%
 11%

 15%
 15%

 13%
 12%

 11%
 9%

 9%
 9%

 6%
 6%

 34%
 34%

2014 industry

2015 industry

88

For a lively privacy conversation, apparently
academic conferences are the place to be. The
academic conference sphere, we noted, tends
to be a little more dynamic overall than that
of industry. Here we see a significant rise in
privacy-related talks—up 11% year over year.
Threat and vulnerability issues, data security,
and cryptography rounded out the year’s
biggest conference attractions. (What is not
knowable from this research, but what may
be visible as more data becomes available, is
whether increases in one sphere are echoed
in the other.) Several themes showed a strong
increase in year-over-year presence including
privacy, crypto, data security, IoT, and cloud
(the latter two with a 50% increase year over
year), while network security, GRC, and mobile
declined.

Figure 79 Presentation topics at academic security conferences, 2014–15

0% 10% 20% 30% 40% 50%

Threat and vulnerability

Finance and healthcare security

OpSec/DevOp

Cloud security

Data security

GRC

Network security

Application security

Mobile

IoT

Cryptography

Privacy
 34%
 45%

 25%
 32%

 4%
 6%

 22%
 20%

 8%
 7%

 18%
 14%

 8%
 5%

 26%
 30%

 6%
 9%

 13%
 13%

 5%
 7%

 38%
 38%

2014 academic

2015 academic

89

Gram analysis
Finally, we analyzed the combinations of
grams in our dataset to see which topics
showed the most movement. Figure 80
shows, for industry and academic
conferences, the 12 terms with the most
and the least change in occurrence between
2014 and 2015. For the sake of readability we
have used full words, but the data analysis
is designed to use grams (essentially, word
fragments to gather all appropriate tenses,
combinations, singular/plural usages, and
so on—for instance, “internet of things” in
this chart actually covered “IoT,” “Internet of
Things,” and “Internet-of-Things” in our
data analysis.

As we see, terms related to threat intelligence
and the Internet of Things increased in
frequency of use in the industry sphere,
while the academic side tended toward more
diverse security-related terms (e.g., control
flow, memory disclosure, key exchange, static
analysis). The data also seems to bolster the
traditional impression in both spheres that
industry talks tend to focus more on the big
security picture, while academic speakers
delve into the nitty-gritty details of problems.

Fascinatingly, the industry chart appears
to show a maturity process—specifically,
the move from simpler presentations on
preliminary analysis and protection to topics
that are deeper and more intellectually
weighty. In this light, it’s easy to see the rise
of terms associated with threat intelligence,
best practices, security programs, and insider
threats. Likewise, we see the diminution
of terms related to incident response, web
applications, application security, critical
infrastructure, denial of service, and—
ironically—big data. It is, in fact, entirely
possible that we are watching data research
transform into intelligence before our eyes.

Figure 80 Trending terms in conference abstracts (numbers indicate the percentage changes in popularity between 2014 and 2015)

Industry Change Academic Change

Software, system 0.80% Application, analysis 4.40%

Application, system 0.70% Network application 3.50%

System, exploit 0.70% System, attack 3.40%

Mobile, data 0.70% Application, attack 3.30%

Attack, Internet 0.70% Software, attack 3.20%

Internet, device 0.70% Data, detection 3.20%

Attack, detection -0.50% Application, device -0.50%

Data, vulnerability -0.50% Application, protection -0.50%

Data, analysis -0.50% Exploit, detection -0.60%

Vulnerability, research -0.70% Mobile, application -1.30%

Attack, threat -0.80% Mobile, device -1.50%

Data, attack -0.90% Attack, device -3.10%

90

Summary
If 2014 was dubbed the “Year of the Breach,”
it could be argued 2015 became the “Year of
Collateral Damage.” While Target and Home
Depot previously grabbed headlines for the
loss of customer data, the attacks on OPM
and Ashley Madison demonstrated a level
of impact beyond just credit card numbers.
This year’s Risk Report details the evolving
nature of cybercrime as well as the developing
legislation meant to curtail it. The report
moves beyond the various techniques used
by attackers, still driven primarily by financial
interests, to delve into what defenders now
face as they look to secure their enterprise.

