
Attackers Deploy New ICS Attack Framework “TRITON”
and Cause Operational Disruption to Critical Infrastructure

www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html

Introduction

Mandiant recently responded to an incident at a critical infrastructure organization where an
attacker deployed malware designed to manipulate industrial safety systems. The targeted
systems provided emergency shutdown capability for industrial processes. We assess with
moderate confidence that the attacker was developing the capability to cause physical damage
and inadvertently shutdown operations. This malware, which we call TRITON, is an attack
framework built to interact with Triconex Safety Instrumented System (SIS) controllers. We
have not attributed the incident to a threat actor, though we believe the activity is consistent
with a nation state preparing for an attack.

TRITON is one of a limited number of publicly identified malicious software families targeted at
industrial control systems (ICS). It follows Stuxnet which was used against Iran in 2010 and
Industroyer which we believe was deployed by Sandworm Team against Ukraine in 2016.
TRITON is consistent with these attacks, in that it could prevent safety mechanisms from
executing their intended function, resulting in a physical consequence.

Malware
Family

Main
Modules

Description

TRITON trilog.exe Main executable leveraging libraries.zip

library.zip Custom communication library for interaction with Triconex
controllers.

Table 1: Description of TRITON Malware

Incident Summary

The attacker gained remote access to an SIS engineering workstation and deployed the
TRITON attack framework to reprogram the SIS controllers. During the incident, some SIS
controllers entered a failed safe state, which automatically shutdown the industrial process and
prompted the asset owner to initiate an investigation. The investigation found that the SIS
controllers initiated a safe shutdown when application code between redundant processing
units failed a validation check -- resulting in an MP diagnostic failure message.

We assess with moderate confidence that the attacker inadvertently shutdown operations while
developing the ability to cause physical damage for the following reasons:

1/10

https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.fireeye.com/services.html
https://www.fireeye.com/solutions/industrial-systems-and-critical-infrastructure-security.html
https://www.fireeye.com/company/press-releases/2014/fireeye-reveals-rise-in-advanced-threat-activities-by-iranian-linked-ajax-security-team-in-post-stuxnet-era.html

Modifying the SIS could prevent it from functioning correctly, increasing the likelihood of
a failure that would result in physical consequences.
TRITON was used to modify application memory on SIS controllers in the environment,
which could have led to a failed validation check.
The failure occurred during the time period when TRITON was used.
It is not likely that existing or external conditions, in isolation, caused a fault during the
time of the incident.

Attribution

FireEye has not connected this activity to any actor we currently track; however, we assess
with moderate confidence that the actor is sponsored by a nation state. The targeting of critical
infrastructure as well as the attacker’s persistence, lack of any clear monetary goal and the
technical resources necessary to create the attack framework suggest a well-resourced nation
state actor. Specifically, the following facts support this assessment:

The attacker targeted the SIS suggesting an interest in causing a high-impact attack with
physical consequences. This is an attack objective not typically seen from cyber-crime groups.

The attacker deployed TRITON shortly after gaining access to the SIS system, indicating that
they had pre-built and tested the tool which would require access to hardware and software
that is not widely available. TRITON is also designed to communicate using the proprietary
TriStation protocol which is not publicly documented suggesting the adversary independently
reverse engineered this protocol.

The targeting of critical infrastructure to disrupt, degrade, or destroy systems is consistent with
numerous attack and reconnaissance activities carried out globally by Russian, Iranian, North
Korean, U.S., and Israeli nation state actors. Intrusions of this nature do not necessarily
indicate an immediate intent to disrupt targeted systems, and may be preparation for a
contingency.

Background on Process Control and Safety Instrumented Systems

2/10

https://www.fireeye.com/index.html

Figure 1: ICS Reference Architecture

Modern industrial process control and automation systems rely on a variety of sophisticated
control systems and safety functions. These systems and functions are often referred to as
Industrial Control Systems (ICS) or Operational Technology (OT).

A Distributed Control System (DCS) provides human operators with the ability to remotely
monitor and control an industrial process. It is a computerized control system consisting of
computers, software applications and controllers. An Engineering Workstation is a computer
used for configuration, maintenance and diagnostics of the control system applications and
other control system equipment.

A SIS is an autonomous control system that independently monitors the status of the process
under control. If the process exceeds the parameters that define a hazardous state, the SIS
attempts to bring the process back into a safe state or automatically performs a safe shutdown
of the process. If the SIS and DCS controls fail, the final line of defense is the design of the
industrial facility, which includes mechanical protections on equipment (e.g. rupture discs),
physical alarms, emergency response procedures and other mechanisms to mitigate

3/10

https://www.fireeye.com/solutions/industrial-systems-and-critical-infrastructure-security.html

dangerous situations.

