
Zscaler Blog

Get the latest Zscaler blog updates in your inbox
Subscribe

THREATLABZ RESEARCH

Copy URL

Security Research

DodgeBox: A deep dive into the
updated arsenal of APT41 | Part 1

YIN HONG CHANG,

SUDEEP SINGH
JULY 10, 2024 - 19 MIN READ

https://www.zscaler.com/
https://www.zscaler.com/blogs?topic=threatlabz-research
mailto:?subject=DodgeBox%3A%20A%20deep%20dive%20into%20the%20updated%20arsenal%20of%20APT41%20%7C%20Part%201&body=https://tinyurl.com/2baotrdz
https://www.facebook.com/sharer/sharer.php?u=https://tinyurl.com/2baotrdz
https://twitter.com/intent/tweet?text=https://tinyurl.com/2baotrdz%20%E2%80%94%20DodgeBox%3A%20A%20deep%20dive%20into%20the%20updated%20arsenal%20of%20APT41%20%7C%20Part%201%22
https://www.linkedin.com/sharing/share-offsite/?url=https://tinyurl.com/2baotrdz
https://www.zscaler.com/blogs/feeds/security-research
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/yinhongchang
https://www.zscaler.com/author/sudeepsingh

Introduction

This is Part 1 of our two-part technical deep dive into APT41’s new tooling, which
includes DodgeBox and MoonWalk. For details about MoonWalk, go to Part 2.

In April 2024, Zscaler ThreatLabz uncovered a previously unknown loader called

DodgeBox. Upon further analysis, striking similarities were found between

DodgeBox and variants of StealthVector, a tool associated with the China-based

advanced persistent threat (APT) actor APT41 / Earth Baku. DodgeBox is a loader

that proceeds to load a new backdoor named MoonWalk. MoonWalk shares

many evasion techniques implemented in DodgeBox and utilizes Google Drive for

command-and-control (C2) communication.

This two-part blog series aims to provide detailed technical analysis of both the

DodgeBox loader and the MoonWalk backdoor. The goal is to assist blue teams in

comprehending this emerging threat and o�er insights into our attribution of the

threat. Part 1 will o�er an in-depth examination of the DodgeBox loader,

highlighting its distinct characteristics and resemblances to StealthVector while

Part 2 will delve into the intricacies of the MoonWalk backdoor.

Key Takeaways

APT41, a China-based nation state threat actor known for its campaigns in

Southeast Asian countries, has recently been observed deploying an

advanced and upgraded version of StealthVector. We have named this new

variant DodgeBox.

DodgeBox incorporates various evasive techniques such as call stack

spoo�ng, DLL sideloading, DLL hollowing and environmental guardrails.

These techniques work together to signi�cantly decrease the chances of

detection by security defenses.

Upon analyzing DodgeBox, we discovered signi�cant resemblances to the

well-known StealthVector loader used by APT41. These similarities,

combined with the distinct utilization of DLL side loading and the acquisition

of telemetry data from targeted countries, have led us to attribute this new

loader to APT41 / Earth Baku with a moderate level of con�dence.

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2
https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

Technical Analysis

Attack chain

APT41 employs DLL sideloading as a means of executing DodgeBox. They utilize a

legitimate executable (taskhost.exe), signed by Sandboxie, to sideload a malicious

DLL (sbiedll.dll). This malicious DLL, DodgeBox, serves as a loader and is

responsible for decrypting a second stage payload from an encrypted DAT �le

(sbiedll.dat). The decrypted payload, MoonWalk functions as a backdoor that

abuses Google Drive for command-and-control (C2) communication. The �gure

below illustrates the attack chain at a high level.

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk

backdoor.

DodgeBox analysis

DodgeBox, a re�ective DLL loader written in C, showcases similarities to

StealthVector in terms of concept but incorporates signi�cant improvements in its

implementation. It o�ers various capabilities, including decrypting and loading

embedded DLLs, conducting environment checks and bindings, and executing

cleanup procedures. What sets DodgeBox apart from other malware is its unique

algorithms and techniques.