2015 marks two decades of bug-bounty
programs as well as the 10th anniversary
of the ZDI program. During that time,
various markets developed for researchers
to highlight their work. The vulnerability
white market has had a tremendous positive
effect in securing the landscape by bringing
researchers and vendors together. We expect
the vulnerability market will continue to
evolve as more and more vendors announce
their own programs to incentivize research,
further monetizing the value of independent
security research.

We also anticipate regulations and legislation
to affect the nature of disclosure. The impact
of the Wassenaar Arrangement continues to
have a ripple effect on the security research
community. The recent inclusion of “intrusion
software” under the Wassenaar Arrangement
seems to be a backlash reaction to offensive
security offerings. As the number of cyber-

attacks continues to grow, there will likely be
a corresponding response by governments
to implement laws on how the information
security industry operates. The end result
of additional legislation related to security
research will be that creating better protection
solutions becomes harder and takes more
time. This, in turn, increases the likelihood
of successful breaches as the environment
favors those researchers and agencies
operating in the black market.

These legislative changes will certainly have
an effect on the nature of disclosure. While
the environment in which the information
security community operates evolves, it is in
all of our best interest to continue to find and
disclose security bugs in popular software so
vendors can fix things in a timely manner. The
increasing complexity aside, it continues to be
an endeavor worth doing.

This year also saw renewed efforts
to decouple security and privacy. For
enterprises, international data-privacy issues
years in the making came to a head when
Europe’s highest court struck down the pact
that allowed US and European interests to
share data that has privacy considerations.
The dissolution of the long-standing EU-US
Safe Harbor agreement sent vendors to put
together alternate data-transfer mechanisms
even as regulators came knocking.

Continued world instability also brought the
topic of surveillance and encryption into the
minds of many. If surveillance manages time
and again to seem like a white knight after
terrorist incidents, encryption is often the
dragon. In the days after the terrorist attacks
on Paris, various simmering encryption-
related debates were back on the boil, despite
early evidence that encryption played no role
in the terrorists’ planning. Governments wish
to monitor communications for significant
threats, but doing so in a manner that does
not interfere with civil liberties has proven
problematic. This is coupled with the fact
that current surveillance programs have not
yielded the expected results.

While the breaches at OPM and Ashley
Madison seem unrelated on the surface, both
breaches had potentially terrible effects on
people who never had direct contact with
either agency. Despite the three years of
credit counseling offered to persons whose
names were revealed in the OPM breach,
it’s a relatively good bet that the stolen data
wasn’t meant for the hands of criminal gangs
or identity thieves. Among the rich trove of
data taken was, it is believed, data entered
into Standard Form-86s, a document required
for the background checks needed to obtain a
security clearance. The form provides a great
deal of information about one’s family, friends,
and associates—for security and intelligence
professionals, a delicate situation. In other
words, the true targets of the breach may be
people who never consented to inclusion in
the OPM database.

91

In the case of the Ashley Madison breach,
information about an individual could
potentially be derived even if it did not
specifically appear in the data (e.g., a spouse’s
name and address would be obvious to a
nosy neighbor). Again, even if it is unlikely
the data leaked will end up being used by
identity thieves, it could certainly have life-
changing consequences. It’s chilling to think
that the exposure of data accessible through
the Internet could have such a life-altering
effect, but as more and more data migrates
online, the scenario is likely to repeat itself
unless data protections—namely privacy
safeguards—are held firmly in place.