Asset owners employ varied approaches to interface their plant's DCS with the SIS. The
traditional approach relies on the principles of segregation for both communication
infrastructures and control strategies. For at least the past decade, there has been a trend
towards integrating DCS and SIS designs for various reasons including lower cost, ease of
use, and benefits achieved from exchanging information between the DCS and SIS. We
believe TRITON acutely demonstrates the risk associated with integrated designs that allow bi-
directional communication between DCS and SIS network hosts.

Safety Instrumented Systems Threat Model and Attack Scenarios

Figure 2: Temporal Relationship Between Cyber Security and Safety

The attack lifecycle for disruptive attacks against ICS is similar to other types of cyber attacks,
with a few key distinctions. First, the attacker’s mission is to disrupt an operational process
rather than steal data. Second, the attacker must have performed OT reconnaissance and
have sufficient specialized engineering knowledge to understand the industrial process being
controlled and successfully manipulate it.

Figure 2 represents the relationship between cyber security and safety controls in a process
control environment. Even if cyber security measures fail, safety controls are designed to
prevent physical damage. To maximize physical impact, a cyber attacker would also need to
bypass safety controls.

The SIS threat model below highlights some of the options available to an attacker who has
successfully compromised an SIS.

4/10

Attack Option 1: Use the SIS to shutdown the process

The attacker can reprogram the SIS logic to cause it to trip and shutdown a process that
is, in actuality, in a safe state. In other words, trigger a false positive.
Implication: Financial losses due to process downtime and complex plant start up
procedure after the shutdown.

Attack Option 2: Reprogram the SIS to allow an unsafe state

The attacker can reprogram the SIS logic to allow unsafe conditions to persist.
Implication: Increased risk that a hazardous situation will cause physical consequences
(e.g. impact to equipment, product, environment and human safety) due to a loss of SIS
functionality.

Attack Option 3: Reprogram the SIS to allow an unsafe state – while using the DCS to create
an unsafe state or hazard

The attacker can manipulate the process into an unsafe state from the DCS while
preventing the SIS from functioning appropriately.
Implication: Impact to human safety, the environment, or damage to equipment, the
extent of which depends on the physical constraints of the process and the plant design.

Analysis of Attacker Intent

We assess with moderate confidence that the attacker’s long-term objective was to develop
the capability to cause a physical consequence. We base this on the fact that the attacker
initially obtained a reliable foothold on the DCS and could have developed the capability to
manipulate the process or shutdown the plant, but instead proceeded to compromise the SIS
system. Compromising both the DCS and SIS system would enable the attacker to develop
and carry out an attack that causes the maximum amount of damage allowed by the physical
and mechanical safeguards in place.

Once on the SIS network, the attacker used their pre-built TRITON attack framework to
interact with the SIS controllers using the TriStation protocol. The attacker could have caused
a process shutdown by issuing a halt command or intentionally uploading flawed code to the
SIS controller to cause it to fail. Instead, the attacker made several attempts over a period of
time to develop and deliver functioning control logic for the SIS controllers in this target
environment. While these attempts appear to have failed due one of the attack scripts’
conditional checks, the attacker persisted with their efforts. This suggests the attacker was
intent on causing a specific outcome beyond a process shutdown.

Of note, on several occasions, we have observed evidence of long term intrusions into ICS
which were not ultimately used to disrupt or disable operations. For instance, Russian
operators, such as Sandworm Team, have compromised Western ICS over a multi-year period
without causing a disruption.

Summary of Malware Capabilities
5/10

The TRITON attack tool was built with a number of features, including the ability to read and
write programs, read and write individual functions and query the state of the SIS controller.
However, only some of these capabilities were leveraged in the trilog.exe sample (e.g. the
attacker did not leverage all of TRITON’s extensive reconnaissance capabilities).

The TRITON malware contained the capability to communicate with Triconex SIS controllers
(e.g. send specific commands such as halt or read its memory content) and remotely
reprogram them with an attacker-defined payload. The TRITON sample Mandiant analyzed
added an attacker-provided program to the execution table of the Triconex controller. This
sample left legitimate programs in place, expecting the controller to continue operating without
a fault or exception. If the controller failed, TRITON would attempt to return it to a running
state. If the controller did not recover within a defined time window, this sample would overwrite
the malicious program with invalid data to cover its tracks.

