

FROM EQUATION TO EQUATIONS

Revealing the multi-platform operational capability of Equation Group

Antiy CERT

Draft: Jan. 15, 2014 16:43 (UTC+8) Published: Nov. 4, 2016 10:00 (UTC+8) Updated: Nov. 4, 2016 13:00 (UTC+8)

Contents

1	BACKGROUND	3
2	THE MULTI - PLATFORM OPERATIONAL CAPABILITY OF EQUATION	4
3	ANALYSIS OF PARTIAL LOAD FOR LINUX LINUX(X86)	6
3.1	Preceding Module——DoubleFantasy	6
4	ATTACK PAYLOAD FOR SOLARIS SPARC	16
4.1	Solaris and SPARC	
4.2	HIDDEN ROOTKITS	
4.3	DoubleFantasy modules for SPARC	
5	SUMMARY	31
5.1	IMPROVEMENT BASED ON REAL THREATS	
5.2	ANTIY'S EFFORTS	
5.3	Future work	
APPENDI	X 1: REFERENCES	
APPENDI	X 2:ABOUT ANTIY	35

1 Background

From February 2015, Antiy has published two reports about Equation Group, both of which analyzed the code components for Windows platform, the persistent ability in disks and the use of encryption algorithms. In this report, Antiy will publish the analysis of Equation components for Solaris and Linux platforms for the first time. We can also be proud to say that this is the first report to prove the existence of these kinds of "Evils". We actually finished the analysis several years ago, and Antiy has concerned with the Great Attack Group since 2012, and trying to analyze its operational in all invasion and persistence scenarios, where the core targets are the server operating systems, such as Linux, Solaris and FreeBSD. These loads are not usual script Trojans, but are **binary components** with an **encrypted communication**. These components act as **Rootkits, and have strict encryption anti-analysis technique and trick**. Therefore, Antiy has named attacks performed by super-attack organizations as A²PT, and make the capabilities to attack all platforms indicators.

Based on long-term experience in tracking and analyzing capability of advanced threats and malicious code, Antiy's product PTD (Persistent Threat Detection System) can help users capture the payload delivery and lateral movement; IEP (Intelligent Endpoint Protection System) provide protection for traditional Windows hosts and Chinese Operating system, and assists PTA (Persistent Threat Analysis System) to analyze malware for various platforms. The deployment of these products also enables customers to support Antiy to get more threat indicators. Meanwhile, we have been paying attention on open-source intelligence and public information, also the information and development trends of relevant organizations.

After Kaspersky and Antiy released reports about Equation (called the Group for short) last year, the Group still launched a series of attacks. In August 2016, the malware used by Equation was disclosed in *Equation Group Cyber Weapons Auction – Invitation*^[1], and this group was connected with attack weapon system named ANT for the first time. Based on this, we can also find its ability to inject and persist in products of Cisco, Juniper, Fortinet and other firewalls. On October 31, 2016, an article called *Shadow Brokers reveals list of servers Hacked by the NSA*^[2] was published in The Hacker News, which contained more documents revealed by Shadow Brokers, including some of the foreign server list compromised by the Group. The related documents claimed that most of the infected servers are running Solaris, Oracle-owned Unix operating system, and some are running FreeBSD or Linux. With the mutual prove of public information and Antiy's analysis conclusion of the samples, we can **© Antiy Labs. All rights reserved, welcome to non-destructive reprint.**

clearly figure out the powerful full-platforms attacking capability of this organization.

Our analysis work is continuously validated by ongoing information. During the past years, the analysis of this attack was sophisticated and challenging; whose analysis is more difficult than Stuxnet or Flame. The malware with this kind of highly complex and hidden capability is a huge challenge for both victims and analysts. Especially when the scope of its combat coverage of almost All computer architecture and operating systems, the traditional security team relatively good at analyzing the malware for Windows, Linux and Android and other mainstream operating system platform will feel much more pressure and challenges. If you use the name of Equation to do a parable about the difficulty of analysis, what we need to conquer is not an "Equation" but more complex "Equations".

Antiy Labs released the Chinese version of this report on November 4th, 2016. Due to the lack of translation ability and experience, the English version was not released synchronously. Many colleagues in international cybersecurity field may read this report with the help of Google Translator. This version got finished until November 8th, and we welcome your advices and suggestions.

2 The multi - platform operational capability of Equation

Equation employs industrial-grade standard arm arsenal attack weapons arsenals, including six components: EquationLaser, EquationDrug, DoubleFantasy, TripleFantasy, Fanny and GrayFish. Antiy has found samples of EquationDrug and DoubleFantasy attacking on other platforms. The arsenal information is shown in the following table:

Component	Platform	Description	Period
Equation-	Not	An early implant from the EQUATION group, used	2001-2003
Laser	found	around 2001-2003. Compatible with Windows 95/98.	
Equation-	Some	A very complex attacking platform used by Equation. It	2003-2013
Drug	plugins	supports a module plugin system, which can be	
	found	dynamically uploaded and unloaded by attackers. May	
		be the upgraded version of EquationLaser.	
Double-	Proved	A validator-style Trojan, which is designed to confirm	2004-2012
Fantasy		the target, is the intended one. If the target is confirmed,	
		they get upgraded to a more sophisticated platform such	
		as EQUATIONDRUG or GRAYFISH.	
Triple-	Maybe	A full-featured backdoor sometimes used in tandem with	2012-now

Fantasy	existing	GRAYFISH. It looks like an upgrade of	
		DOUBLEFANTASY, and is possibly a more recent	
		validator-style plugin.	
Fanny	Not found	A computer worm created in 2008 and used to collect	2008-2011
		information about targets in the Middle East and Asia.	
		Some victims appear to have been upgraded first to	
		DoubleFantasy, and then to EQUATIONDRUG. Fanny	
		used exploits for two 0day vulnerabilities which were	
		later discovered with Stuxnet.	
GrayFish	Not found	The most sophisticated attack platform from Equation. It	2008-now
		completely resides in the registry, relying on a Bootkit to	
		gain execution at OS startup.	

Based on the following table, readers can put together jigsaw puzzles of Equation attack.

Information	Windows	Linux	Solaris	Oracle-	FreeBSD	Mac OS
				owned Unix		
Antiy The Trojan modifying firmware Exploration in attack components of Equation Group ^[3]	Analysis of sample load and hard disk persistence					
Antiy Analysis of encryption skills used in Equation Group attack components ^[4]	Encryption algorithm analysis					
Antiy Revealing the multi-platform loading capability of Equation Group (this report)		Found Analysis of related loads	Analysis of related loads			
The Hacker News: Shadow Brokers reveals list of Servers Hacked by the NSA			Existed	Existed	Existed	
Kaspersky Equation: The Death Star of Malware Galaxy ^[5]	Revealing Equation					
Kaspersky A Fanny Equation: "I am your father, Stuxnet" ^[6]	Fanny analysis					

 $\ensuremath{\mathbb{C}}$ Antiy Labs. All rights reserved, welcome to non-destructive reprint.

Kaspersky Equation Group: from Houston with love ^{[[7]}	Doublefantasy analysis			
Kaspersky EQUATION GROUP: QUESTIONS AND ANSWERS ^[8]	EquationGroupQuestionsandAnswers			Speculation based on network features

Note: Antiy has found User Agent with Solaris logo during the analysis of samples, and Kaspersky released a series of reports, revealing the Equation Group; one named as "Equation Group Questions and Answers"^[8] publishes the capture information of the Mac OS X Agent. So far, both Antiy and Kaspersky have not yet found Mac OS X samples, but the payload for Mac OS X does exist.

3 Analysis of Partial Load for Linux (x86)

We have captured the samples on Linux platform and confirmed that the sample is DoubleFantasy component after analyzing. The component is used to perform incipient detection on targets with Linux platform. It is a sample of the Linux platform, so it has different features with others.

