
1/9

See what it's like to have a partner in the fight.
redcanary.com/blog/cor_profiler-for-persistence/

Editor’s note: We originally published this article on May 7 as part of our Blue Mockingbird
research. MITRE has since added the COR_PROFILER technique detailed in this blog to
the ATT&CK® Framework. As such, we wanted to present this work to our readers again—
and add references to its new ATT&CK page: COR_PROFILER (T1574.012).

https://redcanary.com/blog/cor_profiler-for-persistence/
https://redcanary.com/blog/blue-mockingbird-detection/
https://attack.mitre.org/techniques/T1574/012/

2/9

We believe that security teams should prioritize their detection efforts according to the
threats that are most likely to affect them. In fact, that’s one reason we produce our annual
Threat Detection Report, which analyzes the top MITRE ATT&CK techniques observed
across our customer base and by industry.

When it comes to persistence, Scheduled Task (T1053) ranked second overall and even
topped the list for a couple of industry verticals in 2019. Today, we’d like to talk about a
novel form of persistence that the Red Canary Cyber Incident Response Team (CIRT) has
observed an adversary leveraging in multiple incident response (IR) engagements. My
colleague Tony Lambert has broken down the adversary behaviors and TTPs in this blog
post.

Component Object Model (COM) hijacking (T1122) did not come anywhere close to the top
of our 2020 report (it barely cracked the top 100). This doesn’t mean it isn’t leveraged by
adversaries—rather, it’s usually the same “tried and true” methods of persistence
(scheduled tasks, autorun registry keys, services, etc.) that we see used over and over
again that dominate our Threat Detection Report. This is why we urge new security teams
to focus on detecting the most likely forms of persistence.

An adversary we’ve dubbed “Blue Mockingbird” leveraged multiple forms of persistence
when deploying their primary payload consisting of XMRIG packaged as a dynamic link
library (DLL), including:

Scheduled Tasks (T1053)
Modify Existing Service (T1031)
New Service (T1050)
COM Hijack using COR_PROFILER (T1574.012)

We have detection logic for catching each of the techniques listed above, but the
COR_PROFILER technique is pretty unusual. So let’s take a closer look.

COR_PROFILER for managed code development

The .NET framework supports the loading of an unmanaged (something outside the .NET
framework like C++, which interacts directly with hardware) profiler DLL as a code profiler to
monitor a managed application. This feature is intended to allow the unmanaged profiler
DLL to load into any .NET process and interact directly with callback interfaces through a
profiling API to receive information about the state of the profiled application. Essentially,
this means .NET developers can measure their managed code performance with an
unmanaged DLL, which aids in troubleshooting and debugging their managed application.

For our purposes, we will be looking at startup-load profilers, which are attached to the
unmanaged profiler when a managed application starts. A startup-load profiler can be
registered by adding a few environment variables. Per Microsoft:

https://redcanary.com/threat-detection-report/
https://redcanary.com/mitre-attack/
https://attack.mitre.org/tactics/TA0003/
https://attack.mitre.org/techniques/T1053/
https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://attack.mitre.org/techniques/T1122/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1031/
https://attack.mitre.org/techniques/T1050/
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/setting-up-a-profiling-environment
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview?redirectedfrom=MSDN#the-profiling-api
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ee471451(v=vs.100)?redirectedfrom=MSDN#startup-load-profilers
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ee471451(v=vs.100)?redirectedfrom=MSDN

3/9

COR_ENABLE_PROFILING=1

A value of 1 will enable the COR_PROFILER , while 0 will disable it.

COR_PROFILER={CLSID of profiler}

Prior to .NET Framework 4, this CLSID must be specified and map to a COM object
specifying the location of the profiling DLL on disk. This can be any CLSID of the
attackers choosing.

COR_PROFILER_PATH=full path of the profiler DLL

This environment variable was added with .NET Framework 4 and will skip searching
the Registry for the corresponding COM object specified in the COR_PROFILER
environment variable for the path to the profiling DLL on disk. If COR_PROFILER_PATH
is set, any arbitrary CLSID can be used for the COR_PROFILER environment variable.

In Windows, environment variables can have three scopes. The location of the
COR_PROFILER environment variable definition dictates which types of processes will be

profiled. Knowledge of these scopes can help inform a detection strategy when environment
variables are abused.

Machine (or system) scope

Machine environment variables are inherited by all downstream users and processes.
Modifying machine environment variables requires administrative permissions. These
environment variables are stored in the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Environment registry hive.
Blue Mockingbird leveraged this type of environment variable, resulting in a more
reliable persistence mechanism as all .NET processes loaded the malicious profiling
DLL regardless of whether or not a user was logged on.)