In the realm of security updates, the record
number of point fixes for individual issues
shows vendors are capable of keeping up with
the current rate of vulnerability disclosures.
What is not clear is whether this rate is
sustainable. As evidenced with Microsoft
web browsers, the inclusion of wide-reaching
defensive strategies demonstrates how
these fixes disrupt classes of attacks in an
asymmetric fashion. Instead of releasing
patches to fix many different vulnerabilities,
these defensive measures take out the entire
class—at least for some period of time.
Other vendors would do well to consider
implementing similar strategies to disrupt
classes of attacks.

Despite the advancement of defensive
strategies, malware continues to be a
pervasive piece of life online. However, this
past year did see a shift in the focus of
malware. While always disruptive, today’s
malware has become focused more on
money than on disruption of services. The
ever-present ATM has become the focus
for many of these attacks, with malware
authors targeting the users of ATMs and the
machines themselves. While coordinated law
enforcement efforts achieved takedowns
of banking Trojan infrastructure, statistics
show the attackers are capable of restoring
services to the botnets in a surprisingly
rapid fashion. As more and more of our
financial transactions occur online, criminals
will continue to target these transactions

for profit. Put simply, if there is money to
be made, there is money to be stolen. The
industry must focus on securing these
transactions to deprive attackers of the illicit
income they so desire.

Our yearly analysis of trends in application
security provides a unique snapshot of the
state of applications security during the
past year. As in previous years, all identified
issues were classified according to the HPE
Software Security Taxonomy. During 2015, the
taxonomy extended further to include other
assessment techniques and HPE Security
Fortify products such as HPE Security Fortify
on Demand (FOD).

Generally, the breakdown of application
security issues between 2014 and 2015 is
strikingly similar. Year-to-year changes in
the rankings for the three kingdoms with
the lowest representation (API Abuse, Code
Quality, and Time and State) are primarily
due to changes to the HPE Software
Security Taxonomy itself; the most prevalent
vulnerabilities remain the same for both
years. Mobile applications present different
issues from those seen in non-mobile
applications. Security Features continues to
be the most represented kingdom for both
web applications and mobile applications.
Still, mobile applications tend to see over 10%
more issues related to security features than
do web applications. For mobile applications,
it’s internal system information leaks that lead
the most common list. Remediation of these
mobile issues remains a concern. Only 48%
of the mobile issues in our sample seem to
have been remediated—a stark difference
from the 92% we saw on the applications side.
Their very large presence atop the list of most
frequently encountered mobile vulnerabilities
indicates that a substantial majority of the
applications we saw are storing sensitive
information on devices that can be left on
restaurant tables, stolen from backpacks, and
dropped in toilets.

In security operations, the reactive nature
of security monitoring is commonly the
subject of complaints. In a reactive system,
events must occur before they can be
detected, as opposed to the more proactive
prevention approach. The reactive-proactive
conversation must occur within the context of
the technology available, the most common
of which is SIEM. While the use of security
intelligence systems has been shown to
equate to potentially millions of dollars in
savings, implementation is not without its
hazards. An operations analyst’s ability to
detect an event is predicated on his ability
to see relevant event data. As data sources
continue to grow, enterprises will need
the capability of storing and analyzing the
multitude of events gathered by various
sensors. This requires investments in both
people and technologies. While these
investments have an initial outpouring of
capital, the savings will be seen in preventing
and responding to the inevitable breach.

In the coming years, the complexities of
legislation and international events will have
a greater impact in the realms of security and
privacy. As a result, network defenders need
to understand the complexities of privacy
issues as thoroughly as they understand the
impact of security vulnerabilities. Instead of
symmetric responses to threats, tomorrow’s
network defender must understand how to
respond asymmetrically to threats through
automated analysis, wide-reaching fixes,
and a community-based defense. While the
threat of cyber-attack is unlikely to go away,
thoughtful planning can continue to increase
both the physical and intellectual price an
attacker must pay to successfully exploit
an enterprise.

92

Authors and contributors
The HPE Cyber Risk Report is an annual collaboration.