3.1 Preceding Module——DoubleFantasy

3.1.1 File Tag

3.1.2 Running Process

On Linux platform, samples execution is divided into two cases, with parameters or no parameters. If the parameter '-c' engages in, only system information can be obtained and it can be regarded as scene detection. The process can be shown by the following flow chart:

Figure 1 Running process with parameter-c

In the case without parameter '-c', the process can be shown as:

Figure 2 Running process without parameter-c

3.1.3 Basic functions

• Traversing system files, clearing / var / log / lastlog records, obtaining system account password information.

• Connecting Google to determine network connectivity.

• Connecting remote sever and making different operations based on remote control instructions.

• Many encryption algorithms used in communication and information.

• Starting itself with a linked file, and the proc /% d / exe file pointing to the files of the sample.

Opening three PID threads (two of them are consecutive) after running. •

• Collecting information about infected computers, including system directory, file

extension, and other information. As shown below:

74	3D	2F	74	6D	70	2F	64	62	75	73	2D	76	65	62	72	t=/tmp/dbus-vebr
37	6B	62	49	75	71	20	67	75	69	64	3D	61	62	30	62	7kbIuq,guid=ab0b
39	35	33	32	66	33	34	31	62	30	33	32	31	35	65	36	9532f341b03215e0
33	39	30	34	30	30	30	30	30	30	33	35	00	43	40	41	390400000035.CLA
53	53	50	41	54	48	3D	2F	75	73	72	2F	6C	6F	63	61	SSPATH=/usr/loca
6C	2F	73	62	69	6 E	3A	2F	75	73	72	2F	6C	6F	63	61	<pre>1/sbin:/usr/loca</pre>
6C	2F	62	69	6E	3A	2F	75	73	72	2F	73	62	69	6E	3A	<pre>1/bin:/usr/sbin:</pre>
2F	75	73	72	2F	62	69	6E	3A	2F	73	62	69	6E	3A	2F	/usr/bin:/sbin:/
62	69	6E	3A	2F	75	73	72	2F	67	61	6D	65	73	3A	2F	<pre>bin:/usr/games:/</pre>
75	73	72	2F	6C	6F	63	61	6C	2F	6A	64	6B	31	2E	36	usr/local/jdk1.6
2E	30	5F	33	30	2F	62	69	6E	3A	2F	75	73	72	2F	6C	.0_30/bin:/usr/1
6F	63	61	6C	2F	6A	64	6B	31	2E	36	2E	30	5F	33	30	ocal/jdk1.6.0_30
2F	6A	72	65	2F	62	69	6E	3A	2F	68	6F	6D	65	2F	75	/jre/bin:/home/u
62	75	6E	74	75	2F	61	6E	64	72	6F	69	64	2D	73	64	buntu/android-sd
бB	73	2F	70	6C	61	74	66	6F	72	6D	2D	74	6F	6F	6C	ks/platform-tool
73	3A	2F	68	6F	6D	65	2F	75	62	75	6E	74	75	2F	61	s:/home/ubuntu/a
6E	64	72	6F	69	64	2D	73	64	6B	73	2F	74	6F	6F	6C	ndroid-sdks/tool
73	3A	2F	75	73	72	2F	6C	6F	63	61	6C	2F	6A	64	6B	s:/usr/local/jdk
31	2E	36	2E	30	5F	33	30	2F	6C	69	62	2F	74	6F	6F	1.6.0_30/lib/too
6C	73	2E	6A	61	72	00	4C	45	53	53	4F	50	45	4E	3D	<pre>ls.jar.LESSOPEN=</pre>
7C	20	2F	75	73	72	2F	62	69	óΕ	2F	6C	65	73	73	70	/usr/bin/lessp
69	70	65	20	25	73	00	57	49	4E	44	4F	57	50	41	54	ipe %s.WINDOWPAT
48	3D	37	00	44	49	53	50	40	41	59	3D	3A	30	2E	30	H=7.DISPLAY=:0.0
00	47	54	4B	5F	49	4D	5F	4D	4F	44	55	4C	45	3D	69	.GTK_IM_MODULE=i
62	75	73	00	40	45	53	53	43	4C	4F	53	45	3D	2F	75	bus.LESSCLOSE=/u
73	72	2F	62	69	óΕ	2F	6C	65	73	73	70	69	70	65	20	sr/bin/lesspipe
25	73	20	25	73	00	43	4F	40	4F	52	54	45	52	4D	3D	%s %s.COLORTERM=
67	6E	6F	6D	65	2D	74	65	72	6D	69	6E	61	6C	00	58	gnome-terminal.X
41	55	54	48	4F	52	49	54	59	3D	2F	76	61	72	2F	72	AUTHORITY=/var/r
75	6E	2F	67	64	6D	2F	61	75	74	68	2D	66	6F	72	2D	un/gdm/auth-for-
75	62	75	óΕ	74	75	2D	48	79	76	7A	50	6F	2F	64	61	ubuntu-HyvzPo/da
74	61	62	61	73	65	00	5F	3D	2E	2F	6C	69	óΕ	75	78	tabase=./linux
5F	73	65	72	76	65	72	00	70	61	67	65	6F	75	74	00	_server.pageous
00	00	00	00													ANTIY

Figure 3 Collecting basic system information

The malware starts process fork() and determine the PID number of its child ۲ process. If the execution succeeds, then the main function will exit and cannot debug. Debugging process is shown as below:

BSC jz short loc_884A115 ; the child process succeeds or not
03C test eax, eax ; Logical Compare
03C call sub_8053F40 ; Call Procedure
03C call sub 8053D90 ; Call Procedure
03C call sub 8049F60 : Call Procedure
B3C mou [esp] eax
036 mov [esp+a], eax
03C mov eax, [ebp+arg_4]
04C call sub_8049ABC ; Call Procedure
04C mov [esp], eax
04C call decode1 ; Call Procedure
04C mov [esp], eax
04C mov [esp+8], edx
04C lea eax. [ebp+var 28] : Load Effective Address
84C mou [esp+4], eax
B3C sub esp 10b · Integer Subtraction
820 and ocn SEEEEEBb : Logical OND
820 mou ody 6
004 mov ebp, esp
004 mov eax, offset byte_805B1BF
808 push ebp
arg_4= dword ptr OCh
arg_0= dword ptr 8
var_28= byte ptr -28h
sub_804A0C0 proc near
; Attributes: bp-based frame

Figure 4 Child-process judgment

• Decrypting various strings, obtaining user's information including the system version

- Obtaining user's login information getpwnam
- Viewing file /bin/fast /sbin/login /usr/sbin/nologin
- Getting user's login password getpwuid
- Read user's log var/log /lastlog

3.1.4 Dynamic Loading of Function and Data

The function and data called by this sample is dynamically loaded and debugged, dynamic debugging is wanted in the analysis. We explain the calling addresses through dynamic analysis decryption, and the details are shown as bellows:

Á	N	Т	IY	

<u> </u>	a date of outs in a state of					- ··
Fur	ction name	Segment	Start	Length	R	F L 🔨
f	_unlink	LOAD	08049A4C	00000010	R	
f	_getpwuid	LOAD	08049A5C	00000010	R	
f	_gai_strerror	LOAD	08049A6C	00000010	B	
f	_waitpid	LOAD	08049A7C	00000010	R	
f	_xpg_basename	LOAD	08049A8C	00000010	R	
f	_strcpy	LOAD	08049A9C	00000010	R	
f	_ftell	LOAD	08049 AA C	00000010	R	
f	_chdir	LOAD	08049ABC	00000010	R	
f	_bind	LOAD	08049ACC	00000010	R	
f	_getuid	LOAD	08049ADC	00000010	R	
f	_glob	LOAD	08049 AE C	00000010	R	
f	_atoi	LOAD	08049AFC	00000010	R	E
f	_select	LOAD	08049BOC	00000010	R	🗕
f	_sr and on	LOAD	08049B1C	00000010	R	
f	_close	LOAD	08049B2C	00000010	R	
f	_f w rite	LOAD	08049B3C	00000010	R	
f	_fprintf	LOAD	08049B4C	00000010	R	
f	_strstr	LOAD	08049B5C	00000010	R	
f	_time	LOAD	08049B6C	00000010	R	
f	_set v buf	LOAD	08049B7C	00000010	B	
f	_strncat	LOAD	08049B8C	00000010	R	
f	_malloc	LOAD	08049B9C	00000010	R	
f	_chown	LOAD	08049BAC	00000010	R	
f	_setrlimit	LOAD	08049BBC	00000010	R	
f	_poll	LOAD	08049BCC	00000010	R	
f	_sleep	LOAD	08049BDC	00000010	R	
f	_strtoull_internal	LOAD	08049BEC	00000010	R	
f	_readlink	LOAD	08049BFC	00000010	R	
f	_strncasecmp	LOAD	08049COC	00000010	R	
f	_memove	LOAD	08049C1C	00000010	R	
f	_getnameinfo	LOAD	08049C2C	00000010	R	
f	_streat	LOAD	08049C3C	00000010	B	ANTIX
f]	send	TAN	08049040	0000010	R	
N						-