During our threat hunting activities, we came across two DodgeBox samples that

were designed to be sideloaded by signed legitimate executables. One of these

executables was developed by Sandboxie (SandboxieWUAU.exe), while the

other was developed by AhnLab. All exports within the DLL point to a single

function that primarily invokes the main function of the malware, as illustrated

below:

void SbieDll_Hook()
{
 if (dwExportCalled)
 {
 Sleep(0xFFFFFFFF);
 }
 else
 {
 hSbieDll_ = hSbieDll;
 dwExportCalled = 1;
 MalwareMain();
 }
}

MalwareMain implements the main functionality of DodgeBox, and can be

broken down into three main phases:

1. Decryption of DodgeBox’s con�guration

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for encrypting its

con�guration. AES-CFB transforms AES from a block cipher into a stream cipher,

allowing for the encryption of data with di�erent lengths without requiring

padding. The encrypted con�guration is embedded within the .data section of

the binary. To ensure the integrity of the con�guration, DodgeBox utilizes hard-

coded MD5 hashes to validate both the embedded AES keys and the encrypted

con�guration. For reference, a sample of DodgeBox's decrypted con�guration can

be found in the Appendix section of this blog. We will reference this sample

con�guration using the variable Config in the following sections.

2. Execution guardrails and environment setup

After decrypting its con�guration, DodgeBox performs several environment

checks to ensure it is running on its intended target.

Execution guardrail: Argument check

DodgeBox starts by verifying that the process was launched with the correct

arguments. It scans the argv parameter for a speci�c string de�ned

in Config.szArgFlag . Next, it calculates the MD5 hash of the subsequent

argument and compares it to the hash speci�ed

in Config.rgbArgFlagValueMD5 . In this case, DodgeBox expects the

arguments to include --type driver . If this veri�cation check fails, the process

is terminated.

Environment setup: API Resolution

Afterwards, DodgeBox proceeds to resolve multiple APIs that are utilized for

additional environment checks and setup. Notably, DodgeBox employs a salted

FNV1a hash for DLL and function names. This salted hash mechanism aids

DodgeBox in evading static detections that typically search for hashes of DLL or

function names. Additionally, it enables di�erent samples of DodgeBox to use

distinct values for the same DLL and function, all while preserving the integrity of

the core hashing algorithm.

The following code shows DodgeBox calling its ResolveImport function to

resolve the address of LdrLoadDll , and populating its import table.

// ResolveImport takes in (wszDllName, dwDllNameHash, dwFuncNa
sImportTable->ntdll_LdrLoadDll = ResolveImport(L"ntdll", 0xFE0

Inside the ResolveImport function, DodgeBox utilizes the FNV1a hashing

function in a two-step process. First, it hashes the input string, which represents

a DLL or function name. Then, it hashes a salt value separately. This two-step

hashing procedure is equivalent to hashing the concatenation of the input string

and salt. The following pseudo-code represents the implementation of the salted

hash:

dwHash = 0x811C9DC5; // Standard initial seed for FNV1a
pwszInputString_Char = pwszInputString;
cchInputString = -1LL;
do
 ++cchInputString;
while (pwszInputString[cchInputString]);
pwszInputStringEnd = (pwszInputString + 2 * cchInputString);
if (pwszInputString < pwszInputStringEnd)
{
 do // Inlined FNV1a hash
 {
 chChar = *pwszInputString_Char;
 pwszInputString_Char = (pwszInputString_Char + 1);
 dwHash = 0x1000193 * (dwHash ^ chChar);
 }
 while (pwszInputString_Char < pwszInputStringEnd);
}
v17 = &g_HashSaltPostfix; // Salt value: CB 24 B4 BA
do // Inlined FNV1a hash, use previous hash as seed
{
 v18 = *v17;
 v17 = (v17 + 1);
 dwHash = 0x1000193 * (dwHash ^ v18);
}
while (v17 < g_HashSaltPostfix_End);

A Python script to generate the salted hashes is included in the Appendix.