Authors

Brandie Anderson

Sue Barsamian

Dustin Childs

Jason Ding

Joy Marie Forsythe

Brian Gorenc

Angela Gunn

Alexander Hoole

Howard Miller

Sasi Siddharth Muthurajan

Yekaterina Tsipenyuk O’Neil

John Park

Oleg Petrovsky

Barak Raz

Nidhi Shah

Vanja Svajcer

Ken Tietjen

Jewel Timpe

Contributors

Matt Gibbs

Michele Huresky

Alvaro Muñoz

Joe Sechman

Peter Szabo

Daniel Trauner

ReversingLabs

Sonatype Inc.

93

Glossary

Amicus brief

A brief filed to a court by someone who
is not a party to a case on which they are
commenting (amicus curiae, “friend of
the court”).

API (application programming interface)

A set of tools and resources that provide
various functions developers can utilize
when creating software.

Ashley Madison

Ashley Madison is a Canada-based online
dating service and social networking service
marketed to people who are married or in a
committed relationship. The company was
breached in July 2015.

ASLR (address space layout randomization)

A security mechanism where the locations of
important elements of a program in memory
are randomized in order to make them
harder for an attacker to find and utilize. This
increases the difficulty for the attacker to
perform particular types of exploits that rely
on jumping to particular address areas
of memory.

ATM (automated teller machine)

An electronic telecommunications device
that enables the customers of a financial
institution to perform financial transactions,
particularly cash withdrawal, without the need
for a human cashier, clerk, or bank teller.

Buffer overrun/overflow

A buffer overflow is a type of vulnerability
that arises when a program writes an
excessive amount of data to the buffer,
exceeding the capacity of the buffer and
then overwriting adjacent memory. This type
of vulnerability may be exploited to crash
programs or, with the correct manipulation
by a skilled attacker, used to execute
arbitrary code on a targeted computer. Buffer
vulnerabilities can be avoided by the use of
bounds checking, which checks the capacity
for inputs before they are written.

C&C: See Command and control

CEN (European Committee for
Standardization)

An EU body charged with establishing
standards for goods originating from any
of the Union’s 28 member countries.

Circuit Court (US)

In the US, the federal system of appellate
courts above the District Court level and
below the US Supreme Court. There are 12
geographically defined circuits, including one
for Washington, DC. In addition, there is an
additional United States Court of Appeals
for the Federal Circuit whose (nationwide)
jurisdiction is based on subject matter.

Cookiejacking

Cookiejacking is a form of hacking wherein
the attacker can gain access to session
cookies of a browser’s user.

Command and control (C&C)

As with many terms used in computer
security, this term has been borrowed from
the military. Similar to the military use of
the term it means a method of exercising
authority over resources; for example, a
commanding officer commanding his troops.
This term is often used in the context of
malware and botnets in particular, where a
structure is set up to command and control
many compromised computers from either a
centralized, or in some cases, decentralized
position. A centralized command and
control structure might be a single server
that compromised computers connect to in
order to receive commands. A decentralized
command and control structure could be one
in which compromised computers connect
to a peer-to-peer network, where commands
are spread through the network from many
possible nodes. Command and control is also
known as C2.

Command injection

Command injection occurs when an attacker
is able to pass unsafe data to a system shell
via a vulnerable application so that the unsafe
data is then executed on the targeted system.
The result therefore of a successful command
injection attack is the execution of arbitrary
attacker-supplied code on a targeted system.
The risk of command injection attacks can be
mitigated by appropriate input checking and
validation.

Cross-frame scripting

A form of cross-site scripting attack, in which
attackers exploit a vulnerability in a web
browser in order to load malicious third-
party content that they control in the frame
of a webpage on another site. This attack
may allow an attacker to steal sensitive
information, such as login details, that may
be input into the frame because the targeted
user believes the request for login details
came from the legitimate site.