Figure 5 Function call address

3.1.5 **Decryption and Analysis of String**

In the sample, a self-defined encryption algorithm is used to encrypt the internal string information. The algorithm is called 115 times. The encryption algorithm is as follows:

		pusn ei						
	004	mov el	bp, esp					
	004	push e	di					
	008	mov e	di, 1					
	008	push es	si					
	000	push el	bx					
	010	sub es	sp, 8	; Integer Subtr	action			
	018	mov es	si, [ebp+arg_4]				
	018	mov el	bx, [ebp+arg_0]				
	018	movzx ea	ax, byte ptr [esi] ; Move with	Zero-Extend			
	018	inc es	si	; Increment by	1			
	018	mov [i	ebp+var_D], al					
	018	mov ea	ax, [ebp+arg_8	1				
	018	inc ea	ax	; Increment by	1			
	018	mov [ebp+var_14], e	ax	22			
	018	cmp ea	ax, 1	; Compare Two O	perands			
	018	jmp sl	hort loc_80542	72 ; Jump				
	<u> </u>	4 E3						
	<u>918</u>	1oc_805427 ja sh	/2: nort loc_80542!	; Jump if Above 57	(CF=0 & ZF=0)	_		
.	018 V	1oc_805427 ja sh	/2: mort loc_80542!	; Jump if Above 57	(CF=0 & ZF=0)	•		
.	018 •	1oc_805427 ja sh	72: ort loc_805425	; Jump if Above 57 uu x 100 018 mov	(CF=0 & ZF=0) eax, [ebp+arg_	• 0]		
₩ ⊨4 ፼ 10c_89	818 54257: ; Hou	loc_805427 ja sh	72: mort loc_80542!	; Jump if Above 57 uu +4 193 018 mov 018 add	(CF=0 & ZF=0) eax, [ebp+arg_esp, 8	9] ; Add		
₩ ×4 ፼ 10c_80 018 movzx	B18 ▼ 54257: ; Hov eax, byte ptr [esi]	loc_805427 ja sh	2: nort loc_80542! o-Extend	; Jump if Above 57 W H H B 018 mov 018 add 018 pop	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx	8] ; Add		
uu ,4 19 10c_80 181 movzx 1018 mov 2018 mov	54257: ; Mov eax, byte ptr [esi] ecx, edi	loc_805427 ja sh	/2: nort loc_80542!	; Jump if Above 57 018 mov 018 mov 018 add 016 pop 00C pop	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi	8] ; Add		
u ,⊰ ⊠ loc_80 818 movZx 818 mov 818 inc 819 inc	B18 54257: ; Hou eax, byte ptr [esi] ecx, edi eci ; Inc	e with Zer	/2: nort loc_80542! o-Extend	: Jump if Above 57 018 mov 018 mov 018 add 018 pop 00C pop 00C pop	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi eti	9] ; Add		
Loc_80 10c_80 018 mov2x 018 mov 018 inc 018 mov2x 019 mov2x	B18 54257: ; Hov eax, byte ptr [esi] ecx, edi edi ; Inc edx, [ebp+var_D]; Ho	e with Zer rement by	2: ort loc_885429 o-Extend 1 ro-Extend	; Junp if Above 57 018 mov 018 add 018 pop 000 pop 008 pop 008 pop 004 pop	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp	9] ; Add	Name form	Dunandur
loc_89 10c_89 018 mov2x 018 mov 018 inc 018 inc 018 inc 018 inc	54257: ; Mov eax, byte ptr [esi] ecx, edi edi ; inc edx, [ebp+var_D]; Mo esi ; Inc	loc_805427 ja sh e with Zer rement by ve with Ze rement by	2: nort loc_805429	; Jump if Above 57 018 mov 018 add 018 add 018 pop 000 pop 008 pop 008 pop 008 retn	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp	9] ; Add ; Return	Near from	Procedure
■ → 53 10c_80 018 movzx 018 mov 018 mov 018 inc 018 inc 018 inc 018 inc 018 inc	54257: ; Hou eax, byte ptr [esi] ecx, edi edi ; Inc edx, [ebp+var_D] ; Ho esi ; Inc d1, al ; Log	loc_805427 ja sh we with Zer rement by ve with Zer rement by ical Exclu	2: Nort loc_80542! o-Extend 1 ro-Extend 1 sive OR sive OR	: Jump if Above 57 018 mov 018 mov 018 add 018 pop 000 pop 004 pop 009 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	.0] ; Add ; Return	Near from	Procedure
■ → ■ loc_89 018 mouzy 018 mouzy 018 inc 018 inc 018 inc 018 xor 018 xor 018 xor 018 xor	54257: ; Hou eax, byte ptr [esi] ecx, edi edi ; Inc edx, [ebp+var_D]; Ho esi ; Inc dl, al ; Log dl, cl ; Log dl +Zb	e with Zer rement by ve with Zer rement by ical Exclu	2: nort loc_805429 o-Extend 1 ro-Extend 1 sive OR sive OR sive OR	; Jump if Above 57 018 mov 018 add 018 pop 000 pop 000 pop 000 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	.0] ; Add ; Return	Near from	Procedure
loc_80 loc_80 018 mov2x 018 mov 018 inc 018 mov2x 018 inc 018 xor 018 xor 018 xor 018 xor	54257: ; Hou eax, byte ptr [esi] ecx, edi edi ; Inc edx, [ebp+var_D]; Ho esi ; Inc dl, al ; Log dl, <l ;="" log<br="">dl, 47h ; Log</l>	e with Zer rement by ue with Zer rement by ical Exclu ical Exclu	2: nort loc_805429 o-Extend 1 ro-Extend 1 sive OR sive OR sive OR	: Jump if Above 57 018 mov 018 add 018 pop 000 pop 000 pop 000 pop 000 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	9] ; Add ; Return	Near from	Procedur
Loc_80 10c_80 618 mouzx 618 mouzx 618 inc 618 inc 618 inc 618 xor 618 xor 618 xor 618 xor 618 xor 618 mou 618 mou	54257: ; Hou eax, byte ptr [esi] ecx, edi edi ; Inc edi, [ebp+var_D] ; Ho esi ; Inc dl, al ; Log dl, cl ; Log dl, cl ; Log dl, 47h ; Log ebb), dl	loc_805427 ja sh e with Zer rement by ue with Zer rement by ical Exclu ical Exclu	2: nort loc_80542! o-Extend 1 ro-Extend 1 sive OR sive OR sive OR	; Junp if Above 57 818 mov 018 add 018 pop 000 pop 008 pop 009 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	.0] ; Add ; Return	Near from	Procedur
loc_80 018 mov2x 018 mov 018 inc 018 inc 018 xor 018 xor 018 xor 018 xor 018 xor 018 xor 018 nov 018 inc 018 inc	54257: ; Hov eax, byte ptr [esi] ecx, edi edi ; Inc dl, al ; Log dl, cl ; Log dl, 47h ; Log [ebx], dl ebx, war Dl al ; Cd	loc_805427 ja sh we with Zer rement by we with Ze rement by ical Exclu ical Exclu ical Exclu rement by	2: nort loc_805422 o-Extend 1 ro-Extend 1 sive OR sive OR sive OR 1	; Jump if Above 57 018 mov 018 add 018 pop 006 pop 008 pop 008 pop 008 pop 009 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	9] ; Add ; Return	Near from	Procedur
10c_80 10c_80 118 mouzx 018 mouzx 018 inc 018 inc 018 inc 018 xor 018 xor 018 xor 018 xor 018 xor 018 add 018 inc	54257: ; Hou eax, byte ptr [esi] ecx, edi edi ; Inc edx, [ebp+var_D]; Ho esi ; Inc dl, al ; Log dl, 47h ; Log [ebx], dl ebx ; Inc [ebp+var_D], al ; Add	e with Zer rement by year with Zer rement by ical Exclu ical Exclu ical Exclu rement by	2: nort loc_80542! o-Extend 1 ro-Extend 1 sive OR sive OR sive OR 1 Operands	; Jump if Above 57 018 mov 018 mov 018 add 010 pop 000 pop 008 pop 009 retn decode1	(CF=0 & ZF=0) eax, [ebp+arg_ esp, 8 ebx esi edi ebp endp	.9] ; Add ; Return	Near from	Procedur