In addition to the salted hash implementation, DodgeBox incorporates another

noteworthy feature in its ResolveImport function. This function accepts both

the DLL name as a string and its hash value as arguments. This redundancy

appears to be designed to provide �exibility, allowing DodgeBox to handle

scenarios where the target DLL has not yet been loaded. In such cases, DodgeBox

invokes the LoadLibraryW function with the provided string to load the DLL

dynamically.

Furthermore, DodgeBox e�ectively handles forwarded exports and exports by

ordinals. It utilizes ntdll!LdrLoadDll

and ntdll!LdrGetProcedureAddressEx when necessary to resolve the

address of the exported function. This approach ensures that DodgeBox can

successfully resolve and utilize the desired functions, regardless of the export

method used.

Environment setup: DLL unhooking

Once DodgeBox has resolved the necessary functions, it proceeds to scan and

unhook DLLs that are loaded from the System32 directory. This process involves

iterating through the .pdata section of each DLL, retrieving each function’s start

and end addresses, and calculating an FNV1a hash for the bytes of each function.

DodgeBox then computes a corresponding hash for the same function's bytes as

stored on disk. If the two hashes di�er, potential tampering can be detected, and

DodgeBox will replace the in-memory function with the original version from the

disk.

For each DLL that has been successfully scanned, DodgeBox marks the

corresponding LDR_DATA_TABLE_ENTRY by clearing the ReservedFlags6 �eld

and setting the upper bit to 1. This marking allows DodgeBox to avoid scanning

the same DLL twice.

Environment setup: Disabling CFG

Following that, DodgeBox checks if the operating system is Windows 8 or newer.

If so, the code veri�es whether Control Flow Guard (CFG) is enabled by

calling GetProcessMitigationPolicy with

the ProcessControlFlowGuardPolicy parameter. If CFG is active, the

malware attempts to disable it.

To achieve this, DodgeBox locates the LdrpHandleInvalidUserCallTarget

function within ntdll.dll by searching for a speci�c byte sequence. Once

found, the malware patches this function with a simple jmp rax instruction:

ntdll!LdrpHandleInvalidUserCallTarget:
00007ffe`fc8cf070 48ffe0 jmp rax
00007ffe`fc8cf073 cc int 3
00007ffe`fc8cf074 90 nop

CFG veri�es the validity of indirect call targets. When a CFG check

fails, LdrpHandleInvalidUserCallTarget is invoked, typically raising an

interrupt. At this point, the rax register contains the invalid target address. The

patch modi�es this behavior, calling the target directly instead of raising an

interrupt, thus bypassing CFG protection.

In addition, DodgeBox replaces msvcrt!_guard_check_icall_fptr

with msvcrt!_DebugMallocator<int>::~_DebugMallocator<int> , a

function that returns 0 to disable the CFG check performed by msvcrt .

Execution guardrail: MAC, computer name, and user name checks

Finally, DodgeBox performs a series of checks to verify if it is con�gured to run on

the current machine. The malware compares the machine’s MAC address

against Config.rgbTargetMac , and compares the computer name

against Config.wszTargetComputerName . Depending on

the Config.fDoCheckIsSystem �ag, DodgeBox checks whether it is running

with SYSTEM privileges. If any of these checks fail, the malware terminates

execution.

3. Payload decryption and environment keying

Payload decryption

In the �nal phase, DodgeBox commences the decryption process for the

MoonWalk payload DAT �le. The code starts by inspecting the �rst four bytes of

the �le. If these bytes are non-zero, it signi�es that the DAT �le has been tied to a

particular machine, (which is described below). However, if the DAT �le is not

machine-speci�c, DodgeBox proceeds to decrypt the �le using AES-CFB

encryption, utilizing the key parameters stored in the con�guration �le. In the

samples analyzed by ThreatLabz, this decrypted DAT �le corresponds to a DLL,

which is the MoonWalk backdoor.