User scope

User scope environment variables are only available to individual users and include all
machine environment variables. These are stored in the current user registry hive at
HKEY_CURRENT_USER\Environment and in each respective user hive. For example,

here is where the system account environment variables are stored: HKEY_USERS\S-
1-5-18\Environment

Process scope

https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/setting-up-a-profiling-environment#environment-variable-scope

4/9

Process environment variables are constructed from the machine and user scope
environment variables. Child processes inherit any process scope environment
variables from their parent process. Process scope environment variables are only
available to the current process and any of its children. These variables are generally
set using something like the SET command in Command Prompt, the $Env
PowerShell variable, or by the Environment.SetEnvironmentVariable .NET method.
This is generally where a conservative .NET developer would place their
COR_PROFILER environment variables.

COR_PROFILER and COM

Early versions of .NET Framework required the COR_PROFILER to be attached to a COM
object in the registry. Beginning with .NET Framework 4, a registry-free COR_PROFILER
can be configured by specifying the COR_PROFILER_PATH to the unmanaged profiling DLL
on disk and any arbitrary CLSID. The CLSID does not need to actually exist in the registry
as the CLR will load the specified DLL in COR_PROFILER_PATH without initializing COM.

COR_PROFILER and red teams

In May 2017, Casey Smith wrote a blog post outlining the potential for this feature to be
abused by an adversary to hijack legitimate .NET processes and load a malicious
unmanaged DLL. Since then a few researchers and red team bloggers have expanded on
this technique as a method of persistence, bypassing User Account Control (UAC) (T1088)
and Applocker restrictions when DLL enforcement is not turned on. There is also Invisi-
Shell, which leverages a DLL profiler to hook .NET assemblies responsible for PowerShell’s
logging and the Antimalware Scanning Interface (AMSI).

https://docs.microsoft.com/en-us/dotnet/api/system.environment.setenvironmentvariable?view=netcore-3.1
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ee471451(v=vs.100)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview?redirectedfrom=MSDN#using-com
https://web.archive.org/web/20170720041203/http://subt0x10.blogspot.com/2017/05/subvert-clr-process-listing-with-net.html
https://seclists.org/fulldisclosure/2017/Jul/11
https://arxiv.org/pdf/1709.07508.pdf
https://3gstudent.github.io/3gstudent.github.io/Use-CLR-to-maintain-persistence/
https://offsec.almond.consulting/UAC-bypass-dotnet.html
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://attack.mitre.org/techniques/T1088/
https://github.com/OmerYa/Invisi-Shell
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

5/9

Registry-free process scope COR_PROFILER

COR_PROFILER in the wild

There are multiple methods of modifying the environment variables required to configure
the COR_PROFILER . For example, Reg.exe, Setx, and the Registry Editor (regedit.exe)
are good candidates. Blue Mockingbird employed the Windows Management
Instrumentation (WMI) command-line utility, Wmic.exe , to add the COR_PROFILER as
machine (system) environment variables. You can see a complete list of the commands
Blue Mockingbird leveraged in my colleague Tony’s blog post.

We have observed adversaries registering the CLSID COM interface specified in the
COR_PROFILER environment variable in the Windows Registry to ensure backwards

compatibility on machines with versions of .NET Framework lower than version 4. This
makes sense, as an adversary will want to ensure their persistence mechanisms are
resilient and work regardless of the environment. If the machine they land on is running
.NET Framework 4, the malicious DLL specified in the COR_PROFILER_PATH will be loaded
and the COM interface will not be used.

If the machine is running versions of .NET Framework lower than 4 and the
COR_PROFILER_PATH environment variable is supplied, the technique will still work as the

malicious DLL in the registered COM interface will be loaded.

In our experience with the COR_PROFILER technique, what results is a stealthy persistence
mechanism that executes each time any process loads the .NET CLR. Native Windows
processes like PowerShell and the Microsoft Management Console (mmc.exe) load the

https://redcanary.com/blog/blue-mockingbird-cryptominer/

6/9

.NET CLR, and any installed application written in .NET will load the CLR. This results in
the malicious profiling DLL loading into the memory space of each of those processes and
deploying more traditional forms of persistence like services and scheduled tasks that
seemingly appear out of thin air.

It’s worth noting the malicious profiling DLLs we’ve observed in IR engagements were not
detected by antivirus scanners on VirusTotal. It’s also worth noting that Microsoft’s Autoruns
does not check for the COR_PROFILER leveraged for persistence.