Figure 6 String encryption algorithm used in Linux samples

3.1.6 Network Communication Encryption

During the period of network communication performed by Linux samples, the 16-bit key hardcoded in the sample is the same as the 16-bit key in the Windows platform DoubleFantasy sample that encrypts the registry:

66 39 71 3c 0f 85 99 81 20 19 35 43 fe 9a 84 11

The calculated subkeys are:

E9 BE CD E0 A8 9F 4D DB C3 42 AC 2B 24 77 AB CB 5A C1 52 F8 5B 3E F0 78 CB 01 0A 69 29 8F 85 8C 03 9C 7C EF 5E 36 0E 8B C0 40 76 28 9C 9C F2 24 81 9D 02 72 4F 6A BB B5 5B 42 73 14 88 F2 73 75 8B F9 37 98 3B 9F 64 2B A3 C4 FF C7 8A 40 67 C1 25 9F 65 54 45 36 48 FF E2 86 05 1A F4 94 AC 2B 08 D5 E5 83 BE 2C AD EE D0 A6 98 CB 8D 35 ED EE C4 F0 8C F2 CD BA 87 03 54 27 3D 13 A7 9B 6A 05 C7 02 30 21 05 67 58 3B E6 A1 44 0A 37 16 3C 86 E9 BC 8B 20 1A 98 7E 28 E6 7F F7 CA F7 9E 38 31 7F F0 2F 93 11 2B 28 F0 FF 11 B7 FC 1C 63 86 CB

The custom algorithm for Linux samples is the same as for Windows, and there is only one encryption key to use (Because the Linux system does not have a registry, there is no registry encryption function). It uses the Windows platform Key for encryption and decryption, and we can see that both platforms use the same secondary key transformation algorithm (Specific details can be seen in the Windows encryption algorithm analysis part). © Antiy Labs. All rights reserved, welcome to non-destructive reprint.

10C_804	VE928:
87C mov	eax, [esi]
07C add	esi, 4 ; Add
87C nov	edx, [eax]
87C lea	eax, [edx+edx+1] ; Load Effective Address
07C inul	edx, eax ; Signed Hultiply
070 rol	edx, 5 ; Rotate Left
07C mov	[ebp+var_6C], edx
87C nov	eax, [esi]
87C add	esi, 4 ; Add
07C nov	ebx, [esi]
07C NOV	edx, [eax]
07C add	esi, 4 ; Add
87C nov	ecx, [ebx]
87C 1ea	eax, [edx+edx+1] ; Load Effective Address
87C 1nul	edx, eax ; Signed Multiply
87C NOV	eax, [epp+var_oC]
070 rol	edx, 5 ; Rotate Left
07C xor	eax, ecx ; Logical Exclusive DR
87C NOV	ecx, edx
07C and	ecx, 1Fh ; Logical AND
07C rol	eax, cl ; Rotate Left
07C nov	ecx, [edi]
07C add	edi, 4 ; Add
07C add	eax, ecx ; Add
07C nov	[ebx], eax
07C mov	eax, [es1]
07C nov	ecx, [eax]
07C and	[ebp+var_ou], 1Fh ; Logical AND
07C XOP	edx, ecx ; Logical Exclusive OR
876 NOV	ebx, [edi]
U/C NOUZX	ecx, byte ptr [ebp+var_60] ; Move with Zero-Extend
W/C add	edi, 4 ; Add
070 POI	edx, c1 ; Rotate Left
87C add	edx, ebx ; Add
87C NOV	[eax], edx
W/C dec	[epp+var_ov] ; Internal circulation 4 times
07C Jns	snort loc_804E920 ; Junp 1F Not Sign (SF=0)
07C inc [e	op+var_scj ; Increment by 1
erc cap [e	up+var_561, 4; External circulation 5 times
07C jle sh	ort loc_804E910 ; Jump if Less or Equal (ZF=1 SF1=OF)
nov ebx, [ebp+	arg_0] ANTIY
nov eax, [edi]	
add [ebx], eax	; Add
nov eax, [edi+	4]
add [ebx+8], e	ax ; Add
add esp, 6Ch	; Add
pop ebx	
pop esi	
pop edi	
pop ebp	
retn	; Return Near from Procedure

Figure 7 Secondary key transformation algorithm

3.1.7 Network control instruction

Instruction branch of Linux sample is basically the same as Windows. There are a total of nine instruction branches, and the function is also roughly the same. The instruction codes are: 0x4A, 0x4B, 0x60, 0x70, 0x75, 0x76, 0x78, 0x79, 0x80.

Figure 8 Instruction branch code for Linux samples

The function of instructions for Linux system is the same as the Windows sample function, only with the difference between obtaining system information. The following shows Linux sample accessing to information format:

•••••

00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	88	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	30	30	30	3A	30	30	2D	30	
30	2D	30	30	ØA	30	30	0-00-00-00-00.00									
31	3A	31	32	37	2E	30	2E	30	2E	31	ØA	30	30	30	3A	1:127.0.0.1.000:
30	30	2D	30	63	2D	32	39	2D	62	30	2D	31	33	2D	32	-b0-13-2
37	ØA	30	30	31	3A	31	39	32	2E	31	36	38	2E	32	32	7.001:192.168.22
2E	31	35	33	ØA	30	30	32	3A	31	34	36	39	36	34	33	.153.002:1469643
36	2E	35	33	34	39	35	36	38	2E	31	33	34	35	32	30	6.5349568.134520
34	30	30	2E	2D	31	30	38	30	33	37	35	35	30	38	20	4001080375508
32	35	39	30	34	33	39	34	36	38	37	ØA	30	30	33	3A	25904394687.003:
BA	FF	FF	FF	FF	85	CØ	74	21	65	33	35	18	ØA	30	30	吚t!e3500
34	3A	4E	4F	20	50	52	4F	58	59	20	48	45	52	45	ØA	4:NO PROXY HERE.
30	30	35	3A	ØA	30	33	30	3A	72	6F	6F	74	ØA	30	33	005:.030:root.03
31	3A	30	3A	30	ØA	30	33	32	3A	4C	69	6E	75	78	ØA	1:0:0.032:Linux.
30	33	33	3A	69	36	38	36	ØA	30	33	34	3A	32	2E	36	033:1686.034:2.6
2E	33	32	2D	32	31	2D	67	65	6E	65	72	69	63	ØA	30	.32-21-generic.0
33	35	3A	23	33	32	2D	55	62	75	6E	74	75	20	53	4D	35:#32-Übuntu SM
50	20	46	72	69	20	41	70	72	20	31	36	20	30	38	3A	P Fri Apr 16 08:
31	30	3A	30	32	20	55	54	43	20	32	30	31	30	ØA	30	10:02 UTC
33	36	3A	ØA	30	33	37	3A	ØA	30	33	38	3A	50	53	54	36:.037:.038:PST
ØA	30	33	39	3A	ØA	30	34	30	3A	54	68	75	20	46	65	.039:.040:Thu Fe
62	20	32	31	20	32	33	3A	35	34	3A	35	30	20	32	30	b 21 23:54:50 20
31	33	ØA	30	34	31	3A	46	72	69	20	46	65	62	20	32	2
32	20	30	37	3A	35	34	3A	35	30	20	32	30	31	33	ØA	2 07:54:50
30	34	32	3A	75	62	75	6E	74	75	ØA	30	34	33	3A	7A	042:ubuntu.043:z
68	5F	43	4E	2E	75	74	66	38	ØA	30	34	34	3A	ØA	30	h CN.utf8.044:.0
34	35	3A	30	20	59	65	61	72	73	20	33	20	44	61	79	45:0 Years 3 Day
73	20	31	20	48	6F	75	72	73	20	32	20	4D	69	6E	75	s 1 Hours 2 Minu
74	65	73	ØA	30	34	36	3A	30	ØA	30	34	37	3A	32	ØA	tes.046:0.047 📶
30	34	38	3A	61	61	61	00	00	00	00	00	00	00	00	00	048:aaa
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ANTIY