Environment keying of the payload

After the decryption process, DodgeBox takes the additional step of keying the

payload to the current machine. It accomplishes this by re-encrypting the payload

using the Con�g.rgbAESKeyForDatFile key. However, in this speci�c scenario, the

process deviates from the con�guration �le's IV (Initialization Vector). Instead, it

utilizes the MD5 hash of the current machine's GUID as the AES IV. This approach

https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf

guarantees that the decrypted DAT �le cannot be decrypted on any other

machine, thus enhancing the payload's security.

Loading the payload using DLL hollowing

Next, DodgeBox re�ectively loads the payload using a DLL hollowing technique.

At a high level, the process begins with the random selection of a host DLL from

the System32 directory, ensuring it is not on a blocklist (DLL blocklist available in

the Appendix section) and has a su�ciently large .text section. A copy of this DLL

is then created

at C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace

\v4.0_4.0.0.0__<random bytes from pcrt4!UuidCreate>\<name of

chosen DLL>.dll . DodgeBox modi�es this copy by disabling the NX �ag,

removing the reloc and TLS sections, and patching its entry point with a

simple return 1 .

Following the preparation of the host DLL for injection, DodgeBox proceeds by

zeroing the PE headers, and the IMAGE_DATA_DIRECTORY structures

corresponding to the import , reloc , and debug directories of the payload

DLL. This modi�ed payload DLL is then inserted into the previously selected host

DLL. The resulting copy of the modi�ed host DLL is loaded into memory using

the NtCreateSection and NtMapViewOfSection APIs.

Once the DLL is successfully loaded, DodgeBox updates the relevant entries in the

Process Environment Block (PEB) to re�ect the newly loaded DLL. To further

conceal its activities, DodgeBox overwrites the modi�ed copy of the host DLL

with its original contents, making it appear as a legitimate, signed DLL on disk.

Finally, the malware calls the entrypoint of the payload DLL.

Interestingly, if the function responsible for DLL hollowing fails to load the payload

DLL, DodgeBox employs a fallback mechanism. This fallback function implements

a traditional form of re�ective DLL loading using NtAllocateVirtualMemory

and NtProtectVirtualMemory .

At this stage, the payload DLL has been successfully loaded, and control is

transferred to the payload DLL by invoking the �rst exported function.

Call stack spoo�ng

There is one last technique employed by DodgeBox throughout all three phases

discussed above: call stack spoo�ng. Call stack spoo�ng is employed to obscure

the origins of API calls, making it more challenging for EDRs and antivirus systems

to detect malicious activity. By manipulating the call stack, DodgeBox makes API

calls appear as if they originate from trusted binaries rather than the malware

itself. This prevents security solutions from gaining contextual information about

the true source of the API calls.

DodgeBox speci�cally utilizes call stack spoo�ng when invoking Windows APIs

that are more likely to be monitored. As an example, it directly

calls RtlInitUnicodeString , a Windows API that only performs string

manipulation, instead of using stack spoo�ng.

(sImportTable->ntdll_RtlInitUnicodeString)(v25, v26);

However, call stack spoo�ng is used when calling NtAllocateVirtualMemory,

an API known to be abused by malware, as shown below:

CallFunction(
 sImportTable->ntdll_NtAllocateVirtualMemory, // API to ca
 0, // Unused
 6LL, // Number of parameters
 // Parameters to the API
 -1LL, &pAllocBase, 0LL, &dwSizeOfImage, 0x3000, PAGE_READWR

The technique mentioned above can be observed in the �gures below. In the �rst

�gure, we can see a typical call stack when explorer.exe invokes the CreateFileW

function. The system monitoring tool, SysMon, e�ectively walks the call stack,

enabling us to understand the purpose behind this API call and examine the

modules and functions involved in the process.

Figure 2: Normal example of stack trace from explorer.exe

calling CreateFileW .

In contrast, the next �gure shows the call stack recorded by SysMon when

DodgeBox uses stack spoo�ng to call the CreateFileW function. Notice that there

is no indication of DodgeBox’s modules that triggered the API call. Instead, the

modules involved all appear to be legitimate Windows modules.