Recommendations

Asset owners who wish to defend against the capabilities demonstrated in the incident, should
consider the following controls:

Where technically feasible, segregate safety system networks from process control and
information system networks. Engineering workstations capable of programming SIS
controllers should not be dual-homed to any other DCS process control or information
system network.
Leverage hardware features that provide for physical control of the ability to program
safety controllers. These usually take the form of switches controlled by a physical key.
On Triconex controllers, keys should not be left in the PROGRAM mode other than
during scheduled programming events.
Implement change management procedures for changes to key position. Audit current
key state regularly.
Use a unidirectional gateway rather than bidirectional network connections for any
applications that depend on the data provided by the SIS.
Implement strict access control and application whitelisting on any server or workstation
endpoints that can reach the SIS system over TCP/IP.
Monitor ICS network traffic for unexpected communication flows and other anomalous
activity.

6/10

Figure 3: Triconex Key Switch (source)

Appendix: Technical Analysis

Figure 4: TRITON Architecture and Attack Scenario

TRITON was deployed on an SIS engineering workstation running the Microsoft Windows
operating system. The malware was named to masquerade as the legitimate Triconex Trilog
application. This application is used for reviewing logs and is a part of the TriStation
application suite. The malware was delivered as a Py2EXE compiled python script dependent
on a zip file containing standard Python libraries, open source libraries, as well as the attacker-

7/10

https://images-na.ssl-images-amazon.com/images/I/41jr93jKzML._SX466_.jpg

developed Triconex attack framework for interacting with the Triconex controllers. Along with
the executable, two binary files, inject.bin (malicious function code) and imain.bin (malicious
control logic), were deployed as the controller’s payload. These file names were hard coded in
the Py2EXE compiled python script.

Trilog.exe took one option from the command line, which was a single IP address of the target
Triconex device. It did not leverage the underlying TRITON library’s capability for Triconex
device discovery, instead an instance of trilog.exe had to be invoked separately for each target
controller in the environment. Once invoked, trilog.exe checked the status of the controller,
then read the configuration information exposed by the TriStation protocol. If the controller was
in a running state, trilog.exe encoded the two payload files inject.bin and imain.bin and passed
them to the communication libraries to be appended to the controller’s program memory and
execution table.

After payload files were inserted into memory on the Triconex controller, the script initiated a
countdown, periodically checking the status of the controller. If an error was detected, the
communication library’s method SafeAppendProgramMod attempted to reset the controller to
the previous state using a TriStation protocol command. If this failed, trilog.exe attempted to
write a small ‘dummy’ program to memory. We assess that this was an anti-forensics
technique to hide the presence of the attacker code on the Triconex controller.

Working with the asset owner, Mandiant ran trilog.exe in a lab environment with a valid
Triconex controller and discovered a conditional check in the malware that prevented the
payload binary from persisting in the environment. Mandiant confirmed that, after correcting
patching the attack script to remove this check, the payload binary would persist in controller
memory, and the controller would continue to run.

TRITON implements the TriStation protocol, which is the protocol used by the legitimate
TriStation application, to configure controllers.

TsHi is the high-level interface created by the malware’s authors that allows the threat actor’s
operators to implement attack scripts using the TRITON framework. It exposes functions for
both reconnaissance and attack. The functions generally accept binary data from the user, and
handle the code ‘signing’ and check sums prior to passing the data to lower level libraries for
serialization on to the network.

TsBase, another attacker-written module, contains the functions called by TsHi, which translate
the attacker’s intended action to the appropriate TriStation protocol function code. For certain
functions, it also packs and pads the data in to the appropriate format.

TsLow is an additional attacker module that implements the TriStation UDP wire protocol. The
TsBase library primarily depends on the ts_exec method. This method takes the function code
and expected response code, and serializes the commands payload over UDP. It checks the
response from the controller against the expected value and returns a result data structure
indicating success or a False object representing failure.

8/10

TsLow also exposes the connect method used to check connectivity to the target controller. If
invoked with no targets, it runs the device discovery function detect_ip. This leverages a "ping"
message over the TriStation protocol using IP broadcast to find controllers that are reachable
via a router from where the script is invoked.

Indicators

Filename Hash

trilog.exe MD5: 6c39c3f4a08d3d78f2eb973a94bd7718
SHA-256:
e8542c07b2af63ee7e72ce5d97d91036c5da56e2b091aa2afe737b224305d230

imain.bin MD5: 437f135ba179959a580412e564d3107f
SHA-256:
08c34c6ac9186b61d9f29a77ef5e618067e0bc9fe85cab1ad25dc6049c376949

inject.bin MD5: 0544d425c7555dc4e9d76b571f31f500
SHA-256:
5fc4b0076eac7aa7815302b0c3158076e3569086c4c6aa2f71cd258238440d14

library.zip MD5: 0face841f7b2953e7c29c064d6886523
SHA-256:
bef59b9a3e00a14956e0cd4a1f3e7524448cbe5d3cc1295d95a15b83a3579c59