Figure 9 Linux sample accessing to information format

NO.	Description	NO.	Description	NO.	Description
000	MAC	033	Platform type (i386\i686)	042	OS (ubuntu)
001	IP	034	System kernel version	043	Regional language
					(zh_cn.utf8)
002	Version	035	OS type time	044	Unknown
003	Clsid	036	Unknown	045	System uptime
004	Settings	037	Unknown	046	Unknown
	information of proxy				
005	Unknown	038	PST	047	Unknown
030	Username	039	Unknown	048	Sample name
031	Password	040	Time		
032	OS type(eg. Linux)	041	Time		

The description of obtaining information format:

 $\ensuremath{\mathbb{C}}$ Antiy Labs. All rights reserved, welcome to non-destructive reprint.

4 Attack Payload for Solaris SPARC

Equation may have created the first malware with Rootkit features in SPARC architecture, and provide cover for DoubleFantasy targeting Solaris.

4.1 Solaris and SPARC

Solaris is the computer operating system which is developed by Sun Microsystems. It adopts SPARC or X86, and is mainly used for workstations, servers, operating systems. The malicious code on Solaris platform is rare. From Antiy's statistic, there are no more than 60 kinds of malicious code variants which are binary compiled form even in the period of SUN OS. They are almost based on X86 platform.

The full name of SPARC is Scalable Processor Architecture, one of microprocessor architecture. Its instruction set is significantly differ from X86 and has its own unique window, delay slot, the process call features.

The computer which has SPARC is generally used for industrial, space-related areas. It is seldom used in similar IDC and general IT scenario.

4.2 Hidden Rootkits

This is a rootkit program on the Solaris platform of the SPARC architecture. It is primarily responsible for hiding the main function sample files like other rootkit programs, as well as the associated derived files and itself, including process, file, and service information. It runs on the target computer firstly, investigates system environment, configuration information, network status of the target computer, and hides the specified files and processes.

4.2.1 File Tags

Name	Trojan[Rootkit]/Solaris. Equation
Original file name	
MD5	
Processor	SPARC-32
architecture	
Size	
Format	BinExecute/ELF

1	ANTIY	Revealing the multi-platform operational capability of Equation Gro	oup
	Timestamp	n/a	
	Signature	None	
	Shell	None	
	Language	Linux C	

4.2.2 Main function

The samples have 249 functions, as shown in the sample main function flow. Some of the functions are relatively complex. There are a variety of encrypted data in the samples.

Figure 10 Main functions of the samples

After running, it can combine two sets of strings which are according to the internal configuration to generate file name as its own new file name, and copy itself to the / sbin / directory.

String 1	String 2
audit	admr
boot	agent
cache	conf
core	client
cron	info
init	mgr
inet	statd
filesys	serv

We can find that these words are highly frequency words or suffix used in system files and system command. Thus, the file name of the sample is carefully structured and confusing. The general administrator is also difficult to detect abnormal situation in the system files.

4.2.4 Starting script

The script realizes the startup by using the service. It creates the script in the etc / rc.d / directory (S85s%). This script will run with the start parameter as the service which is executed when open the computer.

000156F8 restore

Figure 11 Service script

The content of S85s% document is encrypted. After running, it can call its own function to decrypt, and modify the variable of the file name. Then it can write into /etc/rc.d/ directory (It will be modified to the path of the sample in figure below % E).

u 🕰 🖂		
0001511C ad	d %En uar 801 %o0	
00015410 au	thi $\frac{91}{100}$	of the second
00013420 50	ll decede	## (chip/ch_script
00015424 Ld.	t dwowd 91710 %of 1	## /chip /ch
00015420 50	c uworu_21710, 601 :	#:/SUII/SI
00015428		# # Descuist (s) 4005 4007 to Sus Missessters Iss
00015428		# Copyright (c) 1995, 1997 by Sun Microsystems, Inc.
00015428		# HII rights reserved.
00015428		
00015428		#ident "@(#)%N 1.2 97/12/08 SMI"
00015428		
00015428	1	case "\$1" in
00015428	1	'start')
00015428	1	%E
00015428	1	;;
00015428	1	
00015428	1	'stop')
00015428	1	;;
00015428	t.	2.727
00015428	t.	*)
00015428	t.	echo "Usage: \$0 { start stop }"
00015428	1	exit 1
00015428	t (;;
00015428	1	esac
00015428	1	exit 0
0001542C ca	ll modify shell 🕴	Perfect the script variable
00015430 mo	v %10, %01 !	33520
00015434 or	cc %00, 0, %i0	
00015438 bn	e locret 15454	
0001543C no	P	ANTIY
	No.	

Figure 12 The content of the script after decryption

4.2.5 Hidden directory and files

The sample will generate MD5 based on HOSTID of the target computer, then calculate class base64 algorithm, take the first six bits finally. It can splice .tmp with the first six bits into a folder name and create the folder.

		Revealing the mu	lti	-platform operational capability of Equation
ANTIY				
! Creat tmp%6s	folder	Eramo		
: HELLIDUCES.	up-based	TT dHC		
create_MD5Pat	:h :		•	CODE XREF: path:loc_1390C1p
var_30	= -0x3	0		
	save orcc	%sp, −0x90, %sp %i0, 0, %10		
	sethi be	%hi(-0x10000000) locret_15268	,	%i0
	set add	-0xFFFFFF7, %i0 %fp, var_30, %l1	Ľ	
	call	get_arg_stat	1	Take the folder parameter Istat put into var
	MOV Mov	%11, %01 0x1C0, %01		
	call	%00, %10 mkdir		
	mov Cmp	%10, %00 %00, 0	1	%5.tmp%65 Directory
	cmp bne	%i0, 0 locret_15268		
	mov call	%11, %01 sub_1A378	1	Create directory successfully
	mov mov call	%10, %00 %10, %00 Sub 1A480		
	MOV	%11, %01		ANTIY

Figure 13 Folder name created by samples

The sample will also copy other files to execute according to the running parameters. It is responsible for hiding all the files in this folder.

4.2.6 Version judgement

The sample can determine that the system is not sun4m, sun4d version through the uname function. And it can determine the system architecture by reading / dev / ksyms files: i386, ia64, sparc, sparcv9. To make sure the SPARC architecture and the release version is 5.1.

Figure 10 Version judgement

© Antiy Labs. All rights reserved, welcome to non-destructive reprint.

Group

There are multiple encryption algorithms inside the sample. One of the encryption algorithms was called multiple times. We analyzed and decrypted the data.