Figure 3: Stack trace of DodgeBox calling CreateFileW using the stack spoo�ng

technique.

There is an excellent writeup of this technique, so we will only highlight some

implementation details speci�c to DodgeBox:

When the CallFunction is invoked, DodgeBox uses a random jmp

qword ptr [rbp+48h] gadget residing within the .text section

of KernelBase .

DodgeBox analyzes the unwind codes within the .pdata section to extract

the unwind size for the function that includes the selected gadget.

DodgeBox obtains the addresses of RtlUserThreadStart + 0x21

and BaseThreadInitThunk + 0x14 , along with their respective unwind

sizes.

DodgeBox sets up the stack by inserting the addresses

of RtlUserThreadStart + 0x21 , BaseThreadInitThunk + 0x14 ,

and the address of the gadget at the right positions, utilizing the unwind

sizes retrieved.

Following that, DodgeBox proceeds to insert the appropriate return address

at [rbp+48h] and prepares the registers and stack with the necessary

argument values to be passed to the API. This preparation ensures that the

API is called correctly and with the intended parameters.

Finally, DodgeBox executes a jmp instruction to redirect the control �ow to

the targeted API.

Threat Attribution

https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs

In this section, we outline the di�erent tactics, techniques, and procedures (TTPs)

that were utilized as indicators during our threat attribution process. Through the

identi�cation of these overlapping TTPs, we attribute this activity to a China-

based threat actor known as APT41. Our con�dence level in this attribution is

medium.

Abuse of DLL sideloading

DLL sideloading is a technique commonly utilized by APT groups with links to

China. Typically, this method involves three essential components: a legitimate

executable (EXE) �le that is signed, a malicious DLL �le, and an encrypted data

�le. While the speci�c combination of the EXE and DLL �les mentioned here has

not been publicly documented as being associated with APT41, the presence of

these three components could indicate the involvement of a group linked to

China.

Targeted regions

Analysis of the telemetry available in VirusTotal reveals that DodgeBox samples

have been submitted from both Thailand and Taiwan. This observation aligns with

previous instances of APT41 employing StealthVector in campaigns primarily

targeting users in the Southeast Asian (SEA) region.

Furthermore, during the monitoring of the attacker-controlled Google Drive

account utilized for C2 communication, a spreadsheet containing the personal

details of individuals from India was discovered. This spreadsheet is publicly

available from other sources, suggesting that the threat actor may have leveraged

it to identify potential additional targets.

Similarities between DodgeBox and StealthVector

During our analysis of DodgeBox, we noted a number of similarities with

StealthVector. In this section, we compare the code between variants of

StealthVector uploaded to VirusTotal in 2021 and 2024, along with DodgeBox.

Similarities in checksum and con�guration decryption

Both StealthVector and DodgeBox perform an integrity check on their encrypted

con�gurations. This veri�cation process consists of two essential steps. First, the

hard-coded size of the con�guration is validated, ensuring it matches the

expected size. Second, the hash of the con�guration is veri�ed to ensure its

integrity. Once these checks are successfully completed, the malware proceeds

with decrypting the con�guration.

StealthVector (2021)

Figure 4: StealthVector uses the CRC32 hashing algorithm and the ChaCha20

algorithm for decryption (screenshot from TrendMicro).

Old variants of StealthVector use a CRC32 hashing algorithm for integrity checks

and ChaCha20 for decryption of the con�guration.

StealthVector (2024)

Figure 5: StealthVector uses the CRC32 hashing algorithm and AES-CBC

algorithm for decryption.

Newer variants of StealthVector use a CRC32 hashing algorithm, and AES-CBC for

decryption.

DodgeBox

Figure 6: DodgeBox uses the MD5 hashing algorithm and AES-CFB algorithm for

decryption.

DodgeBox uses an MD5 hashing algorithm for integrity checks, and AES-CFB for

decryption of the con�guration.