Cross-site scripting

An attack that occurs when an attacker
exploits a vulnerability in web applications in
order to inject malicious code into client-side
code that is delivered from a compromised
website to an unsuspecting user. The code
that is delivered to the user is trusted, and
hence executed, as it appears to come from a
legitimate source. These types of attack occur
due to insufficient checking and validation
of user-supplier input. Attackers may use
this type of attack in order to bypass access
controls or steal sensitive data.

94

Glossary

CVSS (Common Vulnerabilities
Scoring System)

The Common Vulnerability Scoring
System (CVSS) is an open framework for
communicating the characteristics and
severity of software vulnerabilities. CVSS
consists of three metric groups: Base,
Temporal, and Environmental. The Base
group represents the intrinsic qualities of a
vulnerability, the Temporal group reflects
the characteristics of a vulnerability that
change over time, and the Environmental
group represents the characteristics of a
vulnerability that are unique to a user’s
environment. The Base metrics produce a
score ranging from 0 to 10, which can then
be modified by scoring the Temporal and
Environmental metrics. A CVSS score is also
represented as a vector string, a compressed
textual representation of the values used to
derive the score.

DEP (data execution prevention)

A security measure used by modern
operating systems that is intended to
prevent the running of malicious code on an
affected system. It operates by marking areas
of memory as either executable or non-
executable and raises exceptions when code
attempts to run from areas that are deemed
non-executable.

DLL (dynamic link library)

A dynamic link library (DLL) is a collection of
small programs, any of which can be called
when needed by a larger program. DLLs are
Microsoft’s iteration of the “shared library”
concept used on other platforms.

Exploit

Code written expressly to take advantage
of the security gap created by a particular
vulnerability in order to deliver a malicious
payload. Exploits may be targeted at specific
organizations or used en masse in order
to compromise as many hosts as possible.
Delivery mechanisms utilize many different
technologies and vehicles and often contain
a social engineering element—effectively an
exploit against vulnerabilities in human nature
in order to make the victim take a particular
action of the attacker’s choosing.

External leakage

An external information leak occurs when
system data or debugging information leaves
the program open to a remote machine via a
socket or network connection.

National Security Letters

A subpoena letter issued by the US federal
government in order to gather information
related to issues of national security. The
Patriot Act gave the FBI greatly expanded
power to demand certain records, including
ISP information.

OPM (Office of Personnel Management)

In the US, the Office of Personnel
Management is a federal department
that handles human resources issues for
government employees.

PCI-DSS

The Payment Card Industry Data Security
Standard was developed by the payment card
industry as a framework for secure handling
and storage processes for information
related to credit, debit, and similar cards. It
is managed by the PCI Security Standards
Council.

PII

Personally identifiable information. The
definition of what kinds of data are to be
treated as PII varies from jurisdiction to
jurisdiction.

POODLE (Padding Oracle On Downgraded
Legacy Encryption)

The POODLE attack was a 2014 man-in-the-
middle exploit that took advantage of Internet
and security software clients’ fallback to
SSL 3.0.

Remote code execution (RCE) vulnerability

A vulnerability that allows attackers to
execute their own code on a target system.
Depending on the vulnerability used, the RCE
may be executed with either user- or system-
level permissions.

ROP (return oriented programming)

An exploit technique that allows an attacker
to execute code while bypassing certain types
of defense-in-depth measures, such as ASLR.

Safe Harbor

Generally, a provision within a statute or
regulation that states that specified behaviors
are not in violation of that law. In the privacy
realm, it refers to a framework developed by
the US and the European Union describing
how US companies could receive, handle, and
use European citizens’ personally identifiable
information (PII) without running afoul of
European privacy laws.

Secure Data Act

Proposed US legislation that would forbid
federal agencies from requiring private
enterprises to build technology into products
for government surveillance purposes.

Shellcode

A small piece of code used as the payload
during the exploitation of a vulnerability.
While these types of payloads typically
start from a command shell, any code that
performs a similar function is generically
referred to as shellcode.