		1	CODE	XREF:	decode+38⊥j
ldub	[%i1+%g1], %o4				•
add	%i0, %g1, %o3				
xor	%o4, 0x47, %o2				
btog	%o5, %o2				
btog	%g1, %o2				
stb	%02, [%03-1]				
inc	%g1				
cmp	%g1, %i2				
bcs	1oc 1FB24				
add	%o5, %o4, %o5				

Figure 15 Encryption algorithm

Decrypting encrypted data as follows:

Offset	Plaintext	Offset	Plaintext	
0x10cd0	/platform/%s/kernel/sparcv9/	0x11830	mgr	
	unix			
0x10cf8	/var/sadm/i	0x11838	statd	
0x10d28	SUNW	0x11840	serv	
0x10d30	/var/sadm/patch/%s/READM	0x11848	svcd	
	E.%s			
0x10d50	var/sadm/pkg/%s/pkginfo	0x11851	\	
0x10d70	PATCHLIST	0x11855	$\setminus \mathbf{W}$	
0x10d80	/var/sadm/pkg/%s/pkginfo	0x11859	\O	
0x10da0	PATCH_INFO	0x1185d	\G	
0x10db8	Requires:	0x11861	\mathbf{w}	
0x10dc8	Ob	0x11865	/o	
0x10dcc	!8I 秨;	0x11869	\g	
0x10dd8	Incompatibles:	0x1186d	\	
0x10df0	module_main	0x11871	\	
0x10e10	% s/% s	0x11878	audit	
0x10e18	date	0x11880	boot	
0x10e20	/etc/mnttab	0x11888	cache	

ÅNTIY					
0x10e38	swap	0x11890	core		
0x10e40	tmpfs	0x11898	cron		
0x10e48	ro	0x118a0	init		
0x10e50	noexec	0x118a8	inet		
0x10e60	D	0x118b0	filesys		
0x10e68	sun4m	0x118c0	key		
0x10e70	sun4d	0x118c8	ntp		
0x10e78	sparc	0x118d0	root		
0x10e80	/dev/ksyms	0x118d8	sys		
0x10e98	sparc	0x118e0	rpcd		
0x10ea0	i386	0x118e8	vol		
0x10ea8	sparcv	0x11940	/		
0x10eb8	ia64	0x11948	/usr/bin/		
0x10ec0	sparc	0x11958	/bin/		
0x10ec8	SunOS	0x11960	/sbin/		
0x10ed0	Generic	0x11970	var/tmp/faipprep001		
0x10ee0	boothowto	0x11990	init		
0x10ef8	/dev/ksyms	0x11998	fini		
0x10f08	/dev/kmem	0x119a0	minit		
0x116d0	/var/tmp/	0x119a8	fini		
0x116e0	/lib/	0x119b0	mdata		
0x116e8	/dev/	0x119b8	priocntlsys		
0x116f0	/etc/	0x119c8	/dev/ksyms		
0x116f8	/	0x119d8	init		
0x11700	%s.tmp%6s	0x119e0	/dev/kmem		
0x11710	#!/sbin/sh	0x119f0	/dev/mem		
0x11800	admr	0x11a00	/proc/self		
0x1180a	NCk	0x11a10	.got		
0x11810	conf	0x11a18	.got		
0x11818	client	0x11a28	.got		
0x11828	info	0x11a30	GLOBAL_OFFSET_TAB		
			LE		

4.2.8 Decrypting and executing other codes / samples

The sample adds the encrypted data at the end of the file. After running, it can decide the size of the encrypted data through the end data, parse and read the data through the defined format. It may load and execute after decrypting the data.

00056890h:	1C	AD	6C	49	E9	AB	37	4D	9D	43	ΕE	A5	6B	A 6	F7	5C	;	.璴ェ楂?M浻睽床 ∖
000568a0h:	FC	81	49	17	В2	FC	AC	E5	FF	A1	ЗB	Α5	5A	18	AD	A5	;	鼇I.颤 ? .
000568b0h:	9D	7D	F8	F8	2 B	6F	6A	47	90	4A	5D	15	A2	0C	9C	4A	;	潁 +ojG怞].?淛
000568c0h:	28	6B	74	90	4C	AE	70	7D	1A	OC	02	67	E5	FO	99	10	;	(kt怢畃)g屦?
000568d0h:	AC	96	Β1	17	36	9B	52	ЗE	77	FЗ	OВ	48	48	ΕO	92	49	;	瑬?6汻>w?HH鄴I
000568e0h:	0C	24	1D	CD	F9	F1	A1	69	01	FC	03	04	F9	ЗB	6B	34	;	.\$.往瘛i.?.?k4
000568f0h:	50	АЗ	D4	1D	8C	D9	8F	00	B2	04	33	Α9	67	D9	5C	43	;	PT.屬??3ゞ賊C
00056900h:	30	ΕD	01	80	00	00	00	00	00	00	00	OF	00	00	00	13	;	0?€
00056910h:	61	Α7	08	5A	67	71	DC	A4	53	D4	10	EF	41	90	65	9D	;	a?Zgq埭S?顰恊
00056920h:	75	F 9	82	03	02	10	03	00	04	38	A2						\$	u的

4.3 DoubleFantasy modules for SPARC

The function of the sample is the same with the one on Windows and Linux platform. The main differences are CPU architecture, assembly instructions, storage location of the configuration information and obtained system information.

Name	Trojan/Solaris. Double Fantasy
Original File Name	
MD5	
Processor Architecture	SPARC-32
Size	
Format	BinExecute/ELF
Timestamp	n/a
Signature	None
Shell	None
Language	Linux C

4.3.1 File Tags

4.3.2 Basic functions

- Initializing the string, dynamic array, decrypt the internal configuration information.
- Connecting Google or Yahoo URL to determine network connectivity.
- Connecting remote URL address. Its remote C & C server address is xxxech.com. The corresponding IP is xxx.xxx.235.237 (One IP of Windows:xxx.xxx.235.235. xxx.xxx.235.235. It belongs to the same network segment. It's basically determined as the same attack source). It will collect the host information, back to the above address, and wait for the remote host to send instructions.
- © Antiy Labs. All rights reserved, welcome to non-destructive reprint.

- Reading the system account password file, retrieve user information and password.
- Run with the daemon mode in the sample, achieve the ability of self-protection.
- Use a variety of encryption algorithms to encrypt string information.
- Collecting detailed system information and sending back to the server (such as computer name, IP address, process information, account information, etc., the details can be seen in detailed analysis later in this chapter).
- Have 7 network instructions, same functions with Windows version, execute the corresponding instruction operation. The detailed functions of the corresponding command can be seen in detailed analysis later in this chapter.

4.3.3 Configuring Information Encryption

Due to Solaris system does not have the Windows registry, the configuration data will be directly used after decryption. We can see one of the decryption algorithms as follows. The decryption function is called for 63 times.

Figure 16 Strings decryption

Decrypted string information can be seen in the table below:

Offset	Plaintext	Offset	Plaintext
0x1346c	' 200 Connection established'	0x13560	'Content-Length:'

ANTI	Y		
0x13470	' 200 OK'	0x13458	'Content-Length: %d'
0x133fc	' days '	0x13460	'Content-length: %d'
0x13400	'hrs '	0x13488	'Cookie: %s'
0x13540	'HTTP/1.1\r\n'	0x13554	'GET '
0x1340c	'logged in'	0x13544	'Host: '
0x13404	' mins '	0x13474	'HTTP/'
0x13408	' total'	0x13478	'HTTP/1.0 200 OK'
0x133f4	' yrs '	0x13534	'http://'
0x133d8		0x13384	'I_MASK'
0x13584	'%02x-%02x-%02x-%02x-%02x-%02x	0x133ec	'LANG'
0x13594	'%u.%u.%u.%u'	0x133f0	'LANGUAGE'
0x134dc	'/.mozilla/'	0x133c0	'LD_PRELOAD='
0x134e0	'/.mozilla/firefox/'	0x13418	'M_MASK'
0x134c4	'/.netscape'	0x133e4	'MACHTYPE'
0x13438	'/bin/false'	0x134b4	'network.proxy.http'
0x13520	'/bin/false'	0x134b8	'network.proxy.http_port'
0x1338c	'/dev/null'	0x134bc	'network.proxy.ssl'
0x133b0	'/dev/null'	0x134c0	'network.proxy.ssl_port'
0x134c8	'/preferences.js'	0x1348c	'p'
0x134cc	'/prefs.js'	0x133b8	'PATH'
0x13428	'/proc'	0x133bc	'PATH='
0x1343c	'/sbin/nologin'	0x1355c	'POST '
0x13524	'/sbin/nologin'	0x13410	'process info: '
0x13390	'/tmp/'	0x1354c	'Proxy-Connection: close\r\n'
0x133b4	'/tmp/'	0x134d8	'S'
0x135a0	'@C\xe3\xc0'	0x1353c	'S'
0x13558	'\r\n'	0x133c4	'sendmail'
0x13464	'\r\n\r\n'	0x13484	'SESSID="0%x%s%x:eac:
			%lu:%lu"\r\n'
0x13588	'0x%02x%02x%02x%02x%02x%	0x1349c	'user_pref("'
	02x'		
0x1341c	'0xA857'	0x134a0	'user_pref("%s"
0x13388	'0xAA%llu'	0x134a8	'user_pref("%s%s'