Similarities in decrypted con�guration format

These similarities encompass various aspects such as guardrails, payload

�lenames, sizes and o�sets, as well as cryptographic secrets. Both the original

StealthVector and DodgeBox con�gurations also incorporate checksums for their

encrypted payloads.

StealthVector (2021)

Figure 7: Con�guration extracted from the 2021 variant of StealthVector.

The con�guration extracted from the 2021 variant of StealthVector reveals several

similarities with the 2024 variant of StealthVector and DodgeBox.

StealthVector (2024)

Figure 8: Con�guration extracted from the 2024 variant of StealthVector.

The con�guration extracted from the 2024 variant of StealthVector reveals several

similarities with the 2021 variant of StealthVector and DodgeBox.

DodgeBox

Figure 9: Con�guration extracted from DodgeBox.

The con�guration extracted from DodgeBox reveals several similarities with the

2024 and 2021 variant of StealthVector.

Similarities in environment keying

Both StealthVector and DodgeBox perform environment keying by decrypting

then re-encrypting the bundled payload.

StealthVector (2021)

TrendMicro’s report did not document StealthVector utilizing environment keying.

StealthVector (2024)

Figure 10: 2024 variant of StealthVector performing environment keying, using a

rolling XOR against the computer name.

The updated version of StealthVector employs the �rst four bytes of the payload

(rgbDecryptedData_In_Out) to check whether the payload has been keyed. If

the payload has not been previously keyed, StealthVector proceeds to key it using

the computer name of the target machine.

This keying process involves a rolling XOR operation to encode the payload,

followed by re-encryption using AES. In the analyzed sample, StealthVector sets

the �rst four bytes of the payload to 0x90909090 , serving as an indicator that

the payload has been successfully keyed.

DodgeBox

Figure 11: DodgeBox uses a technique called environment keying, where it uses

the hash of the machine's GUID as the AES Initialization Vector (IV).

DodgeBox employs the �rst four bytes of the payload (pFileData) to determine

whether it has been keyed. If the payload has not been previously keyed,

DodgeBox decrypts the payload using the AES IV from its con�guration.

DodgeBox then proceeds to re-encrypt it using the MD5 hash of the target

machine's MachineGUID as the new AES IV.

In the given sample, DodgeBox sets the �rst four bytes of the payload

to 0x000000ED . This non-zero value serves as an indicator that the payload has

indeed been keyed and should be decrypted with the new AES IV.

Similarities in disabling CFG

All three samples exhibit remarkably similar logic in their approach to patching

CFG. This similarity extends to the use of identical byte patterns for locating

the LdrpHandleInvalidUserCallTarget function, as well as applying the same patch

in this function.

StealthVector (2021)

Figure 12: Code from the 2021 variant of StealthVector disabling CFG (screenshot

from TrendMicro).

The code extracted from the 2021 variant of StealthVector showcases the

disabling of CFG with striking similarity to all three samples.

StealthVector (2024)

Figure 13: Code from the 2024 variant of StealthVector, disabling CFG.

The code extracted from the 2024 variant of StealthVector showcases the

disabling of CFG with striking similarity to all three samples.

DodgeBox

Figure 14: Code from DodgeBox disabling CFG.

The code extracted from DodgeBox showcases the disabling of CFG with striking

similarity to all three samples.

Similarities in the use of DLL Hollowing

All three samples exhibit the capability to load bundled payloads through DLL

hollowing. Notably, the 2024 version of StealthVector shares an identical list of

blocklisted DLLs with DodgeBox.

To Be Continued

DodgeBox is a newly identi�ed malware loader that employs multiple techniques

to evade both static and behavioral detection. Based on a combination of known

TTPs, potential countries targeted, and similarities with StealthVector, we have

attributed this activity to the China-based nation state threat actor APT41 with

moderate con�dence. In our journey through Part 1 of this series, we analyzed the

technical details surrounding DodgeBox, and its similarities with StealthVector. In

Part 2, we will analyze the MoonWalk backdoor - which is dropped by

DodgeBox.