TS_cnames.pyc MD5: e98f4f3505f05bf90e17554fbc97bba9
SHA-256:
2c1d3d0a9c6f76726994b88589219cb8d9c39dd9924bc8d2d02bf41d955fe326

TsBase.pyc MD5: 288166952f934146be172f6353e9a1f5
SHA-256:
1a2ab4df156ccd685f795baee7df49f8e701f271d3e5676b507112e30ce03c42

TsHi.pyc MD5: 27c69aa39024d21ea109cc9c9d944a04
SHA-256:
758598370c3b84c6fbb452e3d7119f700f970ed566171e879d3cb41102154272

TsLow.pyc MD5: f6b3a73c8c87506acda430671360ce15
SHA-256:
5c776a33568f4c16fee7140c249c0d2b1e0798a96c7a01bfd2d5684e58c9bb32

sh.pyc MD5: 8b675db417cc8b23f4c43f3de5c83438
SHA-256:
c96ed56bf7ee85a4398cc43a98b4db86d3da311c619f17c8540ae424ca6546e1

Detection

9/10

rule TRITON_ICS_FRAMEWORK
{
 meta:
 author = "nicholas.carr @itsreallynick"
 md5 = "0face841f7b2953e7c29c064d6886523"
 description = "TRITON framework recovered during Mandiant ICS incident response"
 strings:
 $python_compiled = ".pyc" nocase ascii wide
 $python_module_01 = "__module__" nocase ascii wide
 $python_module_02 = "<module>" nocase ascii wide
 $python_script_01 = "import Ts" nocase ascii wide
 $python_script_02 = "def ts_" nocase ascii wide

 $py_cnames_01 = "TS_cnames.py" nocase ascii wide
 $py_cnames_02 = "TRICON" nocase ascii wide
 $py_cnames_03 = "TriStation " nocase ascii wide
 $py_cnames_04 = " chassis " nocase ascii wide

 $py_tslibs_01 = "GetCpStatus" nocase ascii wide
 $py_tslibs_02 = "ts_" ascii wide
 $py_tslibs_03 = " sequence" nocase ascii wide
 $py_tslibs_04 = /import Ts(Hi|Low|Base)[^:alpha:]/ nocase ascii wide
 $py_tslibs_05 = /module\s?version/ nocase ascii wide
 $py_tslibs_06 = "bad " nocase ascii wide
 $py_tslibs_07 = "prog_cnt" nocase ascii wide

 $py_tsbase_01 = "TsBase.py" nocase ascii wide
 $py_tsbase_02 = ".TsBase(" nocase ascii wide

 $py_tshi_01 = "TsHi.py" nocase ascii wide
 $py_tshi_02 = "keystate" nocase ascii wide
 $py_tshi_03 = "GetProjectInfo" nocase ascii wide
 $py_tshi_04 = "GetProgramTable" nocase ascii wide
 $py_tshi_05 = "SafeAppendProgramMod" nocase ascii wide
 $py_tshi_06 = ".TsHi(" ascii nocase wide

 $py_tslow_01 = "TsLow.py" nocase ascii wide
 $py_tslow_02 = "print_last_error" ascii nocase wide
 $py_tslow_03 = ".TsLow(" ascii nocase wide
 $py_tslow_04 = "tcm_" ascii wide
 $py_tslow_05 = " TCM found" nocase ascii wide

 $py_crc_01 = "crc.pyc" nocase ascii wide
 $py_crc_02 = "CRC16_MODBUS" ascii wide
 $py_crc_03 = "Kotov Alaxander" nocase ascii wide
 $py_crc_04 = "CRC_CCITT_XMODEM" ascii wide
 $py_crc_05 = "crc16ret" ascii wide
 $py_crc_06 = "CRC16_CCITT_x1D0F" ascii wide
 $py_crc_07 = /CRC16_CCITT[^_]/ ascii wide

 $py_sh_01 = "sh.pyc" nocase ascii wide

 $py_keyword_01 = " FAILURE" ascii wide
 $py_keyword_02 = "symbol table" nocase ascii wide

 $py_TRIDENT_01 = "inject.bin" ascii nocase wide
 $py_TRIDENT_02 = "imain.bin" ascii nocase wide

 condition:
 2 of ($python_*) and 7 of ($py_*) and filesize < 3MB
}

10/10

	Attackers Deploy New ICS Attack Framework “TRITON” and Cause Operational Disruption to Critical Infrastructure
	Introduction
	Incident Summary
	Attribution
	Background on Process Control and Safety Instrumented Systems
	Safety Instrumented Systems Threat Model and Attack Scenarios
	Analysis of Attacker Intent
	Summary of Malware Capabilities
	Recommendations
	Appendix: Technical Analysis
	Indicators
	Detection