Revealing the multi-platform operational capability of Equation Group

	1			
0x13568	'CONNECT '	0x134f8	'v'	
0x13550	'Connection: $close r/n'$	0x13548	'y'''	
0x13454	'Content-Length:'	0x1347c	'y"y"'	
0x1345c	'Content-length:'			

Another encrypted string algorithm is as the required configuration information when

encrypted sample is running. The decryption algorithm is as follows:

u u	oHttzb2 e semptyrrnot
00022CE4 1oc_22CE4: 00022CB8 00022CE4 070 c1rb [%00+%10] 00022CB8 070	10c_22CB8: ! 10=Ciphertext length 8 cmp %o4, %10
00022CBC 07	ð bge,a locret_22CE8
	. W
00022CE8 00022CE8 locret_222CE8: 00022CE8 070 ret 00022CE2 070 restore %g0, %o0, %o0 00022CEC f End of function decode_str_sll 00022CEC	00022CC0 070 clrb [\$00*\$10] ? 0 B-Newly requested memory space address 00022CC4 070 10 dsb [\$10*\$40+1], \$05' ? Ciphertoxt by byte 00022CC6 070 slot \$65, 3, \$g1 0 0 0 0 12 0 1 0 0 1 0 1 0 1 0 0 3 3 1 0 0 2 3 1 0 0 3 3 1 2 3 1 0 0 3 3 1 2 3 1 0 0 3 3 1 2 3 1 0 0 3 3 1 2 3 1 0 0 3 3 1 2 3 1 0 0 3 3 1 1 0 0 1 3 1 1 0 0 1 3 1 1
	00022CD8 070 stb \$g1, [\$00*\$04] 00022CDC 070 ba 10c_22CB8 ! 10=Ciphertext length 00022CE0 070 inc \$04 ANTIY

Figure 17 Another decryption algorithm

The content of decryption is shown in the table below:

Offset	Plaintext	Offset	Plaintext
0x13c12	'www.google.com'	0x1439b	'ntp'
0x13d11	'www.yahoo.com'	0x143ac	'mail'
0x13e32	'\x91 xxx atech.com'	0x143bd	'mysql'
0x14034	'\\X'	0x143cd	'named'
0x1406c	'//'	0x143db	'sys'
0x140e7	$\label{eq:constraint} $$ x91puX;\xc7;\xc7Xupp\x8dTq\x01{User-Agent:} $	0x143ec	'smtp'
	Mozilla/5.0 (X11; U; Solaris; en-US; rv:1.7.5)		
	Gecko/20041111 Firefox/1.0\r\n'		
0x1419d	'Accept: image/png	0x143fe	'nobody'
0x14314		0x1440c	'auth'
0x1437e	'daemon'	0x1441a	'LP'
0x1438b	'adm'	0x1442c	'UUCP'

Network communication encryption 4.3.4

The custom algorithm for the Solaris samples is the same as the one on Windows. There is only one encrypted key (Solaris system does not have a registry. There is no registry encryption function). The key is the same as the one of registry encryption data on Windows platform. The custom encryption algorithms of the two platforms are the same (the specific algorithm can participate in 3.1.6 encryption algorithm analysis).

After analysis, the original 16-bit key of samples on Solaris is :

66 39 71 3c Of 85 99 81 20 19 35 43 fe 9a 84 11

Address of the original 16-bit key in file is the same length as the original 16-bit key of Windows.

Due to that Solaris and Windows samples generate the same algorithm of network communication sub-key, it can generate a sub key:

E9 BE CD E0 A8 9F 4D DB C3 42 AC 2B 24 77 AB CB 5A C1 52 F8 5B 3E F0 78 CB 01 0A 69 29 8F 85 8C 03 9C 7C EF 5E 36 0E 8B C0 40 76 28 9C 9C F2 24 81 9D 02 72 4F 6A BB B5 5B 42 73 14 88 F2 73 75 8B F9 37 98 3B 9F 64 2B A3 C4 FF C7 8A 40 67 C1 25 9F 65 54 45 36 48 FF E2 86 05 1A F4 94 AC 2B 08 D5 E5 83 BE 2C AD EE D0 A6 98 CB 8D 35 ED EE C4 F0 8C F2 CD BA 87 03 54 27 3D 13 A7 9B 6A 05 C7 02 30 21 05 67 58 3B E6 A1 44 0A 37 16 3C 86 E9 BC 8B 20 1A 98 7E 28 E6 7F F7 CA F7 9E 38 31 7F F0 2F 93 11 2B 28 F0 FF 11 B7 FC 1C 63 86 CB

This sub key is used for encrypting and decrypting to send and receive data.

4.3.5 Network control instruction

In the analysis of Solaris samples, we found its function is less than Windows sample orders. There are only seven instructions on Solaris whose function is roughly the same as Windows. Here is the comparison of IDA on two platforms. It can be seen that the instructions of the samples on Solaris is much less and easier than that on Windows.

Figure 18 Comparison of network instruction on Windows and Solaris

After analysis, we found that the Solaris sample instruction function is not implemented above. At first, we thought that the instruction function of Solaris sample has not yet been completed, but after further analysis, we found that Solaris samples use a special kind of dynamic calculation to jump to a different branch instruction code, the red part below is the jump instruction after dynamic calculation.

Figure 19 Solaris Branch instruction function

The functions of Solaris instructions are described as below, which is generally the same as Windows instructions:

Hexadecimal instruction code	Command function
0x42	Clear traces of infection, delete itself
0x4A	Create a file
0x44	Written in file
0x56	Execute file

0x4B	Return read file
0x60	Collect various information and return (specific format see chart below)
0x70	Update sample configuration information
0x75	Update sample SLEEP time and collect information and return
0x76	Update C&C server address

The download executable samples are the same as Windows, use the same instruction tag through three steps (create, write, execute) to complete the download and execution function, which is different only in code structure. Solaris integrates three instructions to a function.

When executing file, escalate privilege of file first, then use the excele function with parameter executable files,

Parameter 1:file B path

Parameter 2:file B or "sendmail"(relates to mails suspected)

Parameter 3:0

Parameter 4:PATH=%PATH% (environment variable)

For instance: execle("/usr/bin/sample", "sample", NULL, %envp%);

		<pre>! CODE XREF: execute_file+194fj</pre>
set	0x58, %g1	
mov	0x1D, %01	
call	mul_1D	t 'sendmail'
1d 👘	[%17+%g1], %o0	
mov	%00, %01	t arg0
MOV	%14, %00	! status
		<pre>! CODE XREF: execute_file+1A0fj</pre>
mov	%10, %o3	! PATH=%PATH% LD_PRELOAD=
call	_execle	
MOV	0, %02	
		ANTIY

Figure 20 Executable file parameter

The instruction function and packet format of Solaris samples is the same as Windows samples, the full explanation of instruction function and packet format are in section 3.5.6: analysis of instructions of Windows samples.