Zscaler Coverage

Zscaler’s multilayered cloud security platform detects indicators related to

DodgeBox at various levels with the following threat names

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

Win64.Payload.DodgeBox

Win64.Backdoor.Moonwalk

Win32.Backdoor.APT41

Win64.Backdoor.APT41

Indicators Of Compromise (IOCs)

MD5 Filename Description

0d068b6d0523f069d

1ada59c12891c4a
Music.zip

ZIP archive containing

DodgeBox samples.

b3067f382d70705d4

c8f6977a7d7bee4
taskhost.exe

Original Sandboxie

signed binary.

d72f202c1d684c9a19f

075290a60920f
Sbiedll.dll

DodgeBox DLL

sideloaded by

taskhost.exe.

294cc02db5a122e3a1

bc4f07997956da
Sbiedll.dat

Encrypted payload

DLL that decrypts to

the MoonWalk

backdoor.

393065ef9754e3f39b

24b2d1051eab61
Atstrust.dll

DodgeBox DLL which

is sideloaded by an

undetermined

AhnLab executable.

bcac2cbda36019776d

7861f12d9b59c4
Atstrust.dat

Encrypted payload

DLL that decrypts the

MoonWalk backdoor.

f062183da590aba5e9

11d2392bc29181
AppRouted.dll

2024 StealthVector

loader.

4141c4b827�67c180

096�5f2cc1474
AppRouteing.dll

Encrypted shellcode

and payload DLL that

decrypts to

CobaltStrike.

https://threatlibrary.zscaler.com/?keyword=Win64.Payload.DodgeBox
https://threatlibrary.zscaler.com/?keyword=Win64.Backdoor.Moonwalk
https://threatlibrary.zscaler.com/?keyword=Win32.Backdoor.APT41
https://threatlibrary.zscaler.com/?keyword=Win64.Backdoor.APT41

MD5 Filename Description

bc85062de0f70afd4

4bb072b0b71a8cc
N/A

2024 StealthVector

loader

72070b165d1f11bd4d

009a81bf28a3e5
mscms.dll

2024 StealthVector

loader

f0953ed4a679b987a2

da955788737602
roboform-x64.dll

2024 StealthVector

loader

MITRE ATT&CK Framework

Tactic ID Technique Description

Defense

Evasion
T1574.002

Hijack

Execution

Flow: DLL

Side-Loading

DodgeBox

samples are

designed to be

executed by

DLL

sideloading.

Defense

Evasion

T1480 Execution

Guardrails

DodgeBox

terminates

execution if

speci�c

arguments are

not provided.

DodgeBox

contains

capabilities to

restrict

execution to

machines with

speci�c MAC

addresses,

Tactic ID Technique Description

computer

names, and

user names.

Defense

Evasion
T1480.001

Execution

Guardrails:

Environmental

Keying

DodgeBox keys

the encrypted

payload to a

machine, using

a machine’s

GUID.

Defense

Evasion
T1027

Obfuscated

Files or

Information

DodgeBox uses

AES-CFB to

encrypt

strings,

con�gurations,

and bundled

payloads.

Defense

Evasion
T1027.007

Obfuscated

Files or

Information:

Dynamic API

Resolution

DodgeBox uses

salted FNV1a

hashes to

dynamically

resolve APIs.

Defense

Evasion
T1620

Re�ective Code

Loading

DodgeBox

re�ectively

loads payload

DLLs, utilizing

DLL hollowing.

Defense

Evasion

T1106 Native API DodgeBox uses

Windows

Native APIs

like NtCreate

File , LdrLoa

dDll ,

and NtAlloca

Tactic ID Technique Description

teVirtualMe

mory , as

opposed to

their Win32

counterparts.

Defense

Evasion
T1562.001

Impair

Defenses:

Disable or

Modify Tools

DodgeBox

utilizes stack

spoo�ng when

calling APIs to

evade security

software

monitoring.

DodgeBox

performs a

scan within its

own address

space to detect

any alterations,

such as hooks

or debugger

breakpoints. If

it identi�es any

signs of

modi�cation,

DodgeBox

takes action to

restore the

original code

from disk,

e�ectively

undoing any

unauthorized

changes made

to its code.