Small and midsize business (SMB)

A small and midsize business (SMB) is a
business which, due to its size, has different
IT requirements—and often faces different IT
challenges—than do large enterprises, and
whose IT resources (usually budget and staff)
are often highly constrained.

STIX (Structured Threat Information
Expression) and TAXII (Trusted Automated
Exchange of Indicator Information)

An open community-driven effort and a
set of free, available specifications that
help with the automated exchange of
cyber-threat information. This allows cyber-
threat information to be represented in a
standardized format. They are not pieces of
software themselves, but rather standards
that software can use. The combination
of STIX and TAXII allows participants to
more easily share threat information with
constituents and peers.

95

Glossary

SOC (security operations center)

A business unit that deals with enterprise
security issues, both ongoing and responsive,
including the processing of data, alerts, and
logs pertaining to the enterprise’s security.
Does not necessarily refer to a physical space.

Trojan

Malicious software that, unlike worms or
viruses, is unable to spread of its own accord.
There are many different types of Trojans
that are used in conjunction with other types
of malware in order to perpetrate computer
crime. One of the most notorious types is a
remote access Trojan (RAT) that can be used
by a remote attacker to access and control a
victim’s computer.

USA Freedom Act

A 2015 law that restored certain provisions of
the Patriot Act that had sunsetted earlier in
the year. The name is an acronym for
“Uniting and Strengthening America by
Fulfilling Rights and Ensuing Effective
Discipline Over Monitoring Act.”

USA Patriot Act

In the US, a set of laws passed in the wake
of the September 11, 2001, terrorist attacks.
The name is an acronym for “Uniting
and Strengthening America by Providing
Appropriate Tools Required to Intercept and
Obstruct Terrorism Act.”

Use-after-free

A use-after-free vulnerability can occur
when memory is allocated to an object that
is used after it is deleted (or deallocated).
Good programming practice dictates that
any reference pointing to an object should be
modified when the memory is deallocated,
to keep the pointer from continuing to
make the area of memory where the object
once resided available for use. (A pointer in
this abandoned condition is broadly called
a “dangling pointer.”) If the pointer isn’t
modified and tries to access that area of
memory, the system can become unstable
or corrupt. Attackers can use a dereferenced
pointer in a variety of ways, including
execution of malicious code.

Vulnerability

Defects or bugs that allow for external
influence on the availability, reliability,
confidentiality, or integrity of software or
hardware. Vulnerabilities can be exploited
to subvert the original function of the
targeted technology.

Wassenaar Arrangement

Agreement to establish the Wassenaar
Arrangement was reached on 19 December
1995 in Wassenaar, near The Hague, in the
Netherlands. The Wassenaar Arrangement
has been established in order to contribute
to regional and international security
and stability, by promoting transparency
and greater responsibility in transfers of
conventional arms and dual-use goods and
technologies, thus preventing destabilizing
accumulations. The aim is also to prevent the
acquisition of these items by terrorists. There
are currently 41 participating
states (countries).

Worm

A self-contained malicious program that
is able to spread of its own accord. The
classification “worm” is only used to describe
the ability to spread without a host file (as
may be the case with computer viruses) and
worms contain many different and varied
payloads beyond spreading from host system
to host system.

YARA

YARA is a tool to aid malware researchers in
identifying and classifying malware samples.
YARA allows for the creation of malware
family descriptions based on textual or
binary patterns.

Zero day

A previously unknown vulnerability for which
no patch from the vendor currently exists. It is
referred to as a zero day because the vendor
has had zero days to fix the issue.

Sign up for updates

Rate this document

Learn more at
hp.com/go/hpsr

© Copyright 2016 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without
notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard
Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft, Excel, Internet Explorer, Windows, and Windows Server are US registered trademarks of the Microsoft group of companies.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Google is a trademark of Google Inc.

Adobe is a trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

 4AA6-3786ENW, February 2016