The collected system information of Solaris samples is slightly different from that of Windows, as follows:

Computer name	HostID	MAC address	IP address	User name	Typically user's

ANTIY		Revealing the	multi-platform o	perational capabilit	y of Equation Grou
					full name
User UID/GID	System hardware	System	Default	Current	System process
	structure	detailed time	Language types	running path	information
	information				

5 Summary

5.1 Improvement based on real threats

Our disclosures of great attack organizations' capabilities that cover all functional platforms proved to be a real threat not fictitious.

The complicated techniques of attack load, precise design depth and comprehensive environment covering platform have shown the technical capabilities of Equation attacks. The persistent attacks targeting at various certain goals also embody the attackers' firmly attacking intention. In previous studies, Antiy defined the organizations that equipped with this kind of ability as A²PT and summarized many characteristics of similar attacks from malware payload perspective. These standards are conforming to the behavior and ability of Equations.

A ² PT characteristic by Antiy	Equations implementation and working characteristic
Sufficient Oday reserve	Fanny exploits LNK 0day, MS09-025
Highly complex and modular load	Highly complex, modular EquationDrug and GragFish attack component
Local encryption block analysis,	Configuration data resources encryption,
strictly encrypt communication and camouflage	Registry, network communication encryption
Multiple implant ways	Network intrusion
	Logistics hijack (maybe)
	Personnel on-site implant(maybe)
Basically complete the carrier	Bootkit start
technology Without file and memory segment block analysis	Registry stores samples, Segmented decryption
Persist to expand depth (firmware),	Hard drive firmware changes
breadth (firewall, mail gateway,	Firewall and other network security devices implant
lateral movement in Lan)	Persistence targeted at mail server
Completely cover all operating system platforms (including mobile)	Windows, Linux, Solaris and OS X samples

As we have previously outlined, the related attack organizations own " organic network

attack teams and huge supporting engineering system and structured attack arsenal, © Antiy Labs. All rights reserved, welcome to non-destructive reprint.

powerful vulnerability collection and analysis and exploration capacity, and associated resources reserves, as well as systematic operation procedures and manuals, with features as equipment system covering the whole situation, exploitation tools and malicious code that covers the whole platform, persistent ability covering the whole link. In face of such systematic, industrial-strength and highly targeted attacks, perpetual motion must be stop and silver bullet misfiring. Only a clear strategy, full cost investment, defense against systematic ^[11] attacks, through long-term, solid hard work and ability construction can gradually achieve the initiative.

In some domestic reports about Equation, they read the persistent implant targeting at firmware in high-value targets as that all the current hard disk owns backdoor, which is a misunderstanding. However, when an organization's ability is big enough and only can be speculated and imaged, it can cause panic, which results in the query of "abuse of supply chain and information chain advantage".

5.2 Antiy's efforts

Starting from 2010, Antiy successively analyzed the advanced attacks or attack organizations as "Stuxnet", "Duqu", "Flame", "APT - TOCS (Lotus) ", "White Elephant", "Ukraine Power Outage", etc., and release hundreds of pages analysis reports accumulatively. There is no doubt that the ability of advanced threat detection products is relying on solid and effective analysis with continuously improvement. Antiy released product systems for advanced threat detection and situational awareness: **PTD** (Persistent Threat Detection System) can help users capture the network load and lateral movement; IEP (Intelligent Endpoint Protection System) provide multiple defense strategies including "Whitelist + Security baseline", **PTA** (Persistent Threat Analysis System) provides the ability to deeply analyze threat payload through dynamic and static methods. Antiy also plays an important role in **situational awareness** and **early warning platforms** of multiple industries and departments with overall design support, development and key detection ability.

Antiy focuses on the next generation threat detection engine, highly customized in-depth analysis, interactive visual analysis and knowledge and intelligence support targeted at assets and threats.

5.3 Future work

The great attack organizations' coverage ability has triggered a concern of security that "All cannot be trusted" for all global users. Last year, some domestic reports on Equation interpreted the actions that attackers inject and achieve persistence in hard drive firmware of high-value target, and concluded hard drive with backdoors is the current mainstream. It is of course a misunderstanding, but we must say that when the ability of a super attack organization is o strong that we can only imagine and speculate it. This situation must lead to the mass panic. Therefore, the question on superpower to "abuse of supply chain and information flow advantage" comes out.

The recent leakage of Equations code and exposure of ANT equipped system enable us to believe that relevant reserves of exploits and attack mentality have flowed into network crime, and even terrorist organizations. Due to the low reproduction cost of existing network attack technology, there exist more serious cyber arms proliferation risks. Therefore, if superpowers can reasonably control their arms development speed and scale of network and effectively prevent and control network arms proliferation that caused by lack of responsibility are the key factors to reach a more secure network.

We are looking forward to a more secure network world!

Appendix 1: References

[1] Equation Group Cyber Weapons Auction - Invitation

https://github.com/theshadowbrokers/EQGRP-AUCTION

[2] Shadow Brokers reveals list of Servers Hacked by the NSA

http://thehackernews.com/2016/10/nsa-shadow-brokers-hacking.html

- [3] Antiy The Trojan modifying firmware Exploration in attack components of Equation Group http://www.antiy.com/response/EQUATION ANTIY REPORT.html
- [4] Antiy Analysis of encryption skills used in Equation Group attack components

http://www.antiy.com/response/Equation part of the component analysis of cryptographic t

echniques.html

[5] Kaspersky: Equation: The Death Star of Malware Galaxy

http://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/

[6] Kaspersky: A Fanny Equation: "I am your father, Stuxnet"

http://securelist.com/blog/research/68787/a-fanny-equation-i-am-your-father-stuxnet/

[7] Kaspersky: Equation Group: from Houston with love

http://securelist.com/blog/research/68877/equation-group-from-houston-with-love/

[8] Kaspersky: Equation group questions and answers

https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf

[9] The SPARC Architecture

https://en.wikipedia.org/wiki/SPARC

[10] The Solaris System

https://en.wikipedia.org/wiki/Solaris (operating system)

[11] Huang Sheng: Thoughts on Network Defense in Depth

http://www.antiy.com/wtc/2015/02_Joe.pdf

Appendix 2 : About Antiy

Starting from antivirus engine research and development team, Antiy now has developed into a group level security enterprise with Antiy Labs as headquarters and both enterprise security company and mobile security company as two wings. Antiy always adheres to the belief of securing and protecting user value and advocates independent research and innovation, forming the layout of the capacity of the whole chain in the following aspects: security detection engine, mobile security, network protocol reduction analysis, dynamic analysis, terminal protection, and virtualization security and so on. Antiy has fostered nationwide detection and monitoring capability with our products and services covering multiple countries. With effective combination of techniques and products of both big data analysis and security visualization, Antiy expands the group work competence of engineers and shortens the product response cycle by massive automation sample analysis platform. With years' continual accumulation of massive security threat knowledge library, Antiy promotes the solution of situational awareness and monitoring and early warning that targets against APT and at scale network and critical infrastructure, combining with the experience of integrated application of big data analysis and security visualization.

More than 30 famous security vendors and IT vendors select Antiy as their partner of detection capability. The antivirus engine of Antiy has provided security protection for nearly a hundred thousand network devices and security devices and nearly two hundred million mobile phones. The mobile detection engine of Antiy was the first Chinses product that won AV-TEST reward in the world. The technical strength of Antiy has been recognized by industry management organizations, customers and partners. Antiy has consecutively been awarded the qualification of national security emergency support unit four times and one of the six of CNNVD first-level support units. Antiy is the significant enterprise node of China emergency response system, which has provided alarms, in-depth analysis or systematic solution in a few severe security incidents, such as Code Red, Dvldr, Stuxnet, Bash Shellcode, Sandworm, and Equation and so on.

More information about Antiy Labs:	http://www.antiy.com	(Chinese)
	http://www.antiy.net	(English)
More information about enterprise security company:	http://www.antiy.cn	
More information about Antiy AVL TEAM:	http://www.avlsec.com	ı