Appendix

An example decrypted con�guration of DodgeBox is shown in the �gure below.

The Python implementation of DodgeBox’s salted FNV1a hash is shown below.

def fnv1a_salted(data, salt, seed_value=0x811c9dc5):
 _data = data + salt
 _hash = seed_value
 prime = 0x01000193
 for byte in _data:
 _hash ^= byte
 _hash *= prime
 _hash &= 0xFFFFFFFF
 return _hash
ntdll in utf-16
ntdll = b"n\x00t\x00d\x00l\x00l\x00"
salt = b"\xba\xb4\x24\xcb"
print(hex(fnv1a_salted(ntdll, salt))) # 0xfe0b07b0
ldrloaddll = b"LdrLoadDll"
print(hex(fnv1a_salted(ldrloaddll, salt))) # 0xca7bb6ac

DodgeBox’s list of blocklisted DLLs is shown below.

advapi32.dll

bcrypt.dll

bcryptprimitives.dll

cfgmgr32.dll

combase.dll

cryptbase.dll

cryptsp.dll

dhcpcsvc.dll

dhcpcsvc6.dll

dnsapi.dll

FWPUCLNT.DLL

gdi32.dll

gdi32full.dll

iertutil.dll

imm32.dll

IPHLPAPI.DLL

kernel.appcore.dll

kernel32.dll

KernelBase.dll

locale.nls

msvcp_win.dll

msvcrt.dll

mswsock.dll

NapiNSP.dll

nlaapi.dll

nsi.dll

ntdll.dll

ntmarta.dll

oleaut32.dll

OnDemandConnRouteHelper.dll

pnrpnsp.dll

powrprof.dll

apphelp.dll

profapi.dll

rasadhlp.dll

rpcrt4.dll

rsaenh.dll

sechost.dll

SHCore.dll

shell32.dll

shlwapi.dll

sspicli.dll

ucrtbase.dll

urlmon.dll

user32.dll

userenv.dll

webio.dll

win32u.dll

windows.storage.dll

winhttp.dll

wininet.dll

winnlsres.dll

winnsi.dll

winrnr.dll

winsta.dll

ws2_32.dll

wshbth.dll

wtsapi32.dll

Explore more Zscaler blogs

Kimsuky deploys
TRANSLATEXT to target
South Korean academia

The Return of the Higaisa
APT

Was this post useful?

Yes, very! Not really

T H E Z S C A L E R E X P E R I E N C E

P R O D U C T S & S O L U T I O N S

P L AT F O R M

R E S O U R C E S

P O P U L A R L I N K S

Get the latest Zscaler blog
updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

Email Address

Subscribe

Zscaler is universally recognized as the leader in zero trust. Leveraging the largest security cloud on the planet, Zscaler anticipates, secures,
and simpli�es the experience of doing business for the world's most established companies.

English

Please enter your email to subscribe →

R E A D P O S T R E A D P O S T

https://www.zscaler.com/privacy/company-privacy-policy
https://www.zscaler.com/
https://facebook.com/zscaler
https://linkedin.com/company/zscaler
https://twitter.com/zscaler
https://youtube.com/user/ZscalerMarketing
https://www.zscaler.com/blogs/security-research/kimsuky-deploys-translatext-target-south-korean-academia
https://www.zscaler.com/blogs/security-research/return-higaisa-apt

© 2024 Zscaler, Inc.

Sitemap Privacy Legal Security

All rights reserved. Zscaler™ and other trademarks listed at zscaler.com/legal/trademarks are either (i) registered
trademarks or service marks or (ii) trademarks or service marks of Zscaler, Inc. in the United States and/or other countries. Any other
trademarks are the properties of their respective owners.

https://www.zscaler.com/sitemap.xml
https://www.zscaler.com/privacy/overview
https://www.zscaler.com/legal/overview
https://www.zscaler.com/security/vulnerability-disclosure-program