Detection Analytics

To aid defenders in detecting malicious COM Hijacking and UAC bypass leveraging the
COR_PROFILER , we’ve released three Atomic Red Team tests. The first test uses user

scope environment variables and registers a COM object in the Registry. This test
leverages PowerShell to modify COR_PROFILER user scope environment variables in the
Windows Registry and deploys an unmanaged payload DLL written in C++.

Here is an example of what the user scope environment variable modifications look like in
endpoint detection and response (EDR) telemetry:

The second Atomic Red Team test leverages machine (system) scope COR_PROFILER
environment variables similarly to how we have observed adversaries abuse this technique,
with a slight twist. This test does not add a COM object associated with the CLSID GUID we
set in the COR_PROFILER environment variable. This technique requires .NET Framework
4 or higher, which ships with all modern versions of Windows. This technique also requires
the machine to reboot for the system environment variables to take effect.

Here is an example of what the system scope environment variable modifications look like:

The third test leverages Registry-free user scope COR_PROFILER environment variables.
Again, .NET Framework 4 is required. This technique will not bypass UAC.

https://github.com/redcanaryco/atomic-red-team/tree/master/atomics/T1122
https://redcanary.com/solutions/endpoint-detection-and-response/

7/9

Here is an example of the unmanaged profiling DLL loading into PowerShell shortly after
the CLR is loaded:

Detection strategies should focus on suspicious modifications to the environment variables
associated with the COR_PROFILER in the System and User registry hives. This will
ensure you can detect COR_PROFILER modifications regardless of the method employed
to set environment variables.

User scope:

HKEY_USERS\<user_sid>\environment\cor_enable_profiling
HKEY_USERS\<user_sid>\environment\cor_profiler
HKEY_USERS\<user_sid>\environment\cor_profiler_path

Machine (system) scope environment variables can be detected by looking for the same
registry modification in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Environment\ :

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment\cor_enable_profiling
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment\cor_profiler
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment\cor_profiler_path

Note: process scope environment variables are stored in memory. Higher integrity child
processes do not inherit these environment variables if their parent process is of a lower
integrity, therefore, UAC is not bypassed.

Investigation should focus on the malicious profiler DLL written to disk and loading shortly
after the CLR (clr.dll) is loaded in the victim processes. The telemetry presented below
shows our Atomic Red Team T1122 tests loading the unmanaged DLL payload into
mmc.exe and executing the legitimate notepad.exe as a child process. If system or user

scope COR_PROFILER are leveraged and run with an administrative account, this
technique will also bypass UAC.

8/9

Again, any arbitrary CLSID COM interface (GUID) can be specified. With .NET Framework
4, the COM interface does not need to exist as long as the COR_PROFILER_PATH
environment variable points to the location of the profiling DLL on disk.

In our research, leveraging wmic.exe to modify the COR_PROFILER environment
variables has been directly associated with adversary activity. Some legitimate developer
debugging tools, like Ncover or AppDynamics, may read or delete the COR_PROFILER
registry keys, but it’s less likely you’ll see these tools repeatedly writing data into these
registry keys.

Mitigations

The COR_PROFILER is a legitimate method developed by Microsoft for profiling managed
applications. There doesn’t appear to be a method for disabling the feature to prevent
adversaries from using for persistence. As with other techniques that abuse system
features, it’s best to have a solid detection strategy.

It is possible to mitigate the UAC bypass by ensuring proper segmentation of administrative
accounts. We recommend ensuring administrative accounts are not used for day-to-day
operations by implementing Least-Privilege Administrative Models.

Closing thoughts

When leveraged maliciously, the COR_PROFILER can be a highly effective form of
persistence that has the added benefit of bypassing UAC. This technique can also bypass
AppLocker as DLL enforcement is not typically enabled by default. Defenders can audit the
Registry keys associated with the COR_PROFILER and create high signal-to-noise methods
for detection.

If you’ve seen the COR_PROFILER leveraged for persistence, bypassing UAC, or in other
ways, please reach out—we would love to hear from you. You can also join the Atomic Red
Team Slack and share your thoughts, improvements, and questions about the
COR_PROFILER tests.

Related Articles

https://www.ncover.com/
https://www.appdynamics.com/info/net-code-profiler
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/implementing-least-privilege-administrative-models
http://10.10.0.46/mailto:blog@redcanary.com
https://slack.atomicredteam.io/

9/9

Detection and response

ChromeLoader: a pushy malvertiser

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

Subscribe to our blog

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.

 X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

https://redcanary.com/privacy-policy